1
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
2
|
Prabhakaran M, Parthasarathy K. Palladium-Catalyzed Synthesis of Substituted Phenanthrenes via a C-H Annulation of 2-Biaryl Triflates with Alkynes. J Org Chem 2024; 89:16363-16374. [PMID: 39468760 DOI: 10.1021/acs.joc.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A new palladium-catalyzed efficient method for the synthesis of substituted 9,10-phenanthrenes from 2-biaryl triflates with alkynes has been developed. This method provides a great opportunity to prepare various symmetrical and unsymmetrical phenanthrene derivatives in good yields. This reaction proceeds via C-OTf bond cleavage and alkyne insertion followed by C-H annulation.
Collapse
Affiliation(s)
- Mohan Prabhakaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| |
Collapse
|
3
|
Nishiyama T, Mizuno S, Hieda Y, Choshi T. Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview. Molecules 2024; 29:2380. [PMID: 38792241 PMCID: PMC11124238 DOI: 10.3390/molecules29102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
We present a systematic review of the methods developed for the synthesis of the aromathecin family of compounds (benz[6,7]indolizino[1,2-b]quinolin-11(13H)-ones) and their derivatives. These methods can be broadly classified into four categories based on the construction of pentacyclic structures: Category 1: by constructing a pyridone moiety (D-ring) on the pyrroloquinoline ring (A/B/C-ring), Category 2: by constructing a pyridine moiety (B-ring) on the pyrroloisoquinolone ring (C/D/E-ring), Category 3: by constructing an indolizidinone moiety (C/D-ring) in a tandem reaction, and Category 4: by constructing a pyrrolidine moiety (C-ring) on the isoquinolone ring (D/E-ring).
Collapse
Affiliation(s)
| | | | | | - Tominari Choshi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan; (T.N.); (S.M.); (Y.H.)
| |
Collapse
|
4
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
5
|
Spence KA, Hoffmann M, Garg NK. Total Synthesis of Phenanthroindolizidines Using Strained Azacyclic Alkynes. Org Lett 2023; 25:5044-5048. [PMID: 37379230 PMCID: PMC10460089 DOI: 10.1021/acs.orglett.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
We report a concise approach to phenanthroindolizidine alkaloids, wherein strained azacyclic alkynes are intercepted in Pd-catalyzed annulations. Two types of strained intermediates were evaluated: a functionalized piperidyne and a new strained intermediate, an indolizidyne. We show that each can be employed, ultimately allowing access to three natural products: tylophorine, tylocrebine, and isotylocrebine. These efforts demonstrate the successful merger of strained azacyclic alkyne chemistry with transition-metal catalysis for the construction of complex heterocycles.
Collapse
Affiliation(s)
- Katie A Spence
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Marie Hoffmann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
6
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
7
|
Guo Y, Ma A, Wang X, Yang C, Chen X, Li G, Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem 2022; 10:1005360. [PMID: 36311429 PMCID: PMC9596788 DOI: 10.3389/fchem.2022.1005360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses spread rapidly and are well-adapted to changing environmental events. They can infect the human body readily and trigger fatal diseases. A limited number of drugs are available for specific viral diseases, which can lead to non-efficacy against viral variants and drug resistance, so drugs with broad-spectrum antiviral activity are lacking. In recent years, a steady stream of new viral diseases has emerged, which has prompted development of new antiviral drugs. Natural products could be employed to develop new antiviral drugs because of their innovative structures and broad antiviral activities. This review summarizes the progress of natural products in antiviral research and their bright performance in drug resistance issues over the past 2 decades. Moreover, it fully discusses the effect of different structural types of natural products on antiviral activity in terms of structure–activity relationships. This review could provide a foundation for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjfin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Renner J, Smith SR, Cowley JM, Louie J. Improved Total Synthesis of Indolizidine and Quinolizidine Alkaloids via Nickel-Catalyzed (4 + 2) Cycloaddition. J Org Chem 2022; 87:8871-8883. [PMID: 35759553 DOI: 10.1021/acs.joc.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ni-catalyzed (4 + 2) cycloaddition of bicyclic 3-azetidinones and alkynes was developed to access indolizidine and quinolizidine alkaloids. A key element was the development of a diazomethylation procedure that allows the efficient synthesis of bicyclic azetidinones from pyroglutamic and 6-oxopiperidine-2-carboxylic acid. A ligand screening led to improved regioselectivity and enantiopurity during the Ni-catalyzed (4 + 2) cycloaddition. This straightforward methodology was leveraged to synthesize (+)-ipalbidine, (+)-septicine, (+)-seco-antofine, and (+)-7-methoxy-julandine.
Collapse
Affiliation(s)
- Jonas Renner
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Sleight R Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Jacob M Cowley
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| |
Collapse
|
9
|
Yan C, Dong J, Liu Y, Li Y, Wang Q. Target-Directed Design, Synthesis, Antiviral Activity, and SARs of 9-Substituted Phenanthroindolizidine Alkaloid Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7565-7571. [PMID: 34210137 DOI: 10.1021/acs.jafc.1c02276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On the basis of our previous studies on the antiviral mechanism against tobacco mosaic virus (TMV) and structure-activity relationship of phenanthroindolizidine alkaloids, a series of 9-substituted tylophorine derivatives targeting TMV RNA were designed, synthesized, and assessed for their anti-TMV activities. The bioassay results indicated that most of these compounds showed good in vivo anti-TMV activities, and some of them displayed higher activity than that of commercial ribavirin. Especially, the anti-TMV activities of compound 3b, 4, and 6 are 2-3 times higher than that of commercial ribavirin, according to EC50 values. In this work, we have demonstrated an effective way to design new inhibitors against plant virus and developed 9-ethoxy methyl tylophorine (4) with excellent anti-TMV activity (in vitro activity, 70.2%/500 μg/mL and 27.1%/100 μg/mL; inactivation activity, 67.7%/500 μg/mL and 30.5%/100 μg/mL; curative activity, 65.3%/500 μg/mL and 30.8%/100 μg/mL; and protection activity, 65.9%/500 μg/mL and 36.0%/100 μg/mL) as a potential plant viral inhibitor.
