1
|
Rizzotto A, Tollis S, Pham NT, Zheng Y, Abad MA, Wildenhain J, Jeyaprakash AA, Auer M, Tyers M, Schirmer EC. Reduction in Nuclear Size by DHRS7 in Prostate Cancer Cells and by Estradiol Propionate in DHRS7-Depleted Cells. Cells 2023; 13:57. [PMID: 38201261 PMCID: PMC10778050 DOI: 10.3390/cells13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.
Collapse
Affiliation(s)
- Andrea Rizzotto
- The Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.R.); (A.A.J.)
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Nhan T. Pham
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
| | - Yijing Zheng
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Jan Wildenhain
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
| | - A. Arockia Jeyaprakash
- The Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.R.); (A.A.J.)
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;
- Gene Center and Department of Biochemistry, LMU-München, 81377 Munich, Germany
| | - Manfred Auer
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA
| | - Mike Tyers
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric C. Schirmer
- The Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.R.); (A.A.J.)
| |
Collapse
|
2
|
Devang N, Banjan B, V.K. P. Discovery of novel inhibitor of 11 beta-hydroxysteroid dehydrogenase type 1 using in silico structure-based screening approach for the treatment of type 2 diabetes. J Diabetes Metab Disord 2023; 22:657-672. [PMID: 37255841 PMCID: PMC10225457 DOI: 10.1007/s40200-023-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
Purpose The current study is aimed to perform structure-based screening of FDA-approved drugs that can act as novel inhibitor of the 11beta- hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. Methods Structural analogs of carbenoxolone (CBX) were selected from DrugBank database and their Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters were investigated by SwissADME. Molecular docking of CBX analogs against 11β-HSD1 was performed by AutoDock tool, their binding patterns were visualized using PyMOL and the interacting amino acids were determined by ProteinPlus tool. Molecular dynamics simulation was performed on the docked structure of 11β-HSD1 (Protein Data Bank (PDB) code: 2ILT) using GROMACS 2018.1. Results The binding energies of hydrocortisone succinate, medroxyprogesterone acetate, testolactone, hydrocortisone cypionate, deoxycorticosterone acetate, and hydrocortisone probutate were lower than that of substrate corticosterone. The molecular dynamics simulation of 11β-HSD1 and hydrocortisone cypionate docked structure showed that it formed a stable complex with the inhibitor. The Root mean square deviation (RMSD) of the protein (0.37 ± 0.05 nm) and ligand (0.41 ± 0.06 nm) shows the stability of the ligand-protein interaction. Conclusion The docking study revealed that hydrocortisone cypionate has a higher binding affinity than carbenoxolone and its other analogs. The molecular dynamics simulation indicated the stability of the docked complex of 11β-HSD1 and hydrocortisone cypionate. These findings indicate the potential use of this FDA approved drug in the treatment of type 2 diabetes. However, validation by in vitro inhibitory studies and clinical trials on type 2 diabetes patients is essential to confirm the current findings.
Collapse
Affiliation(s)
- Nayana Devang
- Department of Biochemistry, Kanachur Institute of Medical Sciences, 575004 Natekal, Mangaluru, Karnataka India
| | - Bhavya Banjan
- Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104 Manipal, Karnataka India
| | - Priya V.K.
- School of Biotechnology, National Institute of Technology Calicut, 673601 Calicut, Kerala India
| |
Collapse
|
3
|
Solvent and temperature effects on the solubility of some new adamantane/memantine sulfonamide derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Studzińska R, Kupczyk D, Płaziński W, Baumgart S, Bilski R, Paprocka R, Kołodziejska R. Novel 2-(Adamantan-1-ylamino)Thiazol-4(5 H)-One Derivatives and Their Inhibitory Activity towards 11β-HSD1-Synthesis, Molecular Docking and In Vitro Studies. Int J Mol Sci 2021; 22:ijms22168609. [PMID: 34445315 PMCID: PMC8395285 DOI: 10.3390/ijms22168609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 01/28/2023] Open
Abstract
A common mechanism in which glucocorticoids participate is suggested in the pathogenesis of such metabolic diseases as obesity, metabolic syndrome, or Cushing’s syndrome. The enzyme involved in the control of the availability of cortisol, the active form of the glucocorticoid for the glucocorticoid receptor, is 11β-HSD1. Inhibition of 11β-HSD1 activity may bring beneficial results for the alleviation of the course of metabolic diseases such as metabolic syndrome, Cushing’s syndrome or type 2 diabetes. In this work, we obtained 10 novel 2-(adamantan-1-ylamino)thiazol-4(5H)-one derivatives containing different substituents at C-5 of thiazole ring and tested their activity towards inhibition of two 11β-HSD isoforms. For most of them, over 50% inhibition of 11β-HSD1 and less than 45% inhibition of 11β-HSD2 activity at the concentration of 10 µM was observed. The binding energies found during docking simulations for 11β-HSD1 correctly reproduced the experimental IC50 values for analyzed compounds. The most active compound 2-(adamantan-1-ylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one (3i) inhibits the activity of isoform 1 by 82.82%. This value is comparable to the known inhibitor-carbenoxolone. The IC50 value is twice the value determined by us for carbenoxolone, however inhibition of the enzyme isoform 2 to a lesser extent makes it an excellent material for further tests.
Collapse
Affiliation(s)
- Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (S.B.); (R.P.)
