1
|
Supuran CT. Multi- and poly-pharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001125. [PMID: 39326898 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described in organisms allover the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons, and are involved in pH regulation, chemosensing and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or for Alzheimer's/Parkinson's disease management. CAs from pathogenic bacteria, fungi, protozoans and nematodes started to be considered as drug targets in recent years, with notable advances registered ultimately. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future, due to the emergence of drug design approaches which afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, (iso)coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed since drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide and high-ceiling diuretics) show efective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. Significance Statement Carbonic anhydrase inhibitors have multiple pharmacologic applications as diuretics, antiglaucoma, antiepileptic, antiobesity, anti-acute mountain sickness, anti-idiopathic intracranial hypertension and as antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations started to be investigated recently. Parasite carbonic anhydrases are also drug targets for antiinfectives with novel mechanisms of action which can by pass drug resistance to commonly used such agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
|
2
|
Pagnozzi D, Pala N, Biosa G, Dallocchio R, Dessì A, Singh PK, Rogolino D, Di Fiore A, De Simone G, Supuran CT, Sechi M. Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches. ACS Med Chem Lett 2022. [DOI: 10.1021/acsmedchemlett.1c00644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc. Tramariglio n. 15, 07041 Alghero, Sassari, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Grazia Biosa
- Porto Conte Ricerche, Science and Technology Park of Sardinia, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc. Tramariglio n. 15, 07041 Alghero, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare - CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare - CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Claudiu T. Supuran
- Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Room 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Mario Sechi
- Department of Medical Surgical and Experimental Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
3
|
Wang X, Feng YL, Zhao XY, An R, Cao C, Guo MB, Zhang R, Wang YX, Hou Z, Guo C. Discovery of novel aminosaccharide-based sulfonamide derivatives as potential carbonic anhydrase II inhibitors. Bioorg Med Chem Lett 2021; 53:128420. [PMID: 34728369 DOI: 10.1016/j.bmcl.2021.128420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
In this paper, a new class of novel sulfonamides incorporating aminosaccharide tails were designed and synthesized based on the sugar-tail approach. Then, all the novel compounds were evaluated for their inhibitory activities against three carbonic anhydrase (CA, EC 4.2.1.1) isoenzymes (hCA I, hCA II and hCA IX). Interestingly, effective inhibition of these three CA isoforms were observed, especially the glaucoma associated isoform hCA II. It is worth noting that these glycoconjugated sulfonamide derivatives also showed better CA inhibitory effects compared to the initial segment carzenide. Among them, compound 8d was the most effective inhibitor with IC50 of 60 nM against hCA II. Subsequent physicochemical properties studies showed that all compounds have good water solubility and neutral pH values in solutions. And these important physicochemical properties make target compounds acquire obvious advantages in the preparation of topical and nonirritating antiglaucoma drugs. Moreover, the target compounds showed lower corneal cytotoxicity than acetazolamide (AAZ) and good metabolic stability in vitro. In addition, molecular docking studies confirmed the interactions between aminosaccharide fragment and hydrophilic subpocket of hCA II active site were crucial for the enhanced CA inhibitory activity. Taken together, these results suggested 8d would be a promising lead compound for the development of topical antiglaucoma CAIs.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan-Lian Feng
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Yu Zhao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Cao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng-Bi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan-Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
5
|
Alterio V, Esposito D, Monti SM, Supuran CT, De Simone G. Crystal structure of the human carbonic anhydrase II adduct with 1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate, a membrane-impermeant, isoform selective inhibitor. J Enzyme Inhib Med Chem 2017; 33:151-157. [PMID: 29199489 PMCID: PMC7011996 DOI: 10.1080/14756366.2017.1405263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyridinium containing sulfonamides have been largely investigated as carbonic anhydrase inhibitors (CAIs), showing interesting selectivity features. Nevertheless, only few structural studies are so far available on adducts that these compounds form with diverse CA isoforms. In this paper, we report the structural characterization of the adduct that a triphenylpyridinium derivative forms with hCA II, showing that the substitution of the pyridinium ring plays a key role in determining the conformation of the inhibitor in the active site and consequently the binding affinity to the enzyme. These findings open new perspectives on the basic structural requirements for designing sulfonamide CAIs with a selective inhibition profile.