Collapse
Affiliation(s)
- Changcun Yan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
10
|
Yamasaki N, Iwasaki I, Sakumi K, Hokari R, Ishiyama A, Iwatsuki M, Nakahara M, Higashibayashi S, Sugai T, Imagawa H, Kubo M, Fukuyama Y, Ōmura S, Yamamoto H. A Concise Total Synthesis of Dehydroantofine and Its Antimalarial Activity against Chloroquine-Resistant Plasmodium falciparum. Chemistry 2021; 27:5555-5563. [PMID: 33482050 DOI: 10.1002/chem.202100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/31/2022]
Abstract
The total synthesis of dehydroantofine was achieved by employing a novel, regioselective, azahetero Diels-Alder reaction of easily accessible 3,5-dichloro-2H-1,4-oxazin-2-one with 14 a as a key step. Furthermore, it is demonstrated that dehydroantofine is a promising candidate as a new antimalarial agent in a biological assay with chloroquine-resistant Plasmodium falciparum.
Collapse
Affiliation(s)
- Naoto Yamasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Ikumi Iwasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Kazu Sakumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Rei Hokari
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Aki Ishiyama
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Masataka Nakahara
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Shuhei Higashibayashi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Takeshi Sugai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| |
Collapse
|
11
|
Liu H, Zhao X, Yu M, Meng L, Zhou T, Shan Y, Liu X, Xia Z, An M, Wu Y. Transcriptomic and Functional Analyses Indicate Novel Anti-viral Mode of Actions on Tobacco Mosaic Virus of a Microbial Natural Product ε-Poly-l-lysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2076-2086. [PMID: 33586965 DOI: 10.1021/acs.jafc.0c07357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel anti-viral natural product ε-poly-l-lysine (ε-PL) produced by Streptomyces is a homopolymer of l-lysine, of which the underlying molecular mode of action remains to be further elucidated. In this study, ε-PL induced significant fragmentation of tobacco mosaic virus (TMV) virions and delayed the systemic infection of TMV-GFP as well as wild-type TMV in plants. ε-PL treatment also markedly inhibited RNA accumulation of TMV in tobacco BY-2 protoplasts. The results of RNA-seq indicated that the agent induced significantly differential expression of genes that are associated with defense response, stress response, autophagy, and ubiquitination. Among them, 15 critical differential expressed genes were selected for real-time quantitative PCR validation. We further demonstrated that ε-PL can induce host defense responses by assessing the activity of several defense-related enzymes in plants. Our results provided valuable insights into molecular anti-viral mode of action for ε-PL, which is expected to be applied as a novel microbial natural product against plant virus diseases.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Lingxue Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuhang Shan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiaoying Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
12
|
Sharma V, Kamal R, Kumar D, Kumar V. Indolizidine Alkaloids: Prospective Lead Molecules in Medicinal Chemistry. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190617145228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural products are well known for their therapeutic properties. The primary reason
for their therapeutic effectiveness is the presence of secondary plant metabolites like alkaloids,
glycosides, flavonoids etc. All these metabolites are generally classified as per their
chemical structures. Similarly, diversified alkaloids are classified as per the chemical moieties
like indole, quinoline, Isoquinoline, indolizine etc. Alkaloids having indolizidine moiety
are well known for their biological actions. In this review, indolizidine alkaloids like
antofine, castanospermine, swainsonine, tylophorine, gephyrotoxins, lentiginosine,
pergularinine etc. and their derivatives have been discussed. Furthermore, important points
related to the structure-activity relationship of selected alkaloids are also summarized. All
these studies indicate the lead potential of indolizidine alkaloids that in turn could be effective
for future drug discovery.
Collapse
Affiliation(s)
- Vikas Sharma
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| |
Collapse
|
13
|
Jia XH, Zhao HX, Du CL, Tang WZ, Wang XJ. Possible pharmaceutical applications can be developed from naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 20:845-868. [PMID: 32994757 PMCID: PMC7517060 DOI: 10.1007/s11101-020-09723-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids (PIAs and PQAs) are two small groups of herbal metabolites sharing a similar pentacyclic structure with a highly oxygenated phenanthrene moiety fused with a saturated or an unsaturated N-heterocycle (indolizidine/quinolizidine moieties). Natural PIAs and PQAs only could be obtained from finite plant families (such as Asclepiadaceae, Lauraceae and Urticaceae families, etc.). Up to date, more than one hundred natural PIAs, while only nine natural PQAs had been described. PIA and PQA analogues have been applied to the development of potent anticancer agents all along because of their excellent cytotoxic activity. However, in the last two decades, other great biological properties, such as anti-inflammatory and antiviral activities were revealed successively by different pharmacological assays. Especially because of their potent antiviral activity against coronavirus (TGEV, SARS CoV and MHV) and tobacco mosaic virus, PIA and PQA analogues have attracted much pharmaceutical attention again, some of them have been used to present interesting targets for total or semi synthesis, and structure-activity relationship (SAR) study for the development of antiviral agents. In this review, natural PIA and PQA analogues obtained in the last two decades with their herbal origins, key spectroscopic characteristics for structural identification, biological activity with possible SARs and application prospects were systematically summarized. We hope this paper can stimulate further investigations on PIA and PQA analogues as an important source for potential drug discovery.
