1
|
Wang R, Zheng K, Liu Y, Ji S, Tang Y, Wang J, Jiang R. Effect of tubeimoside I on the activity of cytochrome P450 enzymes in human liver microsomes. Xenobiotica 2024; 54:57-63. [PMID: 38166553 DOI: 10.1080/00498254.2023.2301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024]
Abstract
This study assessed the effect of tubeimoside I on CYP1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 to reveal the potential of tubeimoside I to induce drug-drug interaction.The evaluation of cytochromes P450 enzyme (CYP) activity was performed in pooled human liver microsomes with probing substrates of CYP1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. Typical inhibitors were employed as positive controls and the effect of 0, 2.5, 5, 10, 25, 50, and 100 μM tubeimoside I was investigated.The activity of CYP2D6, 2E1, and 3A4 was significantly inhibited by tubeimoside I with the IC50 values of 10.34, 11.58, and 9.74 μM, respectively. The inhibition of CYP2D6 and 2E1 was competitive with the Ki value of 5.66 and 5.29 μM, respectively. While the inhibition of CYP3A4 was non-competitive with the Ki value of 4.87 μM. Moreover, the inhibition of CYP3A4 was time-dependent with the KI and Kinact values of 0.635 μM-1 and 0.0373 min-1, respectively.Tubeimoside I served as a competitive inhibitor of CYP2D6 and 2E1 exerting weak inhibition and a non-competitive inhibitor of CYP3A4 exerting moderate inhibition.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacy, Shanghai Zhongye Hospital, Shanghai, China
| | - Kai Zheng
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yunjiao Liu
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Shuxia Ji
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yaxin Tang
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Jie Wang
- Department of Bone and Joint Rehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Rong Jiang
- Department of Bone and Joint Rehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| |
Collapse
|
2
|
Bilal M, Bashir H, Ameen R, Sumrin A, Hussain M, Manzoor S. Anti HCV activity and expression inhibition of HCC markers by protein extract from Iberis gibraltarica. BRAZ J BIOL 2024; 84:e252676. [DOI: 10.1590/1519-6984.252676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Hepatitis C virus infection (HCV) is the foremost reason of progressive hepatic fibrosis and cirrhosis, with an elevated risk of hepatocellular carcinoma (HCC) development. Medicinal plants have been used for human health benefits for several years, but their therapeutic potential needs to be explored. The main objective of this study was to figure out the in vitro antiviral and anticancer characteristics of total crude protein of Iberis gibraltarica against HCV and HCC. Total crude protein of Iberis gibraltarica was isolated and quantified. The level of cytotoxicity was measured against the HepG2 cell line and it shows no significant cytotoxicity at the concentration of 504µg/ml. The anti-HCV effect was determined by absolute quantification via real time RT-PCR method and viral titer was reduced up to 66% in a dose dependent manner against the total protein of Iberis gibraltarica. The anticancer potential of Iberis gibraltarica was also examined through mRNA expression studies of AFP and GPC3 genes against the total protein of Iberis gibraltarica-treated HepG2 cells. The results show up to 90% of the down-regulation expression of AFP and GPC3. The obtained results indicate the therapeutic potential of total protein of Iberis gibraltarica against HCV and hepatocellular carcinoma in vitro.
