1
|
Nair V, Okello M. Integrase Inhibitor Prodrugs: Approaches to Enhancing the Anti-HIV Activity of β-Diketo Acids. Molecules 2015; 20:12623-51. [PMID: 26184144 PMCID: PMC6332332 DOI: 10.3390/molecules200712623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
HIV integrase, encoded at the 3'-end of the HIV pol gene, is essential for HIV replication. This enzyme catalyzes the incorporation of HIV DNA into human DNA, which represents the point of "no-return" in HIV infection. Integrase is a significant target in anti-HIV drug discovery. This review article focuses largely on the design of integrase inhibitors that are β-diketo acids constructed on pyridinone scaffolds. Methodologies for synthesis of these compounds are discussed. Integrase inhibition data for the strand transfer (ST) step are compared with in vitro anti-HIV data. The review also examines the issue of the lack of correlation between the ST enzymology data and anti-HIV assay results. Because this disconnect appeared to be a problem associated with permeability, prodrugs of these inhibitors were designed and synthesized. Prodrugs dramatically improved the anti-HIV activity data. For example, for compound, 96, the anti-HIV activity (EC50) improved from 500 nM for this diketo acid to 9 nM for its prodrug 116. In addition, there was excellent correlation between the IC50 and IC90 ST enzymology data for 96 (6 nM and 97 nM, respectively) and the EC50 and EC90 anti-HIV data for its prodrug 116 (9 nM and 94 nM, respectively). Finally, it was confirmed that the prodrug 116 was rapidly hydrolyzed in cells to the active compound 96.
Collapse
Affiliation(s)
- Vasu Nair
- Center for Drug Discovery and College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| | - Maurice Okello
- Center for Drug Discovery and College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Kong Y, Xuan S, Yan A. Computational models on quantitative prediction of bioactivity of HIV-1 integrase 3' processing inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:729-746. [PMID: 25121566 DOI: 10.1080/1062936x.2014.942695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, four computational quantitative structure-activity relationship (QSAR) models were built to predict the bioactivity of 3' processing (3'P) inhibitors of HIV-1 integrase. Some 453 inhibitors whose bioactivity values were detected by the radiolabelling method were collected. The molecular structures were represented with MOE descriptors. In total, 21 descriptors were selected for modelling. All inhibitors were divided into a training set and a test set with two methods: (1) by a Kohonen's self-organizing map (SOM); (2) by a random selection. For every training set and test set, a multilinear regression (MLR) analysis and a support vector machine (SVM) were used to establish models, respectively. For the training/test set divided by SOM, the correlation coefficients (r) were over 0.84, and for the training/test set split randomly, the r values were over 0.86. Some molecular properties such as hydrogen bond donor capacity, atomic partial charge properties, molecular refractivity, the number of aromatic bonds and molecular surface area, volume and shape properties played important roles for inhibiting 3' processing step of HIV-1 integrase.
Collapse
Affiliation(s)
- Y Kong
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , China
| | | | | |
Collapse
|
3
|
Zhang X, Deng D, Tan J, He Y, Li C, Wang C. Pharmacophore and docking-based 3D-QSAR studies on HIV-1 integrase inhibitors. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Xuan S, Wang M, Kang H, Kirchmair J, Tan L, Yan A. Support Vector Machine (SVM) Models for Predicting Inhibitors of the 3′ Processing Step of HIV-1 Integrase. Mol Inform 2013; 32:811-26. [DOI: 10.1002/minf.201300107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023]
|
5
|
Maddali K, Kumar V, Marchand C, Pommier Y, Malhotra SV. Biological evaluation of imidazolium- and ammonium-based salts as HIV-1 integrase inhibitors. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00201a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Gamadeku T, Gundersen LL. Synthesis of 8-Bromo-N-benzylpurines via 8-Lithiated Purines: Scope and Limitations. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903318708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Abstract
PURPOSE OF REVIEW Most of the studies investigating inhibition of human immunodeficiency virus integration have focused on blocking the enzymatic functions of HIV integrase, with the predominant judgment that integration inhibitors need to block at least one of the integrase-catalyzed reactions. Recent studies, however, have highlighted the importance of other proteins and their contacts with integrase in the preintegration complex, and their involvement in chromosomal integration of the viral DNA. RECENT FINDINGS Promising results of clinical trials for two new integrase inhibitors were announced recently, providing the proof of the concept for using HIV-1 integrase inhibitors as antiretroviral therapy. Two strategies are currently employed for the development of novel inhibitors of HIV integrase: synthesis of hybrid molecules comprising core structures of two or more known inhibitors, and three-dimensional pharmacophore searches based on previously discovered compounds. By highlighting the role of the cellular cofactor LEDGF/p75 in HIV integration, novel approaches are indicated that aim to develop compounds altering contact between HIV integrase and integration cofactors. SUMMARY By the discovery of novel inhibitors and targets for HIV integration, coupled with recent studies in characterizing preintegration complex formation, new insight is provided for the rational design of anti-HIV integration inhibitors.