Collapse
Affiliation(s)
| | - Davide Esposito
- a Istituto di Biostrutture e Bioimagini-CNR , Naples , Italy
| | | | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | | |
Collapse
|
6
|
Abdel Gawad NM, Amin NH, Elsaadi MT, Mohamed FMM, Angeli A, De Luca V, Capasso C, Supuran CT. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorg Med Chem 2016; 24:3043-3051. [PMID: 27234893 DOI: 10.1016/j.bmc.2016.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84-702nM against hCA I, of 0.41-288nM against hCA II and of 5.6-29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines.
Collapse
Affiliation(s)
- Nagwa M Abdel Gawad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohammed T Elsaadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatma M M Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Lomelino CL, Mahon BP, McKenna R, Carta F, Supuran CT. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111. Bioorg Med Chem 2016; 24:976-81. [PMID: 26810836 DOI: 10.1016/j.bmc.2016.01.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
SLC-0111 (4-(4-fluorophenylureido)-benzenesulfonamide) is the first carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor to reach phase I clinical trials as an antitumor/antimetastatic agent. Here we report a kinetic and X-ray crystallographic study of a congener of SLC-0111 which incorporates a thioureido instead of ureido linker between the two aromatic rings as inhibitor of four physiologically relevant CA isoforms. Similar to SLC-0111, the thioureido derivative was a weak hCA I and II inhibitor and a potent one against hCA IX and XII. X-ray crystallography of its adduct with hCA II and comparison of the structure with that of other five hCA II-sulfonamide adducts belonging to the SLC-0111 series, afforded us to understand the particular inhibition profile of the new sulfonamide. Similar to SLC-0111, the thioureido sulfonamide primarily interacted with the hydrophobic side of the hCA II active site, with the tail participating in van der Waals interactions with Phe131 and Pro202, in addition to the coordination of the deprotonated sulfonamide to the active site metal ion. On the contrary, the tail of other sulfonamides belonging to the SLC-0111 series (2-isopropyl-phenyl; 3-nitrophenyl) were orientated towards the hydrophilic half of the active site, which was correlated with orders of magnitude better inhibitory activity against hCA II, and a loss of selectivity for the inhibition of the tumor-associated CAs.
Collapse
Affiliation(s)
- Carrie L Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL, USA
| | - Brian P Mahon
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL, USA.
| | - Fabrizio Carta
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
8
|
De Simone G, Monti SM, Alterio V, Buonanno M, De Luca V, Rossi M, Carginale V, Supuran CT, Capasso C, Di Fiore A. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett 2015; 25:2002-6. [PMID: 25817590 DOI: 10.1016/j.bmcl.2015.02.068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Two thermostable α-carbonic anhydrases (α-CAs) isolated from thermophilic Sulfurihydrogenibium spp., namely SspCA (from S. yellowstonensis) and SazCA (from S. azorense), were shown in a previous work to possess interesting complementary properties. SspCA was shown to have an exceptional thermal stability, whereas SazCA demonstrated to be the most active α-CA known to date for the CO2 hydration reaction. Here we report the crystallographic structure of SazCA and the identification of the structural features responsible for its high catalytic activity, by comparing it with SspCA structure. These data are of relevance for the design of engineered proteins showing higher stability and catalytic activity than other α-CAs known to date.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy.
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy; Seconda Università di Napoli (SUN), 81100 Caserta, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Mosè Rossi
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
9
|
D'Ambrosio K, Carradori S, Monti SM, Buonanno M, Secci D, Vullo D, Supuran CT, De Simone G. Out of the active site binding pocket for carbonic anhydrase inhibitors. Chem Commun (Camb) 2015; 51:302-5. [DOI: 10.1039/c4cc07320g] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2-Benzylsulfinylbenzoic acid binds to human carbonic anhydrase II in a mode completely different from any other class of carbonic anhydrase inhibitors investigated so far.