Collapse
Affiliation(s)
- Xian-hui Jia
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Huan-xin Zhao
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Cheng-lin Du
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Wen-zhao Tang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Xiao-jing Wang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| |
Collapse
|
14
|
Wang T, Yang S, Li H, Lu A, Wang Z, Yao Y, Wang Q. Discovery, Structural Optimization, and Mode of Action of Essramycin Alkaloid and Its Derivatives as Anti-Tobacco Mosaic Virus and Anti-Phytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:471-484. [PMID: 31841334 DOI: 10.1021/acs.jafc.9b06006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant diseases seriously affect crop yield and quality and are difficult to control. Marine natural products (MNPs) have become an important source of drug candidates with new biological mechanisms. Marine natural product essramycin (1) was found to have good anti-tobacco mosaic virus (TMV) and anti-phytopathogenic fungus activities for the first time. A series of essramycin derivatives were designed, synthesized, and evaluated for their bioactivity. Most of these compounds exhibited antiviral effects that are greater than that of the control ribavirin. Compounds 7e and 8f displayed antiviral activities that are greater than that of ningnanmycin (the most widely used antiviral agent at present), thus emerging as novel antiviral lead compounds. As the lead compound, 7e was selected for further antiviral mechanism research. The results indicated that 7e could inhibit virus assembly and promote 20S disk protein aggregation. Fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that essramycin analogues displayed broad-spectrum fungicidal activities. Compound 5b displayed more than 50% inhibition rate against most of the 14 kinds of phytopathogenic fungi at 50 μg/mL. The current research lays a solid foundation for the application of essramycin alkaloids in crop protection.
Collapse
Affiliation(s)
- Tienan Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Shan Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Hongyan Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Yingwu Yao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| |
Collapse
|
15
|
Renner J, Thakur A, Rutz PM, Cowley JM, Evangelista JL, Kumar P, Prater MB, Stolley RM, Louie J. Total Synthesis of Indolizidine Alkaloids via Nickel-Catalyzed (4 + 2) Cyclization. Org Lett 2020; 22:924-928. [DOI: 10.1021/acs.orglett.9b04479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jonas Renner
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Ashish Thakur
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Philipp M. Rutz
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Jacob M. Cowley
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Judah L. Evangelista
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Puneet Kumar
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Matthew B. Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Ryan M. Stolley
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| |
Collapse
|
16
|
Bach DH, Lee SK. The Potential Impacts of Tylophora Alkaloids and their Derivatives in Modulating Inflammation, Viral Infections, and Cancer. Curr Med Chem 2019; 26:4709-4725. [PMID: 30047325 DOI: 10.2174/0929867325666180726123339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Cancer chemotherapies or antitumor agents mainly remain the backbone of current treatment based on killing the rapidly dividing cancer cell such as tylophora alkaloids and their analogues which have also demonstrated anticancer potential through diverse biological pathways including regulation of the immune system. The introduction of durable clinically effective monoclonal antibodies, however, unmasked a new era of cancer immunotherapies. Therefore, the understanding of cancer pathogenesis will provide new possible treatment options, including cancer immunotherapy and targeted agents. Combining cytotoxic agents and immunotherapies may offer several unique advantages that are complementary to and potentially synergistic with biologic modalities. Herein, we highlight the dynamic mechanism of action of immune modulation in cancer and the immunological aspects of the orally active antitumor agents tylophora alkaloids and their analogues. We also suggest that future cancer treatments will rely on the development of combining tumor-targeted agents and biologic immunotherapies.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Guo J, Hao Y, Ji X, Wang Z, Liu Y, Ma D, Li Y, Pang H, Ni J, Wang Q. Optimization, Structure-Activity Relationship, and Mode of Action of Nortopsentin Analogues Containing Thiazole and Oxazole Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10018-10031. [PMID: 31448918 DOI: 10.1021/acs.jafc.9b04093] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant diseases seriously endanger plant health, and it is very difficult to control them. A series of nortopsentin analogues were designed, synthesized, and evaluated for their antiviral activities and fungicidal activities. Most of these compounds displayed higher antiviral activities than ribavirin. Compounds 1d, 1e, and 12a, with excellent antiviral activities, emerged as novel antiviral lead compounds, among which 1e was selected for further antiviral mechanism research. The mechanism research results indicated that these compounds may play an antiviral role by aggregating viral particles to prevent their movement in plants. Further fungicidal activity tests revealed that nortopsentin analogues displayed broad-spectrum fungicidal activities. Compounds 2p and 2f displayed higher antifungal activities against Alternaria solani than the commercial fungicides carbendazim and chlorothalonil. Current research has laid a foundation for the application of nortopsentin analogues in plant protection.