Collapse
|
8
|
Qu GR, Xia R, Yang XN, Li JG, Wang DC, Guo HM. Synthesis of Novel C6-Phosphonated Purine Nucleosides under Microwave Irradiation by SNAr−Arbuzov Reaction. J Org Chem 2008; 73:2416-9. [DOI: 10.1021/jo702680p] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gui-Rong Qu
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Ran Xia
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xi-Ning Yang
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Jian-Guo Li
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Dong-Chao Wang
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hai-Ming Guo
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
9
|
Dayam R, Gundla R, Al-Mawsawi LQ, Neamati N. HIV-1 integrase inhibitors: 2005-2006 update. Med Res Rev 2008; 28:118-54. [PMID: 17979144 DOI: 10.1002/med.20116] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HIV-1 integrase (IN) catalyzes the integration of proviral DNA into the host genome, an essential step for viral replication. Inhibition of IN catalytic activity provides an attractive strategy for antiretroviral drug design. Currently two IN inhibitors, MK-0518 and GS-9137, are in advanced stages of human clinical trials. The IN inhibitors in clinical evaluation demonstrate excellent antiretroviral efficacy alone or in combination regimens as compared to previously used clinical antiretroviral agents in naive and treatment-experienced HIV-1 infected patients. However, the emergence of viral strains resistant to clinically studied IN inhibitors and the dynamic nature of the HIV-1 genome demand a continued effort toward the discovery of novel inhibitors to keep a therapeutic advantage over the virus. Continued efforts in the field have resulted in the discovery of compounds from diverse chemical classes. In this review, we provide a comprehensive report of all IN inhibitors discovered in the years 2005 and 2006.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
10
|
Nair V, Uchil V, Chi G, Dams I, Cox A, Seo B. Biologically-validated HIV integrase inhibitors with nucleobase scaffolds: structure, synthesis, chemical biology, molecular modeling, and antiviral activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:665-8. [PMID: 18066876 DOI: 10.1080/15257770701490563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Integrase, an enzyme of the pol gene of HIV, is a significant viral target for the discovery of anti-HIV agents. In this presentation, we report on the continuation of our work on the discovery of diketo acids, constructed on nucleobase scaffolds, that are inhibitors of HIV integrase. An example of our synthetic approach to inhibitors with purine nucleobase scaffolds is given. Comparison is made between integrase inhibition data arising from compounds with pyrimidine versus purine nucleobase scaffold. Antiviral results are cited.
Collapse
Affiliation(s)
- Vasu Nair
- Center for Drug Discovery and the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602-2352, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Uchil V, Seo B, Nair V. A novel strategy to assemble the beta-diketo acid pharmacophore of HIV integrase inhibitors on purine nucleobase scaffolds. J Org Chem 2007; 72:8577-9. [PMID: 17918897 PMCID: PMC2518961 DOI: 10.1021/jo701336r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Claisen condensation, the key step in constructing the pharmacophore of aryl beta-diketo acids (DKA) as integrase inhibitors, fails in certain cases of highly electron-deficient heterocycles such as purines. A general synthetic strategy to assemble the DKA motif on the purine scaffold has been accomplished. The synthetic sequence entails a palladium-catalyzed cross-coupling, a C-acylation involving a tandem addition/elimination reaction, and a novel ferric ion-catalyzed selective hydrolysis of an enolic ether in the presence of a carboxylic acid ester.
Collapse
Affiliation(s)
- Vinod Uchil
- The Center for Drug Discovery, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
12
|
Nunthaboot N, Pianwanit S, Parasuk V, Ebalunode JO, Briggs JM, Kokpol S. Hybrid quantum mechanical/molecular mechanical molecular dynamics simulations of HIV-1 integrase/inhibitor complexes. Biophys J 2007; 93:3613-26. [PMID: 17693479 PMCID: PMC2072063 DOI: 10.1529/biophysj.107.108464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116-119 and 140-166. In the conventional MD simulation, the coordination of Mg(2+) was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60-68, 116-119, and 140-149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg(2+) in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Nadtanet Nunthaboot
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
13
|
Liu J, Robins MJ. S(N)Ar displacements with 6-(fluoro, chloro, bromo, iodo, and alkylsulfonyl)purine nucleosides: synthesis, kinetics, and mechanism1. J Am Chem Soc 2007; 129:5962-8. [PMID: 17439120 DOI: 10.1021/ja070021u] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SNAr reactions with 6-(fluoro, chloro, bromo, iodo, and alkylsulfonyl)purine nucleosides and nitrogen, oxygen, and sulfur nucleophiles were studied. Pseudo-first-order kinetics were measured with 6-halopurine compounds, and comparative reactivities were determined versus a 6-(alkylsulfonyl)purine nucleoside. The displacement reactivity order was: F > Br > Cl > I (with BuNH2/MeCN), F > Cl approximately Br > I (with MeOH/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/MeCN), and F > Br > I > Cl [with K+ -SCOCH3/dimethyl sulfoxide (DMSO)]. The order of reactivity with a weakly basic arylamine (aniline) was: I > Br > Cl > F (with 5 equiv of aniline in MeCN at 70 degrees C). However, those reactions with aniline were autocatalytic and had significant induction periods ( approximately 50 min for the iodo compound and approximately 6 h for the fluoro analogue). Addition of trifluoroacetic acid (TFA) eliminated the induction period, and the order then was F > I > Br > Cl (with 5 equiv of aniline and 2 equiv of TFA in MeCN at 50 degrees C). The 6-(alkylsulfonyl)purine nucleoside analogue was more reactive than the 6-fluoropurine compound with both MeOH/DBU/MeCN and iPentSH/DBU/MeCN and was more reactive than the Cl, Br, and I compounds with BuNH2 and aniline/TFA. Titration of the 6-halopurine nucleosides in CDCl3 with TFA showed progressive downfield 1H NMR chemical shifts for H8 (larger) and H2 (smaller). The major site of protonation as N7 for both the 6-fluoro and 6-bromo analogues was confirmed by large upfield shifts ( approximately 16 ppm) of the 15N NMR signal for N7 upon addition of TFA (1.6 equiv). Mechanistic considerations and resolution of prior conflicting results are presented.