- Correspondence:
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland; (D.K.); (R.B.); (R.K.)
| | - Wojciech Płaziński
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Cracow, Poland;
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (S.B.); (R.P.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland; (D.K.); (R.B.); (R.K.)
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (S.B.); (R.P.)
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland; (D.K.); (R.B.); (R.K.)
| |
Collapse
|
5
|
Optimization of cyclic sulfamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitors for the potential treatment of ischemic brain injury. Bioorg Med Chem Lett 2020; 30:126787. [DOI: 10.1016/j.bmcl.2019.126787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 11/17/2022]
|
6
|
Cabrera Pérez LC, Padilla-Martínez II, Cruz A, Correa Basurto J, Miliar García Á, Hernández Zavala AA, Gómez López M, Rosales Hernández MC. Design, synthesis, molecular docking and in vitro evaluation of benzothiazole derivatives as 11β-hydroxysteroid dehydrogenase type 1 inhibitors. Mol Divers 2019; 24:1-14. [PMID: 31664610 DOI: 10.1007/s11030-019-10006-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/17/2019] [Indexed: 11/24/2022]
Abstract
11-Beta hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates cortisol levels mainly in adipose, hepatic and brain tissues. There is a relationship between the high activity of this enzyme and the development of obesity and metabolic disorders. The inhibition of 11β-HSD1 has been shown to attenuate the development of type 2 diabetes mellitus, insulin resistance, metabolic syndrome and other diseases mediated by excessive cortisol production. In this work, fifteen benzothiazole derivatives substituted with electron-withdrawing and electron-donating groups were designed to explore their affinity for 11β-HSD1 using in silico methods. The results show that (E)-5-((benzo[d]thiazol-2-ylimino)(methylthio)methylamino)-2-hydroxybenzoic acid (C1) has good physicochemical properties and favorable interactions with 11β-HSD1 through hydrogen bonding and hydrophobic interactions in the catalytic site formed by Y183, S170 and Y177. Furthermore, C1 was synthesized and evaluated in vitro and ex vivo using clobenzorex (CLX) as a reference drug in obese Zucker rats. The in vitro results showed that C1 was a better inhibitor of human 11β-HSD1 than CLX. The ex vivo assay results demonstrated that C1 was capable of reducing 11β-HSD1 overexpression in mesenteric adipose tissue. Therefore, C1 was able to decrease the activity and expression of 11β-HSD1 better than CLX.
Collapse
Affiliation(s)
- Laura C Cabrera Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico.,Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología , Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Itzia I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología , Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Alejandro Cruz
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología , Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - José Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico.,Laboratorio de Modelado Molecular y Bioinformática, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Ángel Miliar García
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Argelia A Hernández Zavala
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Modesto Gómez López
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Martha C Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico.
| |
Collapse
|
7
|
Müller J, Kirschner RA, Berndt JP, Wulsdorf T, Metz A, Hrdina R, Schreiner PR, Geyer A, Klebe G. Diamondoid Amino Acid-Based Peptide Kinase A Inhibitor Analogues. ChemMedChem 2019; 14:663-672. [PMID: 30677243 DOI: 10.1002/cmdc.201800779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/06/2022]
Abstract
The incorporation of diamondoid amino acids (DAAs) into peptide-like drugs is a general strategy to improve lipophilicity, membrane permeability, and metabolic stability of peptidomimetic pharmaceuticals. We designed and synthesized five novel peptidic DAA-containing kinase inhibitors of protein kinase A using a sophisticated molecular dynamics protocol and solid-phase peptide synthesis. By means of a thermophoresis binding assay, NMR, and crystal structure analysis, we determined the influence of the DAAs on the secondary structure and binding affinity in comparison to the native protein kinase inhibitor, which is purely composed of proteinogenic amino acids. Affinity and binding pose are largely conserved. One variant showed 6.5-fold potency improvement, most likely related to its increased side chain lipophilicity. A second variant exhibited slightly decreased affinity presumably due to loss of hydrogen-bond contacts to surrounding water molecules of the first solvation shell.