Collapse
Affiliation(s)
- M. Bilal
- University of the Punjab, Pakistan
| | | | - R. Ameen
- University of the Punjab, Pakistan
| | | | | | | |
Collapse
|
3
|
Zhou Y, Liu J, Zhang J, Xu Y, Li W, Gao P, Xing Y, Huang L, Qin X, Jin S. Chinese endemic medicinal plant Bolbostemma paniculatum (Maxim.) Franquet: A comprehensive review. Front Pharmacol 2022; 13:974054. [PMID: 36160391 PMCID: PMC9490187 DOI: 10.3389/fphar.2022.974054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Bolbostemma paniculatum (Maxim.) Franquet is a unique species in China with a long history of medicinal use, which has the effects of detoxifying, dissolving lumps and dispersing swellings. And it is commonly used to treat many diseases, such as carbuncle and sore, acute mastitis, mammary cancer, scrofula and subcutaneous nodule traditionally. Modern clinical studies have found that B. paniculatum and its compounds can be used for the treatment of a variety of cancers, mastitis, hyperplasia of mammary glands, chronic lymphadenitis, cervical lymph tuberculosis and surgical wart skin diseases, and the curative effect is positive. At present, a variety of Chinese patent medicines containing B. paniculatum have been exploited and marketed in China for the treatment of cancers, breast diseases and flat warts. This review article comprehensively discussed the traditional application, botany, chemical components, pharmacological activities, and quality control of B. paniculatum, put forward some noteworthy issues and suggestions in current studies, and briefly discussed the possible development potential of this plant as well as future research perspectives. 96 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids and other components, of which triterpenoid saponins are the main bioactive components. The crude extracts and monomer compounds of B. paniculatum have a wide range of pharmacological activities, such as anti-tumor, antiviral, anti-inflammatory, immunoregulatory, and so on. Moreover, its anti-tumor mechanism involves many aspects, including inhibiting cell proliferation, promoting cell apoptosis, blocking the cell cycle, interfering with cell invasion and metastasis, suppressing angiogenesis, and regulating autophagy. While there is a lack of systematic and in-depth research on its anti-tumor active components and mechanism of action at the moment; and a tight connection between the chemical composition and pharmacological activity of B. paniculatum has also not been established. Besides, a systematic quality determination standard for B. paniculatum should also be built, in order to carry out further research.
Collapse
Affiliation(s)
- Yujiao Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianqiong Zhang
- Pediatric Department, Ya’an City Hospital of Traditional Chinese Medicine, Ya’an, Sichuan, China
| | - Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangni Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pang Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanghuan Xing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lehong Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| | - Shenrui Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| |
Collapse
|
4
|
A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers. Cancers (Basel) 2022; 14:cancers14163898. [PMID: 36010892 PMCID: PMC9406073 DOI: 10.3390/cancers14163898] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Drugs are used to treat cancer. Most drugs available in the market are chemosynthetic drugs and have side effects on the patient during and after the treatment, in addition to cancer itself. For instance, hair loss, loss of skin color and texture, loss of energy, nausea, infertility, etc. To overcome these side effects, naturally obtained drugs from medicinal plants are preferred. Our review paper aims to encourage the study of anticancer medicinal plants by giving detailed information on thirty-three medicinal plants and parts that constitute the phytochemicals responsible for the treatment of cancer. The development of plant-based drugs could be a game changer in treating cancer as well as boosting the immune system. Abstract Cancer is a serious and significantly progressive disease. Next to cardiovascular disease, cancer has become the most common cause of mortality in the entire world. Several factors, such as environmental factors, habitual activities, genetic factors, etc., are responsible for cancer. Many cancer patients seek alternative and/or complementary treatments because of the high death rate linked with cancer and the adverse side effects of chemotherapy and radiation therapy. Traditional medicine has a long history that begins with the hunt for botanicals to heal various diseases, including cancer. In the traditional medicinal system, several plants used to treat diseases have many bioactive compounds with curative capability, thereby also helping in disease prevention. Plants also significantly contributed to the modern pharmaceutical industry throughout the world. In the present review, we have listed 33 medicinal plants with active and significant anticancer activity, as well as their anticancer compounds. This article will provide a basic set of information for researchers interested in developing a safe and nontoxic active medicinal plant-based treatment for cancer. The research will give a scientific foundation for the traditional usage of these medicinal herbs to treat cancer.