Collapse
Affiliation(s)
- Jincheng Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Yanan Hao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Xiaofei Ji
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Huailin Pang
- CAC Nantong Chemical Company, Ltd , Shanghai 226400 , China
| | - Jueping Ni
- CAC Nantong Chemical Company, Ltd , Shanghai 226400 , China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| |
Collapse
|
18
|
Lu A, Wang T, Hui H, Wei X, Cui W, Zhou C, Li H, Wang Z, Guo J, Ma D, Wang Q. Natural Products for Drug Discovery: Discovery of Gramines as Novel Agents against a Plant Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2148-2156. [PMID: 30730738 DOI: 10.1021/acs.jafc.8b06859] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant viral diseases seriously affect crop yield and quality. The natural product gramine (1) and its simple structural analogues 2-35 were synthesized from indoles, amines, and aldehydes in one step. The antiviral effects of these alkaloids were evaluated systematically. Most of these compounds were found to have higher antiviral effects than commercial ribavirin for the first time. Especially compounds 22, 30, and 31 exhibited significantly higher effects than ningnanmycin, thereby emerging as novel antiviral leads for further optimization. The preliminary implementation indicated that these compounds likely inhibit the assembly of tobacco mosaic virus (TMV) by cross-linking TMV capsid protein. Gramine analogues were also found to have broad-spectrum fungicidal effects. Although gramine has been reported to have influence on germination and development of Erysiphe graminis, these compounds displayed no fungicidal effects against Blumeria graminis f. sp. tritici on wheat in our test. Some of these compounds also exhibited certain insecticidal activities.
Collapse
Affiliation(s)
- Aidang Lu
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Hao Hui
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Xiaoye Wei
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Weihao Cui
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Chunlv Zhou
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Hongyan Li
- School of Chemical Engineering and Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Jincheng Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| |
Collapse
|
19
|
Wang MR, Cui ZH, Li JW, Hao XY, Zhao L, Wang QC. In vitro thermotherapy-based methods for plant virus eradication. PLANT METHODS 2018; 14:87. [PMID: 30323856 PMCID: PMC6173849 DOI: 10.1186/s13007-018-0355-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 05/19/2023]
Abstract
Production of virus-free plants is necessary to control viral diseases, import novel cultivars from other countries, exchange breeding materials between countries or regions and preserve plant germplasm. In vitro techniques represent the most successful approaches for virus eradication. In vitro thermotherapy-based methods, including combining thermotherapy with shoot tip culture, chemotherapy, micrografting or shoot tip cryotherapy, have been successfully established for efficient eradication of various viruses from almost all of the most economically important crops. The present study reviewed recent advances in in vitro thermotherapy-based methods for virus eradication since the twenty-first century. Mechanisms as to why thermotherapy-based methods could efficiently eradicate viruses were discussed. Finally, future prospects were proposed to direct further studies.
Collapse
Affiliation(s)
- Min-Rui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhen-Hua Cui
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109 Shandong China
| | - Jing-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xin-Yi Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiao-Chun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109 Shandong China
| |
Collapse
|
20
|
Li R, Liu CF, Yu CJ, Gu P. Total synthesis of ( R )-tylophorine by using an asymmetric hydrogenation of the allyl alcohol. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Han G, Chen L, Wang Q, Wu M, Liu Y, Wang Q. Design, Synthesis, and Antitobacco Mosaic Virus Activity of Water-Soluble Chiral Quaternary Ammonium Salts of Phenanthroindolizidines Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:780-788. [PMID: 29355318 DOI: 10.1021/acs.jafc.7b03418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To study the influence of the substituent at the N-10 position on antiviral activity, the chiral quaternary ammonium salt derivatives of R- and S-tylophorine were designed, synthesized, and evaluated for antiviral activity against tobacco mosaic virus (TMV). The bioassay results indicated that most of the designed structural analogues showed good in vivo anti-TMV activity, among which propargyl quaternary ammonium salt compound S-7b showed the best anti-TMV activities (80.5%, 77.6%, 76.6%, 82.1%) at 500 μg/mL both in vitro and in vivo in the laboratory. In the field trials of antiviral efficacy against TMV, S-7b as well exhibited better activities than control plant virus inhibitors. The stability of compound S-7b was obviously increased, and its solubility was more than 500-times higher than that of S-tylophorine. Therefore, chiral quaternary ammonium salt S-7b was expected to be developed as a promising candidate as an inhibitor of plant virus.
Collapse
Affiliation(s)
- Guifang Han
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Linwei Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Qiang Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Meng Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| |
Collapse
|
22
|
Hu JT, Zheng B, Chen YC, Xiao Q. Expedient synthesis of 9,10-phenanthrenes via LiOPiv-promoted and palladium-catalysed aryne annulation by vinyl triflates. Org Chem Front 2018. [DOI: 10.1039/c8qo00368h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An expedient synthesis of 9,10-phenanthrenes via LiOPiv-promoted and palladium-catalysed aryne annulation by vinyl triflates.