Collapse
Affiliation(s)
- Janis Müller
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Romina A Kirschner
- Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Jan-Philipp Berndt
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Tobias Wulsdorf
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Alexander Metz
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Radim Hrdina
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Armin Geyer
- Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
8
|
Sun J, Ge F, Wang Y, Dong Y, Shan Y, Zhu Q, Wu X, Wu C, Ge RS. Taxifolin is a rat and human 11β-hydroxysteroid dehydrogenase 1 inhibitor as a possible drug to treat the metabolic syndrome. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
9
|
Theoretical investigations of two adamantane derivatives: A combined X-ray, DFT, QTAIM analysis and molecular docking. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Zhu Q, Ge F, Li X, Deng HS, Xu M, Bu T, Li J, Wang Y, Shan Y, Ge RS, Yao M. Dehydroepiandrosterone Antagonizes Pain Stress-Induced Suppression of Testosterone Production in Male Rats. Front Pharmacol 2018; 9:322. [PMID: 29713278 PMCID: PMC5911460 DOI: 10.3389/fphar.2018.00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Leydig cells secrete the steroid hormone, testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid [corticosterone, (CORT) in rats] that decreases circulating testosterone levels in part through a direct action on its receptors in Leydig cells. Intratesticular CORT level is dependent on oxidative inactivation of CORT by 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) in rat Leydig cells. Pain may cause the stress, thus affecting testosterone production in Leydig cells. Methods: Adult male Sprague–Dawley rats orally received vehicle control or 5 or 10 mg/kg dehydroepiandrosterone (DHEA) 0.5 h before being subjected to pain stimulation for 1, 3, and 6 h. In the present study, we investigated the time-course changes of steroidogenic gene expression levels after acute pain-induced stress in rats and the possible mechanism of DHEA that prevented it. Plasma CORT, luteinizing hormone (LH), and testosterone (T) levels were measured, and Leydig cell gene expression levels were determined. The direct regulation of HSD11B1 catalytic direction by DHEA was detected in purified rat Leydig, liver, and rat Hsd11b1-transfected COS1 cells. Results: Plasma CORT levels were significantly increased at hour 1, 3, and 6 during the pain stimulation, while plasma T levels were significantly decreased starting at hour 3 and 6. Pain-induced stress also decreased Star, Hsd3b1, and Cyp17a1 expression levels at hour 3. When 5 and 10 mg/kg DHEA were orally administered to rats 0.5 h before starting pain stimulation, DHEA prevented pain-mediated decrease in plasma T levels and the expression of Star, Hsd3b1, and Cyp17a1 without affecting plasma CORT levels. DHEA was found to modulate HSD11B1 activities by increasing its oxidative activity and decreasing its reductive activity, thus decreasing the intracellular CORT levels in Leydig cells. Conclusion: Stress induced by acute pain can inhibit Leydig cell T production by upregulation of corticosterone. DHEA can prevent the negative effects of excessive corticosterone by modulating HSD11B1 activity.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fei Ge
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hou-Sheng Deng
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Miao Xu
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tiao Bu
- General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Jingyang Li
- Department of Neonatology, Xi'an No.4 Hospital, Xi'an, China
| | - Yiyan Wang
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Shan
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Yao
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Zhu Q, Ge F, Dong Y, Sun W, Wang Z, Shan Y, Chen R, Sun J, Ge RS. Comparison of flavonoids and isoflavonoids to inhibit rat and human 11β-hydroxysteroid dehydrogenase 1 and 2. Steroids 2018; 132:25-32. [PMID: 29425740 DOI: 10.1016/j.steroids.2018.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
Many flavonoids and isoflavonoids have anti-diabetic effects in animal models. However, the mechanisms that are involved are generally unclear. Since 11β-hydroxysteroid dehydrogenases (HSD11Bs) play important roles in diabetes, we hypothesize that flavonoids and isoflavonoids may affect diabetes by targeting two isoforms of HSD11B differently. The inhibitory effects of flavonoids (apigenin and quercetin) and isoflavonoids [genistein and (±) equol] on rat and human HSD11B1 and HSD11B2 were analyzed. The potencies of inhibition on human HSD11B1 reductase was in the order of apigenin > quercetin > genistein > (±) equol, with IC50 values of 2.19, 5.36, 11.00, and over 100 μM, respectively. Genistein also inhibited rat HSD11B1 reductase with IC50 value of 24.58 μM, while other three chemicals showed no effects on the enzyme activity with IC50 values over 100 μM. However, apigenin and (±) equol did not inhibit human HSD11B2 at concentrations as high as 100 μM, while genistein and quercetin inhibited human HSD11B2 by 60% and 50% at 100 μM, respectively. The effective flavonoids and isoflavonoids are noncompetitive inhibitors of HSD11B1 when steroid substrates were used. Docking analysis showed that they bound to the steroid-binding site of the human HSD11B1. These data indicate that apigenin is a selective inhibitor of human HSD11B1 of two HSD11B isoforms, which may be useful in managing symptoms of the metabolic syndrome.
Collapse
Affiliation(s)
- Qiqi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Fei Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Yaoyao Dong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Wei Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Zhe Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Yuanyuan Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Ruijie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Jianliang Sun
- Department of Anesthesia, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou 310006, PR China.
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China.
| |
Collapse
|
12
|
Grygorenko OO, Biitseva AV, Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
First principle study of a potential bioactive molecule with tetrahydroisoquinoline, carbothiomide and adamantane scaffolds. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Murumkar PR, Shinde AC, Sharma MK, Yamaguchi H, Miniyar PB, Yadav MR. Development of a credible 3D-QSAR CoMSIA model and docking studies for a series of triazoles and tetrazoles containing 11β-HSD1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:265-292. [PMID: 27094303 DOI: 10.1080/1062936x.2016.1167774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 2 diabetes mellitus is described by insulin resistance and high fasting blood glucose. Increased levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme result in insulin resistance and metabolic syndrome. Inhibition of 11β-HSD1 decreases glucose production and increases hepatic insulin sensitivity. Use of selective 11β-HSD1 inhibitors could prove to be an effective strategy for the treatment of the disease. It was decided to identify the essential structural features required by any compound to possess 11β-HSD1 inhibitory activity. A dataset of 139 triazoles and tetrazoles having 11β-HSD1 inhibitory activity was used for the development of a 3D-QSAR model. The best comparative molecular field analysis (CoMFA) model was generated with databased alignment, which was further used for comparative molecular similarity indices analysis (CoMSIA). The optimal CoMSIA model showed [Formula: see text] = 0.809 with five components, [Formula: see text] = 0.931, SEE = 0.323 and F-value = 249.126. The CoMSIA model offered better prediction than the CoMFA model with [Formula: see text] = 0.522 and 0.439, respectively, indicating that the CoMSIA model appeared to be a better one for the prediction of activity for the newly designed 11β-HSD1 inhibitors. The selectivity aspect of 11β-HSD1 over 11β-HSD2 was studied with the help of docking studies.