Collapse
|
5
|
Wang LL, Liao C, Li XQ, Dai R, Ren QW, Shi HL, Wang XP, Feng XS, Chao X. Systems Pharmacology-Based Identification of Mechanisms of Action of Bolbostemma paniculatum for the Treatment of Hepatocellular Carcinoma. Med Sci Monit 2021; 27:e927624. [PMID: 33436534 PMCID: PMC7812697 DOI: 10.12659/msm.927624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Traditional Chinese medicine has widely used Bolbostemma paniculatum to treat diseases, including cancer, but its underlying mechanisms remain unclear. The present study aimed to elucidate the potential pharmacological mechanisms of “Tu Bei Mu” (TBM), the Chinese name for Bolbostemmatis Rhizoma, the dry tuber of B. paniculatum, for the treatment of hepatocellular carcinoma (HCC). Material/Methods The active components and putative therapeutic targets of TBM were explored using SwissTargetPrediction, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Search Tool for Interactions of Chemicals (STITCH). The HCC-related target database was built using DrugBank, DisGeNet, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD). A protein–protein interaction network of the common targets was constructed, based on the matches between TBM potential targets and HCC-related targets, using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the cluster networks were used to elucidate the biological functions of TBM. Results Pharmacological network diagrams of the TBM compound-target network and HCC-related target network were successfully constructed. A total of 22 active components, 191 predicted biological targets of TBM, and 3775 HCC-related targets were identified. Through construction of an HCC-related target database and a protein–protein interaction network of the common targets, TBM was predicted to be effective in treating HCC mainly through the PI3K-Akt, HIF-1, p53, and PPAR signaling pathways. Conclusions The PI3K/Akt, HIF1, p53, and PPAR pathways may play vital roles in TBM treatment of HCC. Also, the potential anti-cancer effect of TBM on HCC appears to stem from the synergetic effect of multiple targets and mechanisms.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Chen Liao
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Rong Dai
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Qing-Wei Ren
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Hai-Long Shi
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xiao-Ping Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xue-Song Feng
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xu Chao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland).,The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
6
|
Feng X, Ma G, Shi H, Wang Y, Chao X. An Integrative Serum Pharmacology-Based Approach to Study the Anti-Tumor Activity of B. paniculatum Aqueous Bulb Extract on the Human Hepatocellular Carcinoma Cell Line BEL-7404. Front Pharmacol 2020; 11:01261. [PMID: 33123002 PMCID: PMC7569155 DOI: 10.3389/fphar.2020.01261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
The herb Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae family), also known as Tu-Bei-Mu (TBM) in Chinese, has shown curative effects to treat several types of cancer as an adjunctive therapy. Thereby we intend to find its effect on the human hepatocellular carcinoma (HCC) and to understand the pharmacological mechanism behind it. In this study, an integrative serum pharmacology-based approach linking serum pharmacology and bioinformatics prediction was employed. Firstly, we used the serum taken introgastrically from the rats dministered by TBM aqueous bulb extract to culture the HCC cell line BEL-7404 and detect its anti-tumor effects. Secondly, the TBM putative targets were predicted using the ETCM database and known therapeutic targets of NPC were collected from the OMIM database. Then, a TBM-HCC putative targets network was constructed using the DAVID and STRING databases. Thirdly, key gene targets were obtained based on topological analysis and pathway enrichment analysis. The expression of 4 representative key targets were validated by Western blotting. As a result, 36 TBM targets and 26 known therapeutic targets of HCC were identified. These key targets were found to be frequently involved in 13 KEGG pathways and 4 biological processes. The expression of four representative key targets: TP53, CASP3, BCL2 and BAX further supports the suppression of TBM on HCC. In general, our study shows the curative effects of TBM against HCC. By using this integrative approach, we may find novel potential therapeutic targets to suppress HCC using TBM as an adjunctive therapy. And it could also help us understand the mechanism of HCC treatments in response to TBM.
Collapse
Affiliation(s)
- Xuesong Feng
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Guangyuan Ma
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailong Shi
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuewen Wang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xu Chao
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China.,The Research Department, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
7
|
Singh K, Tripathi RP. An Overview on Glyco-Macrocycles: Potential New Lead and their Future in Medicinal Chemistry. Curr Med Chem 2020; 27:3386-3410. [PMID: 30827227 DOI: 10.2174/0929867326666190227232721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Macrocycles cover a small segment of molecules with a vast range of biological activity in the chemotherapeutic world. Primarily, the natural sources derived from macrocyclic drug candidates with a wide range of biological activities are known. Further evolutions of the medicinal chemistry towards macrocycle-based chemotherapeutics involve the functionalization of the natural product by hemisynthesis. More recently, macrocycles based on carbohydrates have evolved a considerable interest among the medicinal chemists worldwide. Carbohydrates provide an ideal scaffold to generate chiral macrocycles with well-defined pharmacophores in a decorated fashion to achieve the desired biological activity. We have given an overview on carbohydrate-derived macrocycle involving their synthesis in drug design and discovery and potential role in medicinal chemistry.