Collapse
Affiliation(s)
- Jun-Tao Hu
- School of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| | - Bin Zheng
- School of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| | - Ying-Chun Chen
- School of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| | - Qing Xiao
- School of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| |
Collapse
|
23
|
Yao T, Zhang H, Zhao Y. Synthesis of 9,10-Phenanthrenes via Palladium-Catalyzed Aryne Annulation by o-Halostyrenes and Formal Synthesis of (±)-Tylophorine. Org Lett 2016; 18:2532-5. [DOI: 10.1021/acs.orglett.6b00558] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tuanli Yao
- College
of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 6 Xuefu Road, Weiyang District, Xi’an, Shaanxi 710021, China
| | - Haiming Zhang
- Small Molecule
Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yanna Zhao
- College
of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 6 Xuefu Road, Weiyang District, Xi’an, Shaanxi 710021, China
| |
Collapse
|
24
|
Su B, Cai C, Deng M, Wang Q. Spatial Configuration and Three-Dimensional Conformation Directed Design, Synthesis, Antiviral Activity, and Structure-Activity Relationships of Phenanthroindolizidine Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2039-45. [PMID: 26923726 DOI: 10.1021/acs.jafc.5b06112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Our recent investigation on the antiviral activities against tobacco mosaic virus (TMV) of phenanthroindolizidine alkaloid analogues preliminarily revealed that the basic skeleton and substitution pattern at the C13a position of the molecule, which are closely related to the spatial arrangement of the molecule, have great effects on the biological activity. To further study the in-depth influence of spatial configuration and three-dimensional (3D) conformation of the molecules on their anti-TMV activities and related structure-activity relationship (SAR), a series of D-ring opened derivatives 3, 4, 5a-5j, 6, and 7, chiral 13a- and/or 14-substituted phenanthroindolizidine analogues 10-12 and 18-20, and their enantiomers ent-10-ent-12 and ent-18-ent-20 were synthesized and evaluated for their anti-TMV activities. Bioassay results showed that most of the chiral phenanthroindolizidines displayed good to excellent in vivo anti-TMV activity. Among these compounds, ent-11 showed more potent activity than Ningnanmycin (one of the most successful commercial antiviral agents), thus emerging as a potential inhibitor of the plant virus. Further SARs were also discussed for the first time under the chiral scenario, demonstrating that both spatial configuration and 3D conformation of the molecules are crucial for keeping high anti-TMV activity.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Chunlong Cai
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Meng Deng
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
25
|
Chattopadhyay AK, Hanessian S. Cyclic enaminones. Part II: applications as versatile intermediates in alkaloid synthesis. Chem Commun (Camb) 2016; 51:16450-67. [PMID: 26490499 DOI: 10.1039/c5cc05892a] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Among many other strategies, the enaminone approach is an important strategy to construct and diversify the azacyclic core in various alkaloids syntheses. In this brief review we discuss the application of cyclic enaminones as building blocks, as well as potential intermediates in the total synthesis of selected alkaloids.
Collapse
Affiliation(s)
- Amit Kumar Chattopadhyay
- Department of Chemistry, Université de Montréal, Station Centre Ville, C. P. 6128, Montréal, Qc H3C 3J7, Canada.
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre Ville, C. P. 6128, Montréal, Qc H3C 3J7, Canada.
| |
Collapse
|
26
|
New Strategies and Methods to Study Interactions between Tobacco Mosaic Virus Coat Protein and Its Inhibitors. Int J Mol Sci 2016; 17:252. [PMID: 26927077 PMCID: PMC4813129 DOI: 10.3390/ijms17030252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggregate disks in vitro, which could be reassembled into infectious virus particles with TMV RNA. The interactions between the anti-TMV compounds and the TMV CP disk were analyzed by size exclusion chromatography, isothermal titration calorimetry and native-polyacrylamide gel electrophoresis methods. The results revealed that assembly of the four-layer aggregate disk was inhibited by NNM; it changed the four-layer aggregate disk into trimers, and affected the regular assembly of TMV CP and TMV RNA. The four-layer aggregate disk of TMV CP was little inhibited by ATF, DFL and BQX. Our results provide original data, as well as new strategies and methods, for research on the mechanism of action of anti-viral drugs.
Collapse
|
27
|
Yu X, Wei P, Wang Z, Liu Y, Wang L, Wang Q. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine. PEST MANAGEMENT SCIENCE 2016; 72:371-378. [PMID: 25809229 DOI: 10.1002/ps.4008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. RESULT Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. CONCLUSION The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents.
Collapse
Affiliation(s)
- Xiuling Yu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Peng Wei
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Lizhong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Li C, Li Y, Lv H, Li S, Tang K, Zhou W, Yu S, Chen X. The novel anti-neuroblastoma agent PF403, inhibits proliferation and invasion in vitro and in brain xenografts. Int J Oncol 2015; 47:179-87. [PMID: 25936609 DOI: 10.3892/ijo.2015.2977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/20/2014] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is the most common cancer in infants and the fourth most common cancer in children. Our previous study showed that PF403 had a potent antitumor ability. In the present study, we evaluated the anti-neuroblastoma property of PF403 and investigated the underlying mechanisms. MTT assay, colony formation assay and flow cytometry assay were used to assess cytotoxicity of PF403 on SH-SY5Y cells. Transwell assay was chosen to estimate the anti-invasion ability of PF403 on neuroblastoma cells. The protein expression was detected by western blot analysis. The SH-SY5Y brain xenograft model was used to assess in vivo antitumor activity of PF403. PF403-mediated SH-SY5Y cell death was found to be dose- and time-dependent, and PF403 was able to limit invasion and metastasis of neuroblastoma cells. MRI and pathology analysis proved that the pro-drug of PF403, CAT3, inhibited SH-SY5Y cells in vivo. PF403 decreased expression of phosphorylated FAK, MMP-2 and MMP-9 proteins, and downregulated the activity of PI3K/AKT and Raf/ERK pathways, followed by regulation of the proteins expression of Bcl-2 family, activated caspase-3, -9 and PARP and initiation of apoptosis of neuroblastoma cells. PF403 exerted cytotoxicity against SH-SY5Y neuroblastoma cell both in vitro and in vivo, and inhibited its invasion ability, suggesting PF403 has potential as a new anticancer drug for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Chao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Haining Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shaowu Li