Collapse
Affiliation(s)
| | - Simone Carradori
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza University of Rome
- 00185 Rome
- Italy
| | | | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Daniela Vullo
- Universitá degli Studi di Firenze
- Polo Scientifico
- Laboratorio di Chimica Bioinorganica
- 50019 Sesto Fiorentino
- Italy
| | - Claudiu T. Supuran
- Universitá degli Studi di Firenze
- Polo Scientifico
- Laboratorio di Chimica Bioinorganica
- 50019 Sesto Fiorentino
- Italy
| | | |
Collapse
|
10
|
Thakur RK, Mishra A, Ramakrishna K, Mahar R, Shukla SK, Srivastava A, Tripathi RP. Synthesis of novel pyrimidine nucleoside analogues owning multiple bases/sugars and their glycosidase inhibitory activity. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Rosatelli E, Carotti A, Ceruso M, Supuran CT, Gioiello A. Flow synthesis and biological activity of aryl sulfonamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg Med Chem Lett 2014; 24:3422-5. [DOI: 10.1016/j.bmcl.2014.05.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
|
12
|
Facile, highly efficient, and clean one-pot synthesis of acridine sulfonamide derivatives at room temperature and their inhibition of human carbonic anhydrase isoenzymes. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-013-1145-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Aggarwal M, Kondeti B, McKenna R. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Bioorg Med Chem 2013; 21:1526-33. [PMID: 22985956 PMCID: PMC3593968 DOI: 10.1016/j.bmc.2012.08.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3(-). There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.
Collapse
Affiliation(s)
- Mayank Aggarwal
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| | - Bhargav Kondeti
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| |
Collapse
|
14
|
Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. Medicinal significance of benzothiazole scaffold: an insight view. J Enzyme Inhib Med Chem 2012; 28:240-66. [PMID: 23030043 DOI: 10.3109/14756366.2012.720572] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heterocycles bearing nitrogen, sulphur and thiazole moieties constitute the core structure of a number of biologically interesting compounds. Benzothiazole, a group of xenobiotic compounds containing a benzene ring fused with a thiazole ring, are used worldwide for a variety of therapeutic applications. Benzothiazole and their heterocyclic derivatives represent an important class of compounds possessing a wide spectrum of biological activities. The myriad spectrum of medicinal properties associated with benzothiazole related drugs has encouraged the medicinal chemists to synthesize a large number of novel therapeutic agents. Several analogues containing benzothiazole ring system exhibit significant antitumour, antimicrobial, antidiabetic, anti-inflammatory, anticonvulsant, antiviral, antioxidant, antitubercular, antimalarial, antiasthmatic, anthelmintic, photosensitizing, diuretic, analgesic and other activities. This article is an attempt to present the research work reported in recent scientific literature on different pharmacological activities of benzothiazole compounds.
Collapse
|
15
|
Büyükkıdan N, Büyükkıdan B, Bülbül M, Özer S, Gonca Yalçın H. Synthesis and characterization of phenolic Mannich bases and effects of these compounds on human carbonic anhydrase isozymes I and II. J Enzyme Inhib Med Chem 2012; 28:337-42. [DOI: 10.3109/14756366.2012.693919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Nurgün Büyükkıdan
- Department of Chemistry, Faculty of Arts and Science, Dumlupınar University,
Kütahya, Turkey
| | - Bülent Büyükkıdan
- Department of Chemistry, Faculty of Arts and Science, Dumlupınar University,
Kütahya, Turkey
| | - Metin Bülbül
- Department of Chemistry, Faculty of Arts and Science, Dumlupınar University,
Kütahya, Turkey
| | - Salih Özer
- Department of Chemistry, Faculty of Arts and Science, Dumlupınar University,
Kütahya, Turkey
| | - Hatice Gonca Yalçın
- Department of Chemistry, Faculty of Arts and Science, Dumlupınar University,
Kütahya, Turkey
| |
Collapse
|
16
|
Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012; 112:4421-68. [PMID: 22607219 DOI: 10.1021/cr200176r] [Citation(s) in RCA: 961] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
17
|
Turkoglu S, Maresca A, Alper M, Kockar F, Işık S, Sinan S, Ozensoy O, Arslan O, Supuran CT. Mutation of active site residues Asn67 to Ile, Gln92 to Val and Leu204 to Ser in human carbonic anhydrase II: Influences on the catalytic activity and affinity for inhibitors. Bioorg Med Chem 2012; 20:2208-13. [DOI: 10.1016/j.bmc.2012.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/15/2022]
|
18
|
Synthesis and evaluation of new carbonic anhydrase inhibitors. Bioorg Med Chem 2011; 19:3221-8. [PMID: 21524585 DOI: 10.1016/j.bmc.2011.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 11/22/2022]
Abstract
A series of new sulfamide derivatives have been synthesized, their structures were confirmed by (1)H NMR and ESI-MS. Some target compounds were assessed by the tool of Dock6, and inhibition effects of all the new compounds on carbonic anhydrase II have been investigated. In addition, some compounds have been investigated for their antihypoxic effects in mice. Results indicated that nine target compounds exhibit as effectively as acetazolamide and 10 compounds have more potent inhibition effects on carbonic anhydrase II than acetazolamide. Three of them (I-8, I-18 and I'-3) can prolong markedly the survival time of mice in hypoxia, which are worth carrying out further studies.