Collapse
Affiliation(s)
- Kartikey Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.,National Institute of Pharmaceutical Education and Research Raebareli, New Transit Campus, Bijnor Road, Sarojani Nagar Near CRPF Base Camp, Lucknow 226002, U.P., India
| |
Collapse
|
8
|
Dou JW, Shang RG, Lei XQ, Li KL, Guo ZZ, Ye K, Yang XJ, Li YW, Zhou YY, Yao J, Huang Q. Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:304. [PMID: 31703679 PMCID: PMC6842232 DOI: 10.1186/s12906-019-2708-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/02/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of the present study was to examine the effects of the Bolbostemma paniculatum (Maxim.) Franquet (BP) active compound, BP total saponins (BPTS), on MDA-MB-231 cells, and investigate the underlying mechanism regarding BPTS-mediated attenuation of the PI3K/Akt/mTOR pathway. METHODS The effect of BPTS on cytotoxicity, induction of apoptosis and migration on MDA-MB-231 cells at three different concentrations was investigated. A CCK-8 assay, wound-healing assay and flow cytometry were used to demonstrate the effects of BPTS. Additionally, expression of the primary members of the PI3K/Akt/mTOR signaling pathway was assessed using western blotting. To verify the underlying mechanisms, a PI3K inhibitor and an mTOR inhibitor were used. RESULTS BPTS inhibited proliferation of MDA-MB-231 cells with an IC50 value of 10 μg/mL at 48 h. BPTS inhibited migration of MDA-MB-231 cells, and the western blot results demonstrated that BPTS reduced p-PI3K, p-Akt and p-mTOR protein expression levels in MDA-MB-231 cells. Additionally, the results were confirmed using a PI3K inhibitor and an mTOR inhibitor. BPTS decreased proliferation and migration of MDA-MB-231 cells possibly through inhibiting the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS The results highlight the therapeutic potential of BPTS for treating patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Jian-Wei Dou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rong-Guo Shang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiao-Qin Lei
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Kang-Le Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhan-Zi Guo
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Kai Ye
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xiao-Juan Yang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yu-Wei Li
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yun-Yun Zhou
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jia Yao
- Xi'an Hospital of Traditional Chinese Medicine Affiliated to Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Qian Huang
- Xi'an Hospital of Traditional Chinese Medicine Affiliated to Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 710021, People's Republic of China.
| |
Collapse
|
9
|
Affiliation(s)
- Nagy Morsy
- Department of Chemistry, Faculty of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Department of Chemistry of Natural Compounds, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
10
|
The potential role of tubeimosides in cancer prevention and treatment. Eur J Med Chem 2019; 162:109-121. [DOI: 10.1016/j.ejmech.2018.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022]
|
11
|
Tubeimoside V sensitizes human triple negative breast cancer MDA-MB-231 cells to anoikis via regulating caveolin-1-related signaling pathways. Arch Biochem Biophys 2018; 646:10-15. [PMID: 29580948 DOI: 10.1016/j.abb.2018.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Metastatic triple-negative breast cancer (TNBC) has poor outcome with conventional chemotherapy regimens due to its aggressive behavior. The acquisition of anoikis resistance, a programmed cell death process triggered by substratum detachment, is an important mechanism in TNBC metastasis. Therefore, agents that can restore the sensitivity of cancer cells to anoikis may be helpful for the treatment of metastatic TNBC. In this study, we investigated the inhibitory effect of Tubeimosides V (TBMS-V), a cyclic bisdesmoside isolated from the ethanol extracts of tubers of B. paniculatum., on anoikis resistance and the involvement of caveolin-1(CAV-1)-related signaling pathways in such process in MDA-MB-231 cells. The results showed that the treatment of TBMS-V could sensitize cancer cells to anoikis, which was associated with suppression of anchorage-independent culture-induced CAV-1 overexpression, EGFR activation as well as ITGB1-FAK activation. The data from this study might contribute to providing a potential therapeutic target for metastatic TNBC and suggest the possibility of TBMS-V and its derivatives for metastatic TNBC therapy.
