1
|
Castelletto V, Seitsonen J, Tewari KM, Hasan A, Edkins RM, Ruokolainen J, Pandey LM, Hamley IW, Lau KHA. Self-Assembly of Minimal Peptoid Sequences. ACS Macro Lett 2020; 9:494-499. [PMID: 32337093 PMCID: PMC7179723 DOI: 10.1021/acsmacrolett.9b01010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble "minimal" sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules.
Collapse
Affiliation(s)
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Kunal M. Tewari
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Abshar Hasan
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Robert M. Edkins
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Lalit M. Pandey
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| | - King Hang Aaron Lau
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
2
|
Kim JH, Kim SC, Kline MA, Grzincic EM, Tresca BW, Cardiel J, Karbaschi M, Dehigaspitiya DC, Chen Y, Udumula V, Jian T, Murray DJ, Yun L, Connolly MD, Liu J, Ren G, Chen CL, Kirshenbaum K, Abate AR, Zuckermann RN. Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets. ACS NANO 2020; 14:185-195. [PMID: 31789500 PMCID: PMC9506602 DOI: 10.1021/acsnano.9b07498] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials.
Collapse
Affiliation(s)
- Jae Hong Kim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel C. Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Mark A. Kline
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elissa M. Grzincic
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Blakely W. Tresca
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua Cardiel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Mohsen Karbaschi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | | | - Yulin Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Venkatareddy Udumula
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Daniel J. Murray
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lisa Yun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael D. Connolly
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Adam R. Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
- Corresponding Authors: .
| | - Ronald N. Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Corresponding Authors: .
| |
Collapse
|
3
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
4
|
Pradhan K, Das G, Gupta V, Mondal P, Barman S, Khan J, Ghosh S. Discovery of Neuroregenerative Peptoid from Amphibian Neuropeptide That Inhibits Amyloid-β Toxicity and Crosses Blood-Brain Barrier. ACS Chem Neurosci 2019; 10:1355-1368. [PMID: 30408415 DOI: 10.1021/acschemneuro.8b00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Development of potential therapeutics for Alzheimer's disease (AD) requires a multifaceted strategy considering the high levels of complexity of the human brain and its mode of function. Here, we adopted an advanced strategy targeting two key pathological hallmarks of AD: senile plaques and neurofibrillary tangles. We derived a lead short tetrapeptide, Ser-Leu-Lys-Pro (SLKP), from a dodeca-neuropeptide of amphibian (frog) brain. Results suggested that the SLKP peptide had a superior effect compared to the dodecapeptide in neuroprotection. This result encouraged us to adopt peptidomimetic approach to synthesize an SLKP peptoid. Remarkably, we found that the SLKP peptoid is more potent than its peptide analogue, which significantly inhibits Aβ fibrillization, moderately binds with tubulin, and promotes tubulin polymerization as well as stabilization of microtubule networks. Further, we found that SLKP peptoid is stable in serum, shows significant neuroprotection against Aβ mediated toxicity, promotes significant neurite outgrowth, maintains healthy morphology of rat primary cortical neurons and crosses the blood-brain barrier (BBB). To the best of our knowledge, our SLKP peptoid is the first and shortest peptoid to show significant neuroprotection and neuroregeneration against Aβ toxicity, as well as to cross the BBB offering a potential lead for AD therapeutics.