Collapse
Affiliation(s)
- P R Murumkar
- a Faculty of Pharmacy , The Maharaja Sayajirao University of Baroda , Vadodara , India
- b Sinhgad Institute of Pharmacy , Narhe , India
| | - A C Shinde
- b Sinhgad Institute of Pharmacy , Narhe , India
| | - M K Sharma
- a Faculty of Pharmacy , The Maharaja Sayajirao University of Baroda , Vadodara , India
- b Sinhgad Institute of Pharmacy , Narhe , India
| | - H Yamaguchi
- c Department of Pharmacy , Meijo University , Nagoya , Japan
| | - P B Miniyar
- b Sinhgad Institute of Pharmacy , Narhe , India
| | - M R Yadav
- a Faculty of Pharmacy , The Maharaja Sayajirao University of Baroda , Vadodara , India
| |
Collapse
|
15
|
Young JM, Lee AG, Chandrasekaran RY, Tucker JW. The Synthesis of Alkyl and (Hetero)aryl Sulfonamides From Sulfamoyl Inner Salts. J Org Chem 2015; 80:8417-23. [DOI: 10.1021/acs.joc.5b01287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph M. Young
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aisha G. Lee
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ramalakshmi Y. Chandrasekaran
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph W. Tucker
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Al-Abdullah ES, Al-Tuwaijri HM, Hassan HM, Al-Alshaikh MA, Habib EE, El-Emam AA. Synthesis, Antimicrobial and Hypoglycemic Activities of Novel N-(1-Adamantyl)carbothioamide Derivatives. Molecules 2015; 20:8125-43. [PMID: 25955889 PMCID: PMC6272754 DOI: 10.3390/molecules20058125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
The reaction of 1-adamantyl isothiocyanate 4 with the various cyclic secondary amines yielded the corresponding N-(1-adamantyl)carbothioamides 5a–e, 6, 7, 8a–c and 9. Similarly, the reaction of 4 with piperazine and trans-2,5-dimethylpiperazine in 2:1 molar ratio yielded the corresponding N,N'-bis(1-adamantyl)piperazine-1,4-dicarbothioamides 10a and 10b, respectively. The reaction of N-(1-adamantyl)-4-ethoxycarbonylpiperidine-1-carbothioamide 8c with excess hydrazine hydrate yielded the target carbohydrazide 11, in addition to 4-(1-adamantyl)thiosemicarbazide 12 as a minor product. The reaction of the carbohydrazide 11 with methyl or phenyl isothiocyanate followed by heating in aqueous sodium hydroxide yielded the 1,2,4-triazole analogues 14a and 14b. The reaction of the carbohydrazide 11 with various aromatic aldehydes yielded the corresponding N'-arylideneamino derivatives 15a–g. The compounds 5a–e, 6, 7, 8a–c, 9, 10a, 10b, 14a, 14b and 15a–g were tested for in vitro antimicrobial activity against certain strains of pathogenic Gram-positive and Gram-negative bacteria and the yeast-like fungus Candida albicans. The compounds 5c, 5d, 5e, 6, 7, 10a, 10b, 15a, 15f and 15g showed potent antibacterial activity against one or more of the tested microorganisms. The oral hypoglycemic activity of compounds 5c, 6, 8b, 9, 14a and 15b was determined in streptozotocin (STZ)-induced diabetic rats. Compound 5c produced significant reduction of serum glucose levels, compared to gliclazide.
Collapse
Affiliation(s)
- Ebtehal S Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanaa M Al-Tuwaijri
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanan M Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Monirah A Al-Alshaikh
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Elsayed E Habib
- Department of Microbiology, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
- Department of Pharmaceutics and Pharmaceutical Technology (Microbiology), College of Pharmacy, Taibah University, Almadinah Almunawwarah 11344, Saudi Arabia.
| | - Ali A El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Byun SY, Shin YJ, Nam KY, Hong SP, Ahn SK. A novel highly potent and selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, UI-1499. Life Sci 2015; 120:1-7. [DOI: 10.1016/j.lfs.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/15/2014] [Accepted: 11/01/2014] [Indexed: 01/27/2023]
|
18
|
Lagos CF, Vecchiola A, Allende F, Fuentes CA, Tichauer JE, Valdivia C, Solari S, Campino C, Tapia-Castillo A, Baudrand R, Villarroel P, Cifuentes M, Owen GI, Carvajal CA, Fardella CE. Identification of novel 11β-HSD1 inhibitors by combined ligand- and structure-based virtual screening. Mol Cell Endocrinol 2014; 384:71-82. [PMID: 24447464 DOI: 10.1016/j.mce.2014.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 12/15/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts cortisone to cortisol in a NADPH dependent manner. Overexpression of 11β-HSD1 in key metabolic tissues is related to the development of type 2 diabetes, obesity, hypertension and metabolic syndrome. Using crystal structures of human 11β-HSD1 in complex with inhibitors as source of structural information, a combined ligand and structure-based virtual screening approach was implemented to identify novel 11β-HSD1 inhibitors. A selected group of compounds was identified in silico and further evaluated in cell-based assays for cytotoxicity and 11β-HSD1 mediated cortisol production inhibitory capacity. The expression of 11β-HSD1 and 11β-HSD2 in human LS14 adipocytes was assessed during differentiation. Biological evaluation of 39 compounds in adipocytes and steroids quantification by HPLC-MS/MS identify 4 compounds that exhibit 11β-HSD1 mediated cortisol production inhibitory activity with potencies in the micromolar range. Two compounds showed to be selective for the 11β-HSD1 reductase activity and over 11β-HSD2 isoform, and thus represent novel leads for the development of more active derivatives with higher efficacies targeting intracellular cortisol levels in type 2 diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Carlos F Lagos
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Cristobal A Fuentes
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Juan E Tichauer
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carolina Valdivia
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sandra Solari
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carmen Campino
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rene Baudrand
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Pia Villarroel
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Gareth I Owen
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Cristian A Carvajal
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Carlos E Fardella
- Molecular Endocrinology Laboratory, Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
19
|
Lee Y, Shin YJ, Ahn SK. 3-Amino-N-adamantyl-3-methylbutanamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitor. Bioorg Med Chem Lett 2014; 24:1421-5. [PMID: 24507919 DOI: 10.1016/j.bmcl.2014.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 11/19/2022]
Abstract
Many adamantane derivatives have been demonstrated to function as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors. 3-Amino-N-adamantyl-3-methylbutanamide derivatives were optimized by structure-based drug design. Compound 8j exhibited a good in vitro and ex vivo inhibitory activity against both human and mouse 11β-HSD1.