- Department of Neurosurgery, Capital Medical University Affiliated Beijing Tiantan Hospital; Beijing Neurosurgical Institute, Beijing 100050, P.R. China
| | - Ke Tang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Wanqi Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shishan Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiaoguang Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
29
|
Ma D, Xie Y, Zhang J, Ouyang D, Yi L, Xi Z. Self-assembled controllable virus-like nanorods as templates for construction of one-dimensional organic–inorganic nanocomposites. Chem Commun (Camb) 2014; 50:15581-4. [DOI: 10.1039/c4cc07057g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Su B, Cai C, Deng M, Liang D, Wang L, Wang Q. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg Med Chem Lett 2014; 24:2881-4. [PMID: 24835986 DOI: 10.1016/j.bmcl.2014.04.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
On the basis of our previous structure-activity relationship (SAR) and antiviral mechanism studies, a series of 13a-substituted phenanthroindolizidine alkaloid analogues (3a-16a, 3b, 4b, 6b, 7b, 10b, and 14b) were designed targeting tobacco mosaic virus (TMV) RNA, synthesized, and evaluated for their antiviral activity against TMV for the first time. The bioassay results showed that most of the synthesized compounds (such as 4a, 6a, 7a, 11a, 14a, 6b, and 14b) exhibited good to excellent antiviral activity against TMV both in vitro and in vivo. Especially, for inactivation effect and curative effect, compounds 4a, 6a, 7a, 11a, 14a, and 14b showed higher activity at both concentrations (500 μg mL(-1) and 100 μg mL(-1)) than commercial Ningnanmycin. Preliminary SARs showed that the substituted groups with hydrogen donor at 13a position were found to be favorable for keeping high antiviral activity. The present work demonstrates that 13a-substituted phenanthroindolizidines can be used as possible lead compounds for developing anti-TMV agents.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Chunlong Cai
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Meng Deng
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Demin Liang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Lizhong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Su B, Chen F, Wang L, Wang Q. Design, synthesis, antiviral activity, and structure-activity relationships (SARs) of two types of structurally novel phenanthroindo/quinolizidine analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1233-1239. [PMID: 24467600 DOI: 10.1021/jf405562r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To investigate the influence of the variation of the original skeletons of natural phenanthroindo/quinolizidine alkaloids on antiviral activities, two types of structurally totally novel analogues 7a, 7b, 16a, and 16b were designed, synthesized, and evaluated against tobacco mosaic virus (TMV) for the first time. Bioassay results indicated that all four of the newly designed analogues showed good to excellent antiviral activities, among which analogue 16a dispalyed comparable activity with that of ningnanmycin, perhaps one of the most successful commercial antiviral agents, thus emerging as a potential inhibitor of plant virus and serving as a new lead for further optimization. Further structure-activity relationships are also discussed, demonstrating for the first time that the same changes of the original skeletons of phenanthroindolizidine and phenanthroquinolizidine exihibted totally different antiviral activities results, providing some original and useful information about the preferential conformation for maintaining high activities.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | | | | | | |
Collapse
|
32
|
Wu M, Han G, Meng C, Wang Z, Liu Y, Wang Q. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of glycoconjugates of phenanthroindolizidines alkaloids. Mol Divers 2013; 18:25-37. [DOI: 10.1007/s11030-013-9484-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/21/2013] [Indexed: 11/30/2022]
|
33
|
Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA. Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Mol Cancer 2013; 12:82. [PMID: 23895055 PMCID: PMC3733984 DOI: 10.1186/1476-4598-12-82] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022] Open
Abstract
Background Anti-angiogenesis targeting VEGFR2 has been considered as an important strategy for cancer therapy. Tylophorine is known to possess anti-inflammatory and antitumor activity, but its roles in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism is still unknown. Therefore, we examined its anti-angiogenic effects and mechanisms in vitro and in vivo. Methods We used tylophorine and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro and Ehrlich ascites carcinoma (EAC) tumor in vivo. Results Tylophorine significantly inhibited a series of VEGF-induced angiogenesis processes including proliferation, migration, and tube formation of endothelial cells. Besides, it directly inhibited VEGFR2 tyrosine kinase activity and its downstream signaling pathways including Akt, Erk and ROS in endothelial cells. Using HUVECs we demonstrated that tylophorine inhibited VEGF-stimulated inflammatory responses including IL-6, IL-8, TNF-α, IFN-γ, MMP-2 and NO secretion. Tylophorine significantly inhibited neovascularization in sponge implant angiogenesis assay and also inhibited tumor angiogenesis and tumor growth in vivo. Molecular docking simulation indicated that tylophorine could form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion Tylophorine exerts anti-angiogenesis effects via VEGFR2 signaling pathway thus, may be a viable drug candidate in anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Sarita Saraswati
- Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
34
|
Wu M, Han G, Wang Z, Liu Y, Wang Q. Synthesis and antiviral activities of antofine analogues with different C-6 substituent groups. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1030-1035. [PMID: 23320928 DOI: 10.1021/jf304905k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
On the basis of previous structure-activity relationship (SAR) and antiviral mechanism studies, antofine analogues with different substituent groups at the C-6 position targeting tobacco mosaic virus (TMV) RNA were synthesized for the first time. The antofine analogues 1a-8a and 1b-9b were evaluated for their antiviral activity against TMV. The SAR study of antofine analogues is discussed. Most of the compounds were found to exhibit higher antiviral activity than commercial Ningnanmycin in vitro and in vivo. The groups with hydrogen donor or electron-withdrawing groups at the C-6 position were found to be favorable for antiviral activity.