Collapse
|
12
|
Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model. Oncotarget 2017; 7:5258-72. [PMID: 26701724 PMCID: PMC4868684 DOI: 10.18632/oncotarget.6676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5 mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases.
Collapse
|
13
|
Tang Y, Li W, Cao J, Li W, Zhao Y. Bioassay-guided isolation and identification of cytotoxic compounds from Bolbostemma paniculatum. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:18-23. [PMID: 25882313 DOI: 10.1016/j.jep.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bolbostemma paniculatum (Maxim.) Franquet (B. paniculatum), also named "Tu-bei-mu" in Chinese folk medicines, has been described in application for the treatment of tumors, warts, inflammation and toxication in traditional Chinese medicinal books. The major constituents in B. paniculatum are triterpenoid saponins, which have been proved to possess dramatically cytotoxic activity and antivirus activity. The aim of this study is to isolate and identify the active triterpenoid saponin from the bulb of B. paniculatum by a bioassay-guided method. MATERIALS AND METHODS Four cucurbitacine triterpenoid sapogenins and 11 triterpenoid saponins were isolated from the active EtOAc and n-BuOH extract of B. paniculatum by using bioassay-guided screening. Their structures were elucidated based on the spectroscopic methods and compared with published data. Cytotoxic activities of isolated compounds were determined by MTT assay. RESULTS Four cucurbitacine triterpenoid sapogenins, isocucurbitacin B(1), 23,24-dihydroisocucurbitacin B(2), cucurbitacin E(3), 23,24-dihydrocucurbitacin E(4), and 11 triterpenoid saponins, tubeimosideI(5), tubeimoside III(6), tubeimoside V(7), dexylosyltubeimoside III(8), lobatoside C(9), tubeimoside A(10), tumeimoside B(11), lobatoside A(12), tubeimoside C(13), tubeimoside IV(14), 7β,18,20,26-tetrahydroxy-(20S)-dammar-24E-en-3-O-α-L-(4-acetyl)arabinopyranosyl-(1→2)-β-D-glucopyranoside(15) were isolated from the active EtOAc and n-BuOH extracts. Of them, compounds 2, 4, 9 and 12 were firstly isolated from the Bolbostemma genus. MTT assay revealed that compounds 1, 3 and 4 had significantly activities against HeLa and HT-29 human cancer cells with IC50 values ranging from 0.93 to 9.73μM. It is worth mentioning that compound 4׳s activities against the two cell lines are 12- and 8-fold that of the positive control drug (5-Fu). Whereas, the cyclic bisdesmosides 5-9 exerted significantly activities on BGC-823, HeLa, HT-29 and MCF-7 cancer cells with IC50 values ranging from 1.30 to 15.64μM. And 6׳s activities against the four cell lines are 6-, 3-, 10- and 16-fold that of 5-Fu and 8׳s activities against the four cell lines are 5-, 3-, 14- and 9-fold that of 5-Fu. CONCLUSION The cytotoxic activity of the bulbs of B. paniculatum is mainly ascribable to cucurbitacine triterpenoid sapogenins (1-4) and the cyclic bisdesmosides (5-9). The cyclic bisdesmosides are the main anti-cancer active compounds of B. paniculatum. The above results provide scientific evidence to support, to some extent, the ethnomedicinal use of B. paniculatum as anticancer remedies in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Natural Active Pharmaceutical Constituents of Jiangxi Province, Yichun University, Yichun 336000, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Li
- Key Laboratory of Natural Active Pharmaceutical Constituents of Jiangxi Province, Yichun University, Yichun 336000, PR China
| | - Jiaqing Cao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Wei Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Yuqing Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|
14
|