Collapse
Affiliation(s)
- Younho Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Yong June Shin
- R&D Center, Ahn Gook Pharm., Gyeonggi Bio-Center, Suwon, Gyeonggi-do 443-766, Republic of Korea
| | - Soon Kil Ahn
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|
20
|
Scott JS, Goldberg FW, Turnbull AV. Medicinal Chemistry of Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). J Med Chem 2013; 57:4466-86. [DOI: 10.1021/jm4014746] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James S. Scott
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Frederick W. Goldberg
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Andrew V. Turnbull
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| |
Collapse
|
21
|
Lipson VV, Shirobokova MG, Petrova ON. 11β-Hydroxysteroid dehydrogenase type 1, a target for development of oral antidiabetic drugs (Review). Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
23
|
Gopalan B, Ponpandian T, Kachhadia V, Bharathimohan K, Vignesh R, Sivasudar V, Narayanan S, Mandar B, Praveen R, Saranya N, Rajagopal S, Rajagopal S. Discovery of adamantane based highly potent HDAC inhibitors. Bioorg Med Chem Lett 2013; 23:2532-7. [PMID: 23538115 DOI: 10.1016/j.bmcl.2013.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 01/04/2023]
Abstract
Herein, we report the development of highly potent HDAC inhibitors for the treatment of cancer. A series of adamantane and nor-adamantane based HDAC inhibitors were designed, synthesized and screened for the inhibitory activity of HDAC. A number of compounds exhibited GI50 of 10-100 nM in human HCT116, NCI-H460 and U251 cancer cells, in vitro. Compound 32 displays efficacy in human tumour animal xenograft model.
Collapse
Affiliation(s)
- Balasubramanian Gopalan
- Drug Discovery Research Centre, Orchid Chemicals & Pharmaceuticals Ltd, Chennai 600119, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Adamantyl carboxamides and acetamides as potent human 11β-hydroxysteroid dehydrogenase type 1 inhibitors. Bioorg Med Chem 2012; 20:6394-402. [PMID: 23040895 PMCID: PMC3510433 DOI: 10.1016/j.bmc.2012.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
Abstract
The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC(50) values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC(50)=114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC(50)=280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.
Collapse
|
25
|
Valeur E, Christmann-Franck S, Lepifre F, Carniato D, Cravo D, Charon C, Bozec S, Musil D, Hillertz P, Doare L, Schmidlin F, Lecomte M, Schultz M, Roche D. Structure-based design of 7-azaindole-pyrrolidine amides as inhibitors of 11β-hydroxysteroid dehydrogenase type I. Bioorg Med Chem Lett 2012; 22:5909-14. [DOI: 10.1016/j.bmcl.2012.07.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022]
|
26
|
Park JS, Rhee SD, Jung WH, Kang NS, Kim HY, Kang SK, Ahn JH, Kim KY. Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor in the diet-induced obese mice. Eur J Pharmacol 2012; 691:19-27. [PMID: 22760069 DOI: 10.1016/j.ejphar.2012.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/22/2023]
Abstract
Glucocorticoid excess (Cushing's syndrome) causes metabolic syndrome such as visceral obesity, insulin resistance, diabetes mellitus, dyslipidaemia and hypertension. The selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus and metabolic syndrome. In the present study, we investigated the anti-diabetic and anti-adipogenic effects of 4-(2-(1,1-dioxido-6-(2,4,6-trichlorophenyl)-1,2,6-thiadiazinan-2-yl)acetamido)adamantane-1-carboxamide (KR-67183), a novel selective 11β-HSD1 inhibitor; we also investigated the underlying molecular mechanisms in the cortisone-induced 3T3-L1 adipogenesis model system and diet-induced obese (DIO) mice. KR-67183 concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 over-expressed cells and in the ex vivo assay of C57BL/6 mice. In the study with DIO mice, the administration of KR-67183 (20 and 50mg/kg/day, orally for 28 days) improved the glucose tolerance and insulin sensitivity with suppressed 11β-HSD1 activity in the liver and fat. However, KR-67183 showed no change in the adrenal gland weight/body weight ratio and plasma corticosterone concentration in DIO mice. Further, KR-67183 suppressed adipocyte differentiation on cortisone-induced adipogenesis in 3T3-L1 cells is associated with the suppression of the cortisone-induced mRNA levels of FABP4, PPARγ2 and GLUT4, and 11β-HSD1 activity. Taken together, it is suggested that a selective 11β-HSD1 inhibitor, KR-67183, may provide a new therapeutic window in the prevention and treatment without toxicity in type 2 diabetes with obesity.