Collapse
Affiliation(s)
- Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
5
|
Battigelli A. Design and preparation of organic nanomaterials using self‐assembled peptoids. Biopolymers 2019; 110:e23265. [DOI: 10.1002/bip.23265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Alessia Battigelli
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island
| |
Collapse
|
6
|
Pradhan K, Das G, Mondal P, Khan J, Barman S, Ghosh S. Genesis of Neuroprotective Peptoid from Aβ30-34 Inhibits Aβ Aggregation and AChE Activity. ACS Chem Neurosci 2018; 9:2929-2940. [PMID: 30036464 DOI: 10.1021/acschemneuro.8b00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aβ peptide and hyper-phosphorylated microtubule associated protein (Tau) aggregation causes severe damage to both the neuron membrane and key signal processing microfilament (microtubule) in Alzheimer's disease (AD) brains. To date, the key challenge is to develop nontoxic, proteolytically stable amyloid inhibitors, which can simultaneously target multiple pathways involved in AD. Various attempts have been made in this direction; however, clinical outcomes of those attempts have been reported to be poor. Thus, we choose development of peptoid (N-substituted glycine oligomers)-based leads as potential AD therapeutics, which are easy to synthesize, found to be proteolytically stable, and exhibit excellent bioavailability. In this paper, we have designed and synthesized a new short peptoid for amyloid inhibition from 30-34 hydrophobic pocket of amyloid beta (Aβ) peptide. The peptoid selectively binds with 17-21 hydrophobic region of Aβ and inhibits Aβ fibril formation. Various in vitro assays suggested that our AI peptoid binds with tubulin/microtubule and promotes its polymerization and stability. This peptoid also inhibits AChE-induced Aβ fibril formation and provides significant neuroprotection against toxicity generated by nerve growth factor (NGF) deprived neurons derived from rat adrenal pheochromocytoma (PC12) cell line. Moreover, this peptoid shows serum stability and is noncytotoxic to primary rat cortical neurons.
Collapse
Affiliation(s)
- Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
7
|
Lau KHA, Castelletto V, Kendall T, Sefcik J, Hamley IW, Reza M, Ruokolainen J. Self-assembly of ultra-small micelles from amphiphilic lipopeptoids. Chem Commun (Camb) 2018; 53:2178-2181. [PMID: 28144675 DOI: 10.1039/c6cc09888f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(N-substituted glycine) "peptoids" constitute a promising class of peptide-mimetic materials. We introduce the self-assembly of lipopeptoids into spherical micelles ca. 5 nm in diameter as well as larger assemblies by varying the peptoid sequence design. Our results point to design rules for the self-assembly of peptoid nanostructures, enabling the creation of stable, ultra-small peptidomimetic nanospheres.
Collapse
Affiliation(s)
- King Hang Aaron Lau
- WestCHEM/Department of Pure & Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | - Thomas Kendall
- EPSRC Doctoral Training Centre in Continuous Manufacturing and Crystallisation, Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| | - Jan Sefcik
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | - Mehedi Reza
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland
| |
Collapse
|
8
|
Wang J, Liu L, Ge D, Zhang H, Feng Y, Zhang Y, Chen M, Dong M. Differential Modulating Effect of MoS 2 on Amyloid Peptide Assemblies. Chemistry 2018; 24:3397-3402. [PMID: 29210123 DOI: 10.1002/chem.201704593] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 11/11/2022]
Abstract
The abnormal fibrillogenesis of amyloid peptides such as amyloid fibril and senior amyloid plaques, is associated with the pathogenesis of many amyloid diseases. Hence, modulation of amyloid assemblies is related to the possible pathogenesis of some diseases. Some two-dimensional nanomaterials, that is, graphene oxide, tungsten disulfide, exhibit strong modulation effects on the amyloid fibrillogenesis. Herein, the modulation effect of molybdenum disulfide on two amyloid peptide assemblies based on the label-free techniques is presented, including quartz crystal microbalance (QCM), AFM, and CD spectroscopy. MoS2 presents different modulating effects on the assembly of amyloid-β peptide (33-42) [Aβ (33-42)] and amylin (20-29), mainly owing to the distinct affinity between amyloid peptides and MoS2 . This is to our knowledge the first report of MoS2 as a modulator for amyloid aggregation. It enriches the variety of 2D nanomodulators of amyloid fibrillogenesis and explains the mechanism for the self-assembly of amyloid peptides, and expands the applications of MoS2 in biology.