Jia G, Wang Q, Wang R, Deng D, Xue L, Shao N, Zhang Y, Xia X, Zhi F, Yang Y. Tubeimoside-1 induces glioma apoptosis through regulation of Bax/Bcl-2 and the ROS/Cytochrome C/Caspase-3 pathway. Onco Targets Ther 2015; 8:303-11. [PMID: 25674005 PMCID: PMC4321652 DOI: 10.2147/ott.s76063] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Tubeimoside-1 (TBMS1) is a natural compound isolated from tubeimoside, which has been widely used as a traditional Chinese herbal medicine. The purpose of the present study is to investigate the anti-tumor effect and the underling mechanism of TBMS1 on glioma cancer cells. Methods The MTT assay was performed to evaluate the effect of TBMS1 on glioma cell proliferation. The fluorescent microscopy and flow cytometry analysis were performed to evaluate the effect of TBMS1 on glioma cell apoptosis. The Western blot analysis was used to evaluate the protein change. Results TBMS1 inhibited glioma cancer cell proliferation in a dose- and time-dependent manner. Fluorescent microscopy and flow cytometry analysis demonstrated that TBMS1 induced glioma cell apoptosis in a concentration-dependent manner. Western blotting showed that TBMS1 induced apoptosis by increasing the expression of Bax and downregulating the level of Bcl-2. Furthermore, we found that TBMS1 induced apoptosis by increasing the concentration of reactive oxygen species through the release of Cytochrome C and activation of Caspase-3. Conclusion These findings indicate that TBMS1 may be developed as a possible therapeutic agent for the management of glioma.
Collapse
Affiliation(s)
- Geng Jia
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Qiang Wang
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Rong Wang
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Danni Deng
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Lian Xue
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Naiyuan Shao
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Yi Zhang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Xiwei Xia
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Feng Zhi
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| | - Yilin Yang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China ; Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Tang Y, Cao JQ, Li W, Li W, Zhao YQ. Three New Triterpene Saponins fromBolbostemma paniculatum. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Chu HL, Mao H, Feng W, Liu JW, Geng Y. Effects of sulfated polysaccharide from Masson pine (Pinus massoniana) pollen on the proliferation and cell cycle of HepG2 cells. Int J Biol Macromol 2012; 55:104-8. [PMID: 23270833 DOI: 10.1016/j.ijbiomac.2012.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/26/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
AIM To explore the inhibitory effect of sulfated polysaccharide from Masson pine (Pinus massoniana) pollen (SPPM60) on G2/M phase of human liver cancer HepG2 cells and its mechanism. METHODS The proliferation rate of HepG2 cells was evaluated by methyl thiazolyl tetrazolium (MTT) colorimetric assay. The cycles of HepG2 cells were measured by flow cytometry when 200μg/ml concentration of SPPM60 was adopted, the expression of the genes related to cell cycle was detected by real-time PCR. RESULTS SPPM60 inhibited the proliferation of HepG2 cells and the inhibition rate was elevated with increase of SPPM60 concentration. After treatment with 200μg/ml of SPPM60, the percentage of S phase cells was decreased, but that of G2/M phase was significantly increased (72h vs control: 32.96±0.33% vs 18.59±0.04%, 3.44±0.05% vs 18.30±0.08%, P<0.01). The results of real-time PCR showed that SPPM60 could down-regulate the mRNA levels of CDK1 and CyclinB (P<0.01), and up-regulate the expression of p53 and p21 (P<0.05). CONCLUSION SPPM60 causes arrest of HepG2 cells at G2/M phase, and the mechanism is related to the down-regulation of CDK1 and CyclinB and up-regulation of p53 and p21 expression.