Collapse
Affiliation(s)
- Ji Seon Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pradaux-Caggiano F, Su X, Vicker N, Thomas MP, Smithen D, Halem HA, Culler MD, Potter BVL. Synthesis and evaluation of thiadiazole derivatives as inhibitors of 11β-hydroxysteroid dehydrogenase type 1. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20091k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Su X, Pradaux-Caggiano F, Vicker N, Thomas MP, Halem H, Culler MD, Potter BVL. Adamantyl ethanone pyridyl derivatives: potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. ChemMedChem 2011; 6:1616-29. [PMID: 21714097 PMCID: PMC3179844 DOI: 10.1002/cmdc.201100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Indexed: 12/30/2022]
Abstract
Elevated levels of active glucocorticoids have been implicated in the development of several phenotypes of metabolic syndrome, such as type 2 diabetes and obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inactive cortisone to cortisol. Selective 11β-HSD1 inhibitors have shown beneficial effects in various conditions, including diabetes, dyslipidemia and obesity. A series of adamantyl ethanone pyridyl derivatives has been identified, providing potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective for this isoform, with no activity against 11β-HSD2 and 17β-HSD1. Structure-activity relationship studies reveal that an unsubstituted pyridine tethered to an adamantyl ethanone motif through an ether or sulfoxide linker provides a suitable pharmacophore for activity. The most potent inhibitors have IC₅₀ values around 34-48 nM against human 11β-HSD1, display reasonable metabolic stability in human liver microsomes, and weak inhibition of key human CYP450 enzymes.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Fabienne Pradaux-Caggiano
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Nigel Vicker
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Mark P Thomas
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Heather Halem
- IPSEN, Biomeasure Inc.27 Maple Street, Milford, MA 01757 (USA)
| | | | - Barry V L Potter
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| |
Collapse
|
29
|
The many faces of the adamantyl group in drug design. Eur J Med Chem 2011; 46:1949-63. [DOI: 10.1016/j.ejmech.2011.01.047] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/14/2011] [Accepted: 01/25/2011] [Indexed: 12/22/2022]
|
30
|
Su X, Vicker N, Thomas MP, Pradaux-Caggiano F, Halem H, Culler MD, Potter BVL. Discovery of adamantyl heterocyclic ketones as potent 11β-hydroxysteroid dehydrogenase type 1 inhibitors. ChemMedChem 2011; 6:1439-51. [PMID: 21608132 PMCID: PMC3170876 DOI: 10.1002/cmdc.201100144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Indexed: 11/11/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a key role in converting intracellular cortisone to physiologically active cortisol, which is implicated in the development of several phenotypes of metabolic syndrome. Inhibition of 11β-HSD1 activity with selective inhibitors has beneficial effects on various conditions, including diabetes, dyslipidemia and obesity, and therefore constitutes a promising strategy to discover novel therapies for metabolic and cardiovascular diseases. A series of novel adamantyl heterocyclic ketones provides potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective with no activity against 11β-HSD2 and 17β-HSD1. Selected potent 11β-HSD1 inhibitors show moderate metabolic stability upon incubation with human liver microsomes and weak inhibition of human CYP450 enzymes.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA27AY, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Thomas MP, Potter BVL. Crystal structures of 11β-hydroxysteroid dehydrogenase type 1 and their use in drug discovery. Future Med Chem 2011; 3:367-90. [PMID: 21446847 PMCID: PMC4037982 DOI: 10.4155/fmc.10.282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cortisol is synthesized by 11β-hydroxysteroid dehydrogenase type 1, inhibitors of which may treat disease associated with excessive cortisol levels. The crystal structures of 11β-hydroxysteroid dehydrogenase type 1 that have been released may aid drug discovery. The crystal structures have been analyzed in terms of the interactions between the protein and the ligands. Despite a variety of structurally different inhibitors the crystal structures of the proteins are quite similar. However, the differences are significant for drug discovery. The crystal structures can be of use in drug discovery, but care needs to be taken when selecting structures for use in virtual screening and ligand docking.
Collapse
Affiliation(s)
- Mark P Thomas
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry VL Potter
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
32
|
Discovery and optimization of adamantyl carbamate inhibitors of 11β-HSD1. Bioorg Med Chem Lett 2010; 20:6725-9. [DOI: 10.1016/j.bmcl.2010.08.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/28/2010] [Accepted: 08/31/2010] [Indexed: 11/21/2022]
|
33
|
Sun D, Wang Z, Caille S, DeGraffenreid M, Gonzalez-Lopez de Turiso F, Hungate R, Jaen JC, Jiang B, Julian LD, Kelly R, McMinn DL, Kaizerman J, Rew Y, Sudom A, Tu H, Ursu S, Walker N, Willcockson M, Yan X, Ye Q, Powers JP. Synthesis and optimization of novel 4,4-disubstituted cyclohexylbenzamide derivatives as potent 11β-HSD1 inhibitors. Bioorg Med Chem Lett 2010; 21:405-10. [PMID: 21093258 DOI: 10.1016/j.bmcl.2010.10.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022]
Abstract
The synthesis and SAR of a series of 4,4-disubstituted cyclohexylbenzamide inhibitors of 11β-HSD1 are described. Optimization rapidly led to potent, highly selective, and orally bioavailable inhibitors demonstrating efficacy in both rat and non-human primate ex vivo pharmacodynamic models.