Collapse
Affiliation(s)
- Meng Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Wang Z, Wei P, Xizhi X, Liu Y, Wang L, Wang Q. Design, synthesis, and antiviral activity evaluation of phenanthrene-based antofine derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8544-8551. [PMID: 22880628 DOI: 10.1021/jf302746m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
On the basis of our previous structure-activity relationship (SAR) and antiviral mechanism studies, a series of phenanthrene-based antofine derivatives (1-12 and 18-50) were designed targeting tobacco mosaic virus (TMV) RNA and synthesized and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds exhibited good to excellent in vivo anti-TMV activity, of which compounds 19 and 27 displayed higher activity than commercial Ribavirin, thus emerging as potential inhibitors of plant virus. The novel concise structure provides another new template for antiviral studies.
Collapse
Affiliation(s)
- Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Gao S, Zhang R, Yu Z, Xi Z. Antofine Analogues Can Inhibit Tobacco Mosaic Virus Assembly through Small-Molecule-RNA Interactions. Chembiochem 2012; 13:1622-7. [DOI: 10.1002/cbic.201200313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Indexed: 11/10/2022]
|
37
|
Wang Z, Wang L, Ma S, Liu Y, Wang L, Wang Q. Design, synthesis, antiviral activity, and SARs of 14-aminophenanthroindolizidines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5825-31. [PMID: 22662864 DOI: 10.1021/jf3013376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on our previous structure-activity relationship and antiviral mechanism studies, a series of 14-aminophenanthroindolizidines (1a-i, 2, and 3) were designed, targeting tobacco mosaic virus (TMV) RNA, and synthesized and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds exhibited good to excellent in vivo anti-TMV activity, of which compounds 1d and 1h displayed significantly higher activity than commercial ningnanmycin, and thus emerged as potential inhibitors of plant virus. The introduction of amino groups at the 14-position of phenanthroindolizidines, which is proposed to interact with arginine residues around the TMV RNA, increased anti-TMV activity.
Collapse
Affiliation(s)
- Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
38
|
Yang X, Shi Q, Yang SC, Chen CY, Yu SL, Bastow KF, Morris-Natschke SL, Wu PC, Lai CY, Wu TS, Pan SL, Teng CM, Lin JC, Yang PC, Lee KH. Antitumor agents 288: design, synthesis, SAR, and biological studies of novel heteroatom-incorporated antofine and cryptopleurine analogues as potent and selective antitumor agents. J Med Chem 2011; 54:5097-107. [PMID: 21668000 DOI: 10.1021/jm200330s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel heteroatom-incorporated antofine and cryptopleurine analogues were designed, synthesized, and tested against a panel of five cancer cell lines. Two new S-13-oxo analogues (11 and 16) exhibited potent cell growth inhibition in vitro (GI(50): 9 nM and 20 nM). Interestingly, both compounds displayed improved selectivity among different cancer cell lines, in contrast to the natural products antofine and cryptopleurine. Mechanism of action (MOA) studies suggested that R-antofine promotes dysregulation of DNA replication during early S phase, while no similar effects were observed for 11 and 15 on corresponding replication initiation complexes. Compound 11 also showed greatly reduced cytotoxicity against normal cells and moderate antitumor activity against HT-29 human colorectal adenocarcinoma xenograft in mice without overt toxicity.
Collapse
Affiliation(s)
- Xiaoming Yang
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Niphakis MJ, Georg GI. Total syntheses of arylindolizidine alkaloids (+)-ipalbidine and (+)-antofine. J Org Chem 2010; 75:6019-22. [PMID: 20704319 PMCID: PMC2948484 DOI: 10.1021/jo101051w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents the first application of two recently developed reactions to natural product synthesis. The first method involves a 6-endo-trig cyclization to prepare a versatile chiral enaminone building block. The second is a direct C-H arylation reaction. As a showcase for the utility of these methods, (+)-antofine and (+)-ipalbidine were synthesized in only 8 steps and 24-26% overall yields.
Collapse
Affiliation(s)
- Micah J. Niphakis
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
| | - Gunda I. Georg
- Department of Medicinal Chemistry and the Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414
| |
Collapse
|
40
|
Qian X, Lee PW, Cao S. China: forward to the green pesticides via a basic research program. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2613-23. [PMID: 20128592 DOI: 10.1021/jf904098w] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 973 Program is China's keystone national research program established to support basic research in natural and physical sciences. In addition to promoting the development of core technology and scientific infrastructure needed to enable China to meet the social and economic challenges of the 21st century, the training and mentoring of the new generation of China's young scientists are also important objectives of this national program. The green chemical pesticide research program is a part of the 973 Program. The main objectives of stage 1 of the green chemical pesticide research program (2003-2008) are to establish China's capability to conduct basic research in the discovery of "green" crop protection chemicals that are not only novel in mode of action and highly selective to pest species that are unique to China's agricultural situation but also possess favorable environmental and human hazard and risk potentials. The target-based discovery strategy was selected as the main discovery platform. This strategy not only provided this research program the best chance to discover new products but also provided members of this research team opportunities to establish core technologies in chemoinformatics/computation-aided pesticide design using QSAR, QAAR, sensitive and selective bioassay methodology, combinatorial synthesis, hit to lead optimization, and biological targets that were derived from resistance-AChE, IGR, nAChR, etc. On the basis of the learning from stage 1, stage 2 (2010-2014) of this program will focus on the molecular target-oriented innovation of green chemical pesticides. This commentary presents key learnings and accomplishments from the stage 1 of China's green chemical pesticide research program. It is hoped that this information will stimulate further constructive collaborations between pesticide scientists from China and abroad.