Collapse
Affiliation(s)
- Hui-Li Chu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | | | | | |
Collapse
|
17
|
Cyclic bisdesmosides from Actinostemma lobatum MAXIM (Cucurbitaceae) and their in vitro cytotoxicity. Fitoterapia 2012; 83:147-52. [DOI: 10.1016/j.fitote.2011.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 11/22/2022]
|
18
|
Zhao YY, Chao X, Zhang Y, Sun LJ, Zhang H, Lin RC, Shen X, Sun WJ. RETRACTED ARTICLE: Cytotoxic activities of tubeimoside-2 on human hepatoma HepG2 cells by induction of G2/M phase arrest and apoptosis in a p53-dependent manner. Apoptosis 2010; 15:1549. [DOI: 10.1007/s10495-010-0540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 2010; 81:703-14. [PMID: 20550961 DOI: 10.1016/j.fitote.2010.06.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 01/11/2023]
Abstract
Saponins are a group of naturally occurring plant glycosides, characterized by their strong foam-forming properties in aqueous solution. The presence of saponins has been reported in more than 100 families of plants out of which at least 150 kinds of natural saponins have been found to possess significant anti-cancer properties. There are more than 11 distinguished classes of saponins including dammaranes, tirucallanes, lupanes, hopanes, oleananes, taraxasteranes, ursanes, cycloartanes, lanostanes, cucurbitanes and steroids. Due to the great variability of their structures, saponins always display anti-tumorigenic effects through varieties of antitumor pathways. In addition, there are a large amount of saponins that still either remain to be trapped or studied in details by the medicinal chemists. This article reviews many such structures and their related chemistry along with the recent advances in understanding mechanism of action and structure-function relationships of saponins at the molecular and cellular levels. These aglycones have been described and their classification and distribution have been listed in the review. Some special saponins with strong antitumor effects have also been exhibited. Ginsenosides, belonging to dammaranes, have been found beneficial targeted on inhibition of tumor angiogenesis by suppressing its inducer in the endothelial cells of blood vessels, and then on prevention of adhering, invasion, and metastasis of tumor cells. Dioscin, one of the steroidal saponins, and its aglycone diosgenin also have been extensively studied on its antitumor effect by cell cycle arrest and apoptosis. Other important molecules discussed include oleanane saponins such as avicins, platycodons, saikosaponins, and soysaponins along with tubeimosides.
Collapse
|
20
|
Huang H, Liang M, Xu W, Zhang C, Zhang W. Identification and Quantification of three Tubeimosides in Rhizoma Bolbostematis by High Performance Liquid Chromatography with Evaporative Light Scattering Detection and Electrospray Mass Spectrometric Detection. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tubeimoside I, tubeimoside II and tubeimoside III were simultaneously determined and identified by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-ESI/MS), and a novel and sensitive high performance liquid chromatography - evaporative light scattering detection (HPLC-ELSD) in a 70% methanol extract of Rhizoma Bolbostematis. The chromatographic separation was performed on a Zorbax Extend C18 analytical column using gradient elution with a solution of acetonitrile and 0.5% acetic acid. The method was validated with acceptable linearities (r > 0.9992) and recoveries (98.6 to 102.4 %). The limits of detection of these three tubeimosides were as low as 0.05 μg. The intra- and inter-day precisions of the method were evaluated and were less than 3.6%. The method was successfully used to analyze 15 batches of Rhizoma Bolbostematis. The content of tubeimosides in the plant material varied from habitat to habitat confirming the necessity to control the quality of Rhizoma Bolbostematis during its preparation and application in the clinic.
Collapse
Affiliation(s)
- Hao Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - MingJin Liang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China
| | - Wen Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China
| | - Chuan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China
| | - WeiDong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
21
|
Zhu C, Tang P, Yu B. Total synthesis of lobatoside E, a potent antitumor cyclic triterpene saponin. J Am Chem Soc 2008; 130:5872-3. [PMID: 18407637 DOI: 10.1021/ja801669r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lobatoside E, a novel and complex cyclic triterpene saponin showing potent antitumor activities, has been synthesized for the first time, employing a highly modular approach. The synthesis, starting with oleanolic acid, D-glucose, D-galactose, L-arabinose, and L-rhamnose, requires a total of 73 steps, with the longest linear sequence of 31 steps and in 1.2% overall yield.
Collapse
Affiliation(s)
- Chunsheng Zhu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|