Collapse
Affiliation(s)
- Daqing Sun
- Amgen Inc, 1120 Veterans Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Su X, Pradaux-Caggiano F, Thomas MP, Szeto MWY, Halem HA, Culler MD, Vicker N, Potter BVL. Discovery of adamantyl ethanone derivatives as potent 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitors. ChemMedChem 2010; 5:1026-44. [PMID: 20486152 DOI: 10.1002/cmdc.201000081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
11Beta-hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. A series of novel adamantyl ethanone compounds was identified as potent inhibitors of human 11beta-HSD1. The most active compounds identified (52, 62, 72, 92, 103 and 104) display potent inhibition of 11beta-HSD1 with IC(50) values in the 50-70 nM range. Compound 72 also proved to be metabolically stable when incubated with human liver microsomes. Furthermore, compound 72 showed very weak inhibitory activity for human cytochrome P450 enzymes and is therefore a candidate for in vivo studies. Comparison of the publicly available X-ray crystal structures of human 11beta-HSD1 led to docking studies of the potent compounds, revealing how these molecules may interact with the enzyme and cofactor.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Actis M, Connelly MC, Mayasundari A, Punchihewa C, Fujii N. A structure-activity relationship study of small-molecule inhibitors of GLI1-mediated transcription. Biopolymers 2010; 95:24-30. [DOI: 10.1002/bip.21544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
|
37
|
Wan ZK, Chenail E, Xiang J, Li HQ, Ipek M, Bard J, Svenson K, Mansour TS, Xu X, Tian X, Suri V, Hahm S, Xing Y, Johnson CE, Li X, Qadri A, Panza D, Perreault M, Tobin JF, Saiah E. Efficacious 11β-Hydroxysteroid Dehydrogenase Type I Inhibitors in the Diet-Induced Obesity Mouse Model. J Med Chem 2009; 52:5449-61. [DOI: 10.1021/jm900639u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Xin Xu
- Drug Safety and Metabolism
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Discovery of novel dual functional agent as PPARγ agonist and 11β-HSD1 inhibitor for the treatment of diabetes. Bioorg Med Chem 2009; 17:5722-32. [DOI: 10.1016/j.bmc.2009.05.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/22/2022]
|
39
|
Lepifre F, Christmann-Franck S, Roche D, Leriche C, Carniato D, Charon C, Bozec S, Doare L, Schmidlin F, Lecomte M, Valeur E. Discovery and structure-guided drug design of inhibitors of 11β-hydroxysteroid-dehydrogenase type I based on a spiro-carboxamide scaffold. Bioorg Med Chem Lett 2009; 19:3682-5. [DOI: 10.1016/j.bmcl.2009.02.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/28/2009] [Indexed: 11/28/2022]
|
40
|
Siu M, Johnson TO, Wang Y, Nair SK, Taylor WD, Cripps SJ, Matthews JJ, Edwards MP, Pauly TA, Ermolieff J, Castro A, Hosea NA, LaPaglia A, Fanjul AN, Vogel JE. N-(Pyridin-2-yl) arylsulfonamide inhibitors of 11β-hydroxysteroid dehydrogenase type 1: Discovery of PF-915275. Bioorg Med Chem Lett 2009; 19:3493-7. [DOI: 10.1016/j.bmcl.2009.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/03/2009] [Accepted: 05/04/2009] [Indexed: 11/24/2022]
|
41
|
Discovery and structure–activity relationships of pentanedioic acid diamides as potent inhibitors of 11β-hydroxysteroid dehydrogenase type I. Bioorg Med Chem Lett 2009; 19:2674-8. [DOI: 10.1016/j.bmcl.2009.03.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/24/2022]
|
42
|
Rew Y, McMinn DL, Wang Z, He X, Hungate RW, Jaen JC, Sudom A, Sun D, Tu H, Ursu S, Villemure E, Walker NPC, Yan X, Ye Q, Powers JP. Discovery and optimization of piperidyl benzamide derivatives as a novel class of 11beta-HSD1 inhibitors. Bioorg Med Chem Lett 2009; 19:1797-801. [PMID: 19217779 DOI: 10.1016/j.bmcl.2009.01.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 11/16/2022]
Abstract
Discovery and optimization of a piperidyl benzamide series of 11beta-HSD1 inhibitors is described. This series was derived from a cyclohexyl benzamide lead structures to address PXR selectivity, high non-specific protein binding, poor solubility, limited in vivo exposure, and in vitro cytotoxicity issues observed with the cyclohexyl benzamide structures. These efforts led to the discovery of piperidyl benzamide 15 which features improved properties over the cyclohexyl benzamide derivatives.