Collapse
Affiliation(s)
- Jiangqiong Liu
- Contribution from the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, USA
| | | |
Collapse
|
14
|
Chi G, Nair V, Semenova E, Pommier Y. A novel diketo phosphonic acid that exhibits specific, strand-transfer inhibition of HIV integrase and anti-HIV activity. Bioorg Med Chem Lett 2007; 17:1266-9. [PMID: 17188872 PMCID: PMC1839884 DOI: 10.1016/j.bmcl.2006.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 11/17/2022]
Abstract
We have synthesized novel phosphonic acid analogues of beta-diketo acids. Interestingly, the phosphonic acid isostere, 2, of our anti-HIV compound, 1, was an inhibitor of only the strand transfer step, in stark contrast to 1. Compound 2 had lower anti-HIV activity than 1, but was more active and less toxic than the phosphonic acid analogue of L-708906. These isosteric compounds represent the first examples of beta-diketo phosphonic acids of structural, synthetic, and antiviral interest.
Collapse
Affiliation(s)
- Guochen Chi
- The Center for Drug Discovery and the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Vasu Nair
- The Center for Drug Discovery and the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Elena Semenova
- Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Abstract
HIV-1 integrase is a protein of Mr 32 000 encoded at the 3'-end of the pol gene. Integration of HIV DNA into the host cell chromosomal DNA apparently occurs by a carefully defined sequence of DNA tailoring (3'-processing (3'P)) and coupling (integration) reactions. Integration of HIV DNA into human DNA represents the biochemical completion of the invasion of the human cell (e.g., T-cell) by HIV. Unlike major successes seen in the development of clinically approved anti-HIV agents against HIV reverse transcriptase and HIV protease, there are no FDA-approved anti-HIV drugs in clinical use where the mechanism of action is inhibition of HIV integrase. This review summarises some key advances in the area of integrase inhibitors with the major focus being on new generation inhibitors. Special emphasis is placed on diketo acids with aromatic and heteroaromatic moieties, diketo acids with nucleobase scaffolds, bis-diketo acids, functionalised naphthyridines and other isosteres of diketo acids. Data pertaining to integrase inhibition and in vitro anti-HIV activity are discussed. Mention is made of drugs in clinical trials, both past (S-1360, L-870,810 and L-870,812 and present (GS-9137 and MK-0518). Other promising drugs, including those from the authors' laboratory, are referred. Resistant mutants arising from key integrase inhibitors and cross-resistance are indicated.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Pharmaceutical and Biomedical Sciences, The Center for Drug Discovery, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
16
|
Li X, Vince R. Synthesis and biological evaluation of purine derivatives incorporating metal chelating ligands as HIV integrase inhibitors. Bioorg Med Chem 2006; 14:5742-55. [PMID: 16753300 DOI: 10.1016/j.bmc.2006.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Because of its essential role in HIV replication and lack of human counterpart, HIV integrase is an attractive target for the development of novel anti-AIDS agents. Among the recently developed integrase inhibitors, only the alpha,gamma-diketo acid (DKA) compounds were biologically validated as potent and selective integrase inhibitors. The general structure of DKAs contains a diketo acid moiety as the Mg(2+) chelating pharmacophore, and an adjacent aryl group to provide selectivity. Numerous structure-activity relationship (SAR) studies on DKAs have been conducted, which generally involved substituting the carboxylate group or the aryl group. Our objective was to investigate the SARs of the DKA molecule by incorporating a purine ring in the aryl moiety and replacing the labile diketo acid moiety with other divalent metal (Me(2+)) chelating ligands. A series of amide substituted purine derivatives were synthesized via palladium-catalyzed amidation reactions, and their biological activities against HIV integrase were evaluated. These purine derivatives showed anti-integrase activity at low micromolar range. The biological results indicated that the type of Me(2+) ligands, two-point ligand picolinamide or three-point ligand 8-hydroxy-quinoline-7-carboxamide, affected inhibitory potency depending on the substitution position of the para-fluorobenzyl group. The C(6)-,C(8)-dipicolinamide substituted purine (32) exhibited the best potency among this series.
Collapse
Affiliation(s)
- Xingnan Li
- Center for Drug Design, Academic Health Center, and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|