Collapse
|
19
|
Synthesis and characterization of a novel amino salicylato salt and its Cu(II) complex and their inhibition studies on carbonic anhydrase isoenzymes. Polyhedron 2011. [DOI: 10.1016/j.poly.2010.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Di Fiore A, Maresca A, Alterio V, Supuran CT, De Simone G. Carbonic anhydrase inhibitors: X-ray crystallographic studies for the binding of N-substituted benzenesulfonamides to human isoform II. Chem Commun (Camb) 2011; 47:11636-8. [DOI: 10.1039/c1cc14575d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Yenikaya C, Sarı M, Bülbül M, İlkimen H, Çınar B, Büyükgüngör O. Synthesis and characterisation of two novel proton transfer compounds and their inhibition studies on carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2010; 26:104-14. [DOI: 10.3109/14756361003733639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Cengiz Yenikaya
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Musa Sarı
- Department of Physics Education, Gazi University, Beşevler, Ankara, Turkey
| | - Metin Bülbül
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Halil İlkimen
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Burcu Çınar
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Orhan Büyükgüngör
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, Samsun, Turkey
| |
Collapse
|
22
|
Synthesis, characterization and antiglaucoma activity of a novel proton transfer compound and a mixed-ligand Zn(II) complex. Bioorg Med Chem 2010; 18:930-8. [DOI: 10.1016/j.bmc.2009.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 01/22/2023]
|
23
|
Winum JY, Montero JL, Vullo D, Supuran CT. Carbonic Anhydrase Inhibitors: Glycosylsulfanilamides Act as Subnanomolar Inhibitors of the Human Secreted Isoform VI. Chem Biol Drug Des 2009; 74:636-9. [DOI: 10.1111/j.1747-0285.2009.00902.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Winum JY, Poulsen SA, Supuran CT. Therapeutic applications of glycosidic carbonic anhydrase inhibitors. Med Res Rev 2009; 29:419-35. [PMID: 19058143 DOI: 10.1002/med.20141] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The zinc enzymes carbonic anhydrases (CAs, EC 4.2.1.1) are very efficient catalysts for the reversible hydration of carbon dioxide to bicarbonate and hence play an important physiological role. In humans, 16 different isozymes have been described, some of them being involved in various pathological disorders. Several of these isozymes are considered as drug targets, and the design of selective inhibitors is a long-standing goal that has captured the attention of researchers for 40 years and has lead to clinical applications against different pathologies such as glaucoma, epilepsy, and cancer. Among the different strategies developed for designing selective CA inhibitors (CAIs), the "sugar approach" has recently emerged as a new attractive and versatile tool. Incorporation of glycosyl moieties in different aromatic/heterocyclic sulfonamide/sulfamides/sulfamates scaffolds has led to the development of numerous and very effective inhibitors of potential clinical value. The clinical use of a highly active carbohydrate-based CA inhibitor, i.e., topiramate, constitutes an interesting demonstration of the validity of this approach. Other carbohydrate-based compounds also demonstrate promising potential for the treatment of ophthalmologic diseases. This review will focus on the development of this emerging sugar-based approach for the development of CAIs.