Collapse
Affiliation(s)
- Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, Institute of Pharmaceuticals and Pesticides, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | | | | |
Collapse
|
41
|
Chemler SR. Phenanthroindolizidines and Phenanthroquinolizidines: Promising Alkaloids for Anti-Cancer Therapy. ACTA ACUST UNITED AC 2009; 5:2-19. [PMID: 20160962 DOI: 10.2174/157340709787580928] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phenanthroindolizidine and phenanthroquinolizidine alkaloids, typified by tylophorine and cryptopleurine, are a family of plant-derived small molecules with significant therapeutic potential. The plant extracts have been used in herbal medicine and the isolated compounds have displayed a range of promising therapeutic activity such as anti-ameobicidal, anti-viral, anti-inflammatory and anti-cancer activity. Despite their therapeutic protential, no compounds in this class have fully passed clinical trials. Drawbacks include low in vivo anti-cancer activity, central nervous system toxicity and low natural availability. A number of biological effects of these compounds, such as protein and nucleic acid synthesis suppression, have been identified, but the specific biomolecular targets have not yet been identified. Significant effort has been expended in the synthesis and structure-activity-relationship (SAR) studies of these compounds with the hope that a new drug will emerge. This review will highlight important contributions to the isolation, synthesis, SAR and mechanism of action of the phenanthroindolizidine and pheanthroquinolizidine alkaloids.
Collapse
Affiliation(s)
- Sherry R Chemler
- The University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
42
|
Zhang Q, Zhang C, Xi Z. Enhancement of RNAi by a small molecule antibiotic enoxacin. Cell Res 2008; 18:1077-9. [PMID: 18813225 DOI: 10.1038/cr.2008.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Bai LP, Cai Z, Zhao ZZ, Nakatani K, Jiang ZH. Site-specific binding of chelerythrine and sanguinarine to single pyrimidine bulges in hairpin DNA. Anal Bioanal Chem 2008; 392:709-16. [DOI: 10.1007/s00216-008-2302-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/02/2008] [Accepted: 07/17/2008] [Indexed: 11/30/2022]
|
44
|
Zeng W, Chemler SR. Total synthesis of (S)-(+)-tylophorine via enantioselective intramolecular alkene carboamination. J Org Chem 2008; 73:6045-7. [PMID: 18588345 DOI: 10.1021/jo801024h] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective synthesis of (S)-(+)-tylophorine, a potent cancer cell growth inhibitor, has been accomplished in eight steps from commercially available 3,4-dimethoxybenzyl alcohol. A copper (II)-catalyzed enantioselective intramolecular alkene carboamination was employed as the key step to construct the chiral indolizidine ring.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Chemistry, The University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | | |
Collapse
|
45
|
Su CR, Damu AG, Chiang PC, Bastow KF, Morris-Natschke SL, Lee KH, Wu TS. Total synthesis of phenanthroindolizidine alkaloids (+/-)-antofine, (+/-)-deoxypergularinine, and their dehydro congeners and evaluation of their cytotoxic activity. Bioorg Med Chem 2008; 16:6233-41. [PMID: 18456501 DOI: 10.1016/j.bmc.2008.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 04/11/2008] [Accepted: 04/16/2008] [Indexed: 11/15/2022]
Abstract
Due to their limited natural abundance and significant biochemical effects, we synthesized the alkaloids (+/-)-antofine (1a), (+/-)-deoxypergularinine (1b), and their dehydro congeners (2 and 3) starting from the corresponding phenanthrene-9-carboxaldehydes. We also evaluated their in vitro cytotoxic activity. Compounds 1a and 1b showed significant potency against various human tumor cell lines, including a drug-resistant variant, with EC(50) values ranging from 0.16 to 16ng/mL. Structure-activity correlations of these alkaloids and some of their synthetic intermediates were also ascertained. The non-planar structure between the two major moieties, phenanthrene and indolizidine, plays a crucial role in the cytotoxic activity of phenanthroindolizidines. Increasing the planarity and rigidity of the indolizidine moiety significantly reduced potency. A methoxy group at the 2-position (1a) was more favorable for cytotoxic activity than a hydrogen atom (1b).
Collapse
Affiliation(s)
- Chung-Ren Su
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
46
|
Fu Y, Lee SK, Min HY, Lee T, Lee J, Cheng M, Kim S. Synthesis and structure–activity studies of antofine analogues as potential anticancer agents. Bioorg Med Chem Lett 2007; 17:97-100. [PMID: 17049857 DOI: 10.1016/j.bmcl.2006.09.080] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 11/24/2022]
Abstract
Due to the profound cytotoxicities and interesting biochemical aspects, phenanthroindolizidine alkaloids have received an attention as potential therapeutic leads. To define the features of the molecule that are essential for cytotoxicity, we have synthesized and evaluated a series of phenanthroindolizidine alkaloid, antofine, analogues with different substituents on the phenanthrene ring. The systematic structure activity relationship studies elucidate the essential functional group requirement of phenanthrene ring, providing the basis for further development of phenanthroindolizidine alkaloids.
Collapse
Affiliation(s)
- Ye Fu
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|