Collapse
Affiliation(s)
- Jie Wang
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Daohan Ge
- School of Mechanical Engineering, Micro/nano Science and Technology Center, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Hongxing Zhang
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Yonghai Feng
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Yibang Zhang
- Zhang Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
9
|
Yang G, Liu L, Wang J, Bortolini C, Dong M. Light-driven porphyrin modulating fibrillation of hIAPP20–29 peptide. J Colloid Interface Sci 2017; 495:37-43. [DOI: 10.1016/j.jcis.2017.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
|
10
|
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem Rev 2015; 116:1753-802. [DOI: 10.1021/acs.chemrev.5b00201] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niklas Gangloff
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Juliane Ulbricht
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Luxenhofer
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
11
|
Knight AS, Zhou EY, Francis MB, Zuckermann RN. Sequence Programmable Peptoid Polymers for Diverse Materials Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5665-5691. [PMID: 25855478 DOI: 10.1002/adma.201500275] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Polymer sequence programmability is required for the diverse structures and complex properties that are achieved by native biological polymers, but efforts towards controlling the sequence of synthetic polymers are, by comparison, still in their infancy. Traditional polymers provide robust and chemically diverse materials, but synthetic control over their monomer sequences is limited. The modular and step-wise synthesis of peptoid polymers, on the other hand, allows for precise control over the monomer sequences, affording opportunities for these chains to fold into well-defined nanostructures. Hundreds of different side chains have been incorporated into peptoid polymers using efficient reaction chemistry, allowing for a seemingly infinite variety of possible synthetically accessible polymer sequences. Combinatorial discovery techniques have allowed the identification of functional polymers within large libraries of peptoids, and newly developed theoretical modeling tools specifically adapted for peptoids enable the future design of polymers with desired functions. Work towards controlling the three-dimensional structure of peptoids, from the conformation of the amide bond to the formation of protein-like tertiary structure, has and will continue to enable the construction of tunable and innovative nanomaterials that bridge the gap between natural and synthetic polymers.
Collapse
Affiliation(s)
- Abigail S Knight
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
| | - Effie Y Zhou
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
- The Molecular Foundry Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ronald N Zuckermann
- The Molecular Foundry Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Abstract
Reports of peptoid structures and interfaces highlighting their potential as synthetically convenient, multifunctional, modular and precisely tunable biomaterials are reviewed.
Collapse
Affiliation(s)
- King Hang Aaron Lau
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow, UK
| |
Collapse
|
13
|
Zhang M, Mao X, Wang C, Zeng W, Zhang C, Li Z, Fang Y, Yang Y, Liang W, Wang C. The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr). Biomaterials 2013; 34:1383-90. [DOI: 10.1016/j.biomaterials.2012.10.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
|
14
|
Bharadwaj P, Head R, Martins R, Raussens V, Sarroukh R, Jegasothy H, Waddington L, Bennett L. Modulation of amyloid-β 1-42 structure and toxicity by proline-rich whey peptides. Food Funct 2012; 4:92-103. [PMID: 23014463 DOI: 10.1039/c2fo30111c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A proline-rich peptide product prepared from bovine whey protein that was enriched in several hydrophobic amino acids including proline (whey proline-rich peptide, wPRP) was shown to modulate the folding pathway of human amyloid beta peptide 1-42 (Aβ42) into oligomers. Concentration-dependent changes in ThT-binding to Ab42 by wPRP indicated suppression of oligomerisation, that was supported by Transmission Electron Microscopy. Suppression of β-sheet and specifically, anti-parallel β-sheet structures by wPRP was demonstrated by ATR-FTIR spectroscopy, where evidence for capacity of wPRP to dissociate pre-existing β-sheet structures in Aβ42 was also apparent. Suppression of anti-parallel β-sheets of oligomeric Aβ42 was associated with rescue of yeast and SH-SY5Y neuronal cells providing important evidence for the association between anti-parallel β-sheet structure and oligomer toxicity. It was proposed that the interaction of wPRP with Aβ42 interfered with the anti-parallel folding pathway of oligomeric Aβ42 and ultimately produced 'off-pathway' structures of lowered total β-sheet content, with attenuated cellular toxicity.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- CSIRO Preventative Health Flagship, Material Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Andreasen M, Nielsen SB, Mittag T, Bjerring M, Nielsen JT, Zhang S, Nielsen EH, Jeppesen M, Christiansen G, Besenbacher F, Dong M, Nielsen NC, Skrydstrup T, Otzen DE. Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:274-85. [DOI: 10.1016/j.bbapap.2011.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/24/2011] [Indexed: 11/30/2022]