Collapse
Affiliation(s)
- Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier, France.
| | | | | |
Collapse
|
25
|
Kasımoğulları R, Bülbül M, Günhan H, Güleryüz H. Effects of new 5-amino-1,3,4-thiadiazole-2-sulfonamide derivatives on human carbonic anhydrase isozymes. Bioorg Med Chem 2009; 17:3295-301. [DOI: 10.1016/j.bmc.2009.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/16/2009] [Accepted: 03/23/2009] [Indexed: 01/03/2023]
|
26
|
Huang H, Pan X, Ji C, Zeng G, Jiang L, Fu X, Liu J, Hao X, Zhang Y, Tan N. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase II. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-008-0133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Bootorabi F, Jänis J, Valjakka J, Isoniemi S, Vainiotalo P, Vullo D, Supuran CT, Waheed A, Sly WS, Niemelä O, Parkkila S. Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity. BMC BIOCHEMISTRY 2008; 9:32. [PMID: 19036170 PMCID: PMC2605449 DOI: 10.1186/1471-2091-9-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/27/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction. RESULTS Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9-19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity. CONCLUSION The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Institute of Medical Technology, Tampere University Hospital, 33520 Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bülbül M, Kasimoğullari R, Küfreviˇoğlu ÖI. Amide derivatives with pyrazole carboxylic acids of 5-amino-1,3,4-thiadiazole 2-sulfonamide as new carbonic anhydrase inhibitors: Synthesis and investigation of inhibitory effects. J Enzyme Inhib Med Chem 2008; 23:895-900. [DOI: 10.1080/14756360701626173] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Metiˇn Bülbül
- Department of Chemistry, Faculty of Science and Arts, Dumlupinar University, 43100, Kutahya, Turkey
| | - Rahmiˇ Kasimoğullari
- Department of Chemistry, Faculty of Science and Arts, Dumlupinar University, 43100, Kutahya, Turkey
| | - Ö. Iˇrfan Küfreviˇoğlu
- Department of Chemistry, Faculty of Science and Arts, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
29
|
Winum JY, Rami M, Scozzafava A, Montero JL, Supuran C. Carbonic anhydrase IX: a new druggable target for the design of antitumor agents. Med Res Rev 2008; 28:445-63. [PMID: 17880011 DOI: 10.1002/med.20112] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a family of enzymes widespread in all life kingdoms. In mammals, isozyme CA IX is highly overexpressed in many cancer types being present in few normal tissues. Its expression is strongly induced by hypoxia present in many tumors, being regulated by the HIF transcription factor and correlated with a poor response to classical chemo- and radiotherapies. CA IX was recently shown to contribute to acidification of the tumor environment, by efficiently catalyzing the hydration of carbon dioxide to bicarbonate and protons with its extracellularly situated active site, leading both to the acquisition of metastasic phenotypes and to chemoresistance with weakly basic anticancer drugs. Inhibition of this enzymatic activity by specific and potent inhibitors was shown to revert these acidification processes, establishing a clear-cut role of CA IX in tumorigenesis. The development of a wide range of potent and selective CA IX inhibitors belonging to diverse chemical classes, such as membrane-impermeant, fluorescent or metal-containing such agents, could thus provide useful tools for highlighting the exact role of CA IX in hypoxic cancers, to control the pH (im)balance of tumor cells, and to develop novel diagnostic or therapeutic applications for the management of tumors. Indeed, both fluorescent inhibitors or positively charged, membrane impermeant sulfonamides have been recently developed as potent CA IX inhibitors and used as proof-of-concept tools for demonstrating that CA IX constitutes a novel and interesting target for the anticancer drug development.
Collapse
Affiliation(s)
- Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France.
| | | | | | | | | |
Collapse
|
30
|
Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 2008; 108:946-1051. [PMID: 18335973 PMCID: PMC2740730 DOI: 10.1021/cr050262p] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George K. Kaufman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Adam R. Urbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Katherine L. Gudiksen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Douglas B. Weibel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
31
|
Abdel-Hamid MK, Abdel-Hafez AA, El-Koussi NA, Mahfouz NM, Innocenti A, Supuran CT. Design, synthesis, and docking studies of new 1,3,4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity. Bioorg Med Chem 2007; 15:6975-84. [PMID: 17822907 DOI: 10.1016/j.bmc.2007.07.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/17/2007] [Accepted: 07/25/2007] [Indexed: 11/15/2022]
Abstract
A new series of 1,3,4-thiadiazole-2-thione derivatives have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiones, showed inhibition constants in the range of 2.55-222 microM, against hCA II in the range of 2.0-433 microM, and against hCA IX in the range of 1.25-148 microM. Compound 5c, 4-(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)-1-(5-nitro-2-oxoindolin-3-ylidene)semicarbazide showed interesting inhibition of the tumor-associated hCA IX with K(I) value of 1.25 microM, being the first non-sulfonamide type inhibitor of such activity. This result is rather important taking into consideration the known antitumor activity of thiones. In addition, docking of the tested compounds into CA II active site was performed in order to predict the affinity and orientation of these compounds at the isozyme active site. The results showed similar orientation of the target compounds at CA II active site compared with reported sulfonamide type CAIs with the thione group acting as a zinc-binding moiety.