Collapse
Affiliation(s)
- Yosup Rew
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xiang J, Wan ZK, Li HQ, Ipek M, Binnun E, Nunez J, Chen L, McKew JC, Mansour TS, Xu X, Suri V, Tam M, Xing Y, Li X, Hahm S, Tobin J, Saiah E. Piperazine Sulfonamides as Potent, Selective, and Orally Available 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors with Efficacy in the Rat Cortisone-Induced Hyperinsulinemia Model. J Med Chem 2008; 51:4068-71. [DOI: 10.1021/jm8004948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason Xiang
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Zhao-Kui Wan
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Huan-Qiu Li
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Manus Ipek
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Eva Binnun
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Jill Nunez
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Lihren Chen
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - John C. McKew
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Tarek S. Mansour
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Xin Xu
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Vipin Suri
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - May Tam
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Yuzhe Xing
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Xiangping Li
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Seung Hahm
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - James Tobin
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| | - Eddine Saiah
- Chemical and Screening Sciences, Drug Safety and Metabolism, and Cardiovascular and Metabolic Diseases, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140
| |
Collapse
|
44
|
Wang H, Ruan Z, Li JJ, Simpkins LM, Smirk RA, Wu SC, Hutchins RD, Nirschl DS, Van Kirk K, Cooper CB, Sutton JC, Ma Z, Golla R, Seethala R, Salyan MEK, Nayeem A, Krystek SR, Sheriff S, Camac DM, Morin PE, Carpenter B, Robl JA, Zahler R, Gordon DA, Hamann LG. Pyridine amides as potent and selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1. Bioorg Med Chem Lett 2008; 18:3168-72. [PMID: 18485702 DOI: 10.1016/j.bmcl.2008.04.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 04/18/2008] [Accepted: 04/28/2008] [Indexed: 11/29/2022]
Abstract
Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series.
Collapse
Affiliation(s)
- Haixia Wang
- Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee JH, Kang NS, Yoo SE. Docking-based 3D-QSAR study for 11β-HSD1 inhibitors. Bioorg Med Chem Lett 2008; 18:2479-90. [DOI: 10.1016/j.bmcl.2008.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 12/01/2022]
|
46
|
Hughes KA, Webster SP, Walker BR. 11-Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors in Type 2 diabetes mellitus and obesity. Expert Opin Investig Drugs 2008; 17:481-96. [DOI: 10.1517/13543784.17.4.481] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Discovery of novel inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 by docking and pharmacophore modeling. Bioorg Med Chem Lett 2008; 18:1340-5. [PMID: 18242087 DOI: 10.1016/j.bmcl.2008.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/31/2007] [Accepted: 01/05/2008] [Indexed: 11/22/2022]
Abstract
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is a potential target for treatment of diabetes and metabolic syndrome. Docking and pharmacophore modeling have been used to discover novel inhibitors of 11beta-HSD1. Several compounds, with large structural diversity and good potency against 11beta-HSD1, have been found and their potency was determined by the enzyme assay. New scaffolds of 11beta-HSD1 inhibitors are also reported.
Collapse
|
48
|
Hale C, Véniant M, Wang Z, Chen M, McCormick J, Cupples R, Hickman D, Min X, Sudom A, Xu H, Matsumoto G, Fotsch C, St. Jean DJ, Wang M. Structural Characterization and Pharmacodynamic Effects of an Orally Active 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor. Chem Biol Drug Des 2007; 71:36-44. [DOI: 10.1111/j.1747-0285.2007.00603.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Zhang TY, Daynes RA. Macrophages from 11beta-hydroxysteroid dehydrogenase type 1-deficient mice exhibit an increased sensitivity to lipopolysaccharide stimulation due to TGF-beta-mediated up-regulation of SHIP1 expression. THE JOURNAL OF IMMUNOLOGY 2007; 179:6325-35. [PMID: 17947710 DOI: 10.4049/jimmunol.179.9.6325] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
11beta-Hydroxysteroid dehydrogenase type 1 (11betaHSD1) performs end-organ metabolism of glucocorticoids (GCs) by catalyzing the conversion of C(11)-keto-GCs to C(11)-hydroxy-GCs, thereby generating activating ligands for the GC receptor. In this study, we report that 11betaHSD1(-/-) mice are more susceptible to endotoxemia, evidenced by increased weight loss and serum TNF-alpha, IL-6, and IL-12p40 levels following LPS challenge in vivo. Peritoneal and splenic macrophage (splnMphi) from these genetically altered mice overproduce inflammatory cytokines following LPS stimulation in vitro. Inflammatory cytokine overexpression by 11betaHSD1(-/-) splnMphi results from an increased activation of NF-kappaB- and MAPK-signaling cascades and an attenuated PI3K-dependent Akt activation. The expression of SHIP1 is augmented in 11betaHSD1(-/-) Mphi and contributes to inflammatory cytokine production because overexpression of SHIP1 in primary bone marrow Mphi (BMMphi) leads to a similar type of hyperresponsiveness to subsequent LPS stimulation. 11betaHSD1(+/+) and 11betaHSD1(-/-) BMMphi responded to LPS similarly. However, 11betaHSD1(-/-) BMMphi derived in the presence of elevated GC levels up-regulated SHIP1 expression and increased their capacity to produce inflammatory cytokines following their activation with LPS. These observations suggest the hyperresponsiveness of 11betaHSD1(-/-) splnMphi results from myeloid cell differentiation in the presence of moderately elevated GC levels found within 11betaHSD1(-/-) mice. GC-conditioning of BMMphi enhanced SHIP1 expression via up-regulation of bioactive TGF-beta. Consistently, TGF-beta protein expression was increased in unstimulated CD11b(-) cells residing in the BM and spleen of 11betaHSD1(-/-) mice. Our results suggest that modest elevations in plasma GC levels can modify the LPS responsiveness of Mphi by augmenting SHIP1 expression through a TGF-beta-dependent mechanism.
Collapse
Affiliation(s)
- Tian Y Zhang
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
50
|
Webster SP, Pallin TD. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors as therapeutic agents. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.12.1407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|