|
16
|
Doran TM, Kamens AJ, Byrnes NK, Nilsson BL. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly. Proteins 2012; 80:1053-65. [DOI: 10.1002/prot.24007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/12/2011] [Accepted: 11/18/2011] [Indexed: 01/22/2023]
|
17
|
Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J. Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. Chembiochem 2011; 12:1626-53. [PMID: 21751324 DOI: 10.1002/cbic.201000717] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 12/17/2022]
Abstract
Despite their enormous diversity in biological function and structure, peptides and proteins are endowed with properties that have induced and stimulated the development of peptidomimetics. Clearly, peptides can be considered as the "stem" of a phylogenetic molecular development tree from which branches of oligomeric peptidomimetics such as peptoids, peptidosulfonamides, urea peptidomimetics, as well as β-peptides have sprouted. It is still a challenge to efficiently synthesize these oligomeric species, and study their structural and biological properties. Combining peptides and peptidomimetics led to the emergence of peptide-peptidomimetic hybrids in which one or more (proteinogenic) amino acid residues have been replaced with these mimetic residues. In scan-like approaches, the influence of these replacements on biological activity can then be studied, to evaluate to what extent a peptide can be transformed into a peptidomimetic structure while maintaining, or even improving, its biological properties. A central issue, especially with the smaller peptides, is the lack of secondary structure. Important approaches to control secondary structure include the introduction of α,α-disubstituted amino acids, or (di)peptidomimetic structures such as the Freidinger lactam. Apart from intra-amino acid constraints, inter-amino acid constraints for formation of a diversity of cyclic peptides have shaped a thick branch. Apart from the classical disulfide bridges, the repertoire has been extended to include sulfide and triazole bridges as well as the single-, double- and even triple-bond replacements, accessible by the extremely versatile ring-closing alkene/alkyne metathesis approaches. The latter approach is now the method of choice for the secondary structure that presents the greatest challenge for structural stabilization: the α-helix.
Collapse
Affiliation(s)
- Rob M J Liskamp
- Medicinal Chemistry and Chemical Biology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Moure A, Sanclimens G, Bujons J, Masip I, Alvarez-Larena A, Pérez-Payá E, Alfonso I, Messeguer A. Chemical modulation of peptoids: synthesis and conformational studies on partially constrained derivatives. Chemistry 2011; 17:7927-39. [PMID: 21611988 DOI: 10.1002/chem.201100216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 01/16/2023]
Abstract
The high conformational flexibility of peptoids can generate problems in biomolecular selectivity as a result of undesired off-target interactions. This drawback can be counterbalanced by restricting the original flexibility to a certain extent, thus leading to new peptidomimetics. By starting from the structure of an active peptoid as an apoptosis inhibitor, we designed two families of peptidomimetics that bear either 7-substituted perhydro-1,4-diazepine-2,5-dione 2 or 3-substituted 1,4-piperazine-2,5-dione 3 moieties. We report an efficient, solid-phase-based synthesis for both peptidomimetic families 2 and 3 from a common intermediate. An NMR spectroscopic study of 2a,b and 3a,b showed two species in solution in different solvents that interconvert slowly on the NMR timescale. The cis/trans isomerization around the exocyclic tertiary amide bond is responsible for this conformational behavior. The cis isomers are more favored in nonpolar environments, and this preference is higher for the six-membered-ring derivative 3a,b. We propose that the hydrogen-bonding pattern could play an important role in the cis/trans equilibrium process. These hydrogen bonds were characterized in solution, in the solid state (i.e., by using X-ray studies), and by molecular modeling of simplified systems. A comparative study of a model peptoid 10 containing the isolated tertiary amide bond under study outlined the importance of the heterocyclic moiety for the prevalence of the cis configuration in 2a and 3a. The kinetics of the cis/trans interconversion in 2a, 3a, and 10 was also studied by variable-temperature NMR spectroscopic analysis. The full line-shape analysis of the NMR spectra of 10 revealed negligible entropic contribution to the energetic barrier in this conformational process. A theoretical analysis of 10 supported the results observed by NMR spectroscopic analysis. Overall, these results are relevant for the study of the peptidomimetic/biological-target interactions.