Collapse
Affiliation(s)
- Mohammed K Abdel-Hamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | | | | | | | | | | |
Collapse
|
32
|
Colinas PA, Bravo RD, Vullo D, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of cytosolic isoforms I and II, and extracellular isoforms IV, IX, and XII with sulfamides incorporating sugar moieties. Bioorg Med Chem Lett 2007; 17:5086-90. [PMID: 17658252 DOI: 10.1016/j.bmcl.2007.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
A series of glycosylated sulfamides possessing a diverse substitution pattern, with benzylated, peracetylated, and unsaturated six- and five-membered ring sugar moieties attached to the NHSO(2)NH(2) zinc binding group is reported. These derivatives were tested for the inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, IV, IX, and XII. Against hCA I the sulfamides behaved as weak inhibitors, whereas they showed low nanomolar activity against hCA II, IX, and XII, being slightly less effective as hCA IV inhibitors. One compound showed selectivity for inhibiting the tumor-associated isoforms hCA IX and XII over the ubiquitous cytosolic hCA II. The sulfamide zinc binding group may thus indeed lead to very effective glycosylated inhibitors targeting several physiologically relevant isozymes.
Collapse
Affiliation(s)
- Pedro A Colinas
- LADECOR, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | | | | | | | | |
Collapse
|
33
|
Smaine FZ, Winum JY, Montero JL, Regainia Z, Vullo D, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: Selective inhibition of the extracellular, tumor-associated isoforms IX and XII over isozymes I and II with glycosyl-thioureido-sulfonamides. Bioorg Med Chem Lett 2007; 17:5096-100. [PMID: 17646100 DOI: 10.1016/j.bmcl.2007.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/29/2022]
Abstract
A series of glycosyl-thioureido sulfonamides incorporating glucosamine, galactosamine, and mannosamine tails, and sulfanilamide, halogenosulfanilamide, and metanilamide heads was synthesized. Many of the new compounds showed micromolar-submicromolar affinity for the inhibition of the cytosolic isoforms I and II of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), but low nanomolar binding to the tumor-associated isozymes, CA IX and XII. The selectivity ratios for the inhibition of the tumor-associated over the cytosolic isozymes were in the range of 107-955 for the most selective such inhibitors.
Collapse
Affiliation(s)
- Fatma-Zohra Smaine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Temperini C, Winum JY, Montero JL, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: The X-ray crystal structure of the adduct of N-hydroxysulfamide with isozyme II explains why this new zinc binding function is effective in the design of potent inhibitors. Bioorg Med Chem Lett 2007; 17:2795-801. [PMID: 17346964 DOI: 10.1016/j.bmcl.2007.02.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 02/23/2007] [Accepted: 02/23/2007] [Indexed: 11/19/2022]
Abstract
N-Hydroxysulfamide is a 2000-fold more potent inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) as compared to sulfamide. It also inhibits other physiologically relevant isoforms, such as the tumor-associated CA IX and XII (K(I)s in the range of 0.865-1.34microM). In order to understand the binding of this inhibitor to the enzyme active site, the X-ray crystal structure of the human hCA II-N-hydroxysulfamide adduct was resolved. The inhibitor coordinates to the active site zinc ion by the ionized primary amino group, participating in an extended network of hydrogen bonds with amino acid residues Thr199, Thr200 and two water molecules. The additional two hydrogen bonds in which N-hydroxysulfamide bound to hCA II is involved as compared to the corresponding adduct of sulfamide may explain its higher affinity for the enzyme, also providing hints for the design of tight-binding CA inhibitors possessing an organic moiety substituting the NH group in the N-hydroxysulfamide structure.
Collapse
Affiliation(s)
- Claudia Temperini
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | | | | | | | | |
Collapse
|