Collapse
Affiliation(s)
- Alejandra Moure
- Department of Chemical and Biomolecular Nanotechnology, Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas, J. Girona, 18, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fuller AA, Seidl FJ, Bruno PA, Plescia MA, Palla KS. Use of the environmentally sensitive fluorophore 4-N,N-dimethylamino-1,8-naphthalimide to study peptoid helix structures. Biopolymers 2011; 96:627-38. [DOI: 10.1002/bip.21605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Zhang X, Cheng B, Gong H, Li C, Chen H, Zheng L, Huang K. Porcine islet amyloid polypeptide fragments are refractory to amyloid formation. FEBS Lett 2010; 585:71-7. [PMID: 21130765 DOI: 10.1016/j.febslet.2010.11.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
Of 10 variation sites between sequences of amyloid-resistant porcine islet amyloid polypeptide (pIAPP) and amyloid-prone human IAPP (hIAPP), seven locate within residues 17-29, the most amyloidogenic fragment within hIAPP. To investigate how these variations affect amyloidogenicity, 26 IAPP(17-29) or IAPP(20-29) variants were synthesized and their secondary structures, amyloidogenicity, oligomerization and cytotoxicity were studied. Our results indicated that pIAPP fragments are refractory to amyloid formation and significantly less cytotoxic compared with hIAPP fragments. A novel stable dimer was observed in pIAPP(20-29) solution, whereas hIAPP(20-29) exists mostly as monomers and trimers. Among all human to porcine substitutions, S20R caused the most prolonged lag time and significantly attenuated cytotoxicity. The different oligomerization and amyloidogenic properties of hIAPP and pIAPP fragments are discussed.
Collapse
Affiliation(s)
- Xin Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Culf AS, Ouellette RJ. Solid-phase synthesis of N-substituted glycine oligomers (alpha-peptoids) and derivatives. Molecules 2010; 15:5282-335. [PMID: 20714299 PMCID: PMC6257730 DOI: 10.3390/molecules15085282] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/14/2010] [Accepted: 08/02/2010] [Indexed: 12/02/2022] Open
Abstract
Peptoids (N-substituted polyglycines and extended peptoids with variant backbone amino-acid monomer units) are oligomeric synthetic polymers that are becoming a valuable molecular tool in the biosciences. Of particular interest are their applications to the exploration of peptoid secondary structures and drug design. Major advantages of peptoids as research and pharmaceutical tools include the ease and economy of synthesis, highly variable backbone and side-chain chemistry possibilities. At the same time, peptoids have been demonstrated as highly active in biological systems while resistant to proteolytic decay. This review with 227 references considers the solid-phase synthetic aspects of peptoid preparation and utilization up to 2010 from the instigation, by R. N. Zuckermann et al., of peptoid chemistry in 1992.
Collapse
Affiliation(s)
- Adrian S Culf
- Atlantic Cancer Research Institute, Moncton, NB, Canada.
| | | |
Collapse
|
22
|
Sciacca MFM, Pappalardo M, Attanasio F, Milardi D, La Rosa C, Grasso DM. Are fibrilgrowth and membrane damage linked processes? An experimental and computational study of IAPP12–18and IAPP21–27peptides. NEW J CHEM 2010. [DOI: 10.1039/b9nj00253g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Dekker FJ, DE Mol NJ, Liskamp RMJ. Thermodynamics of phosphotyrosine peptide-peptoid hybrids binding to the p56lck SH2 domain. J Pept Sci 2010; 16:322-8. [DOI: 10.1002/psc.1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Yeast cell adhesion molecules have functional amyloid-forming sequences. EUKARYOTIC CELL 2009; 9:393-404. [PMID: 20038605 DOI: 10.1128/ec.00068-09] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The occurrence of highly conserved amyloid-forming sequences in Candida albicans Als proteins (H. N. Otoo et al., Eukaryot. Cell 7:776-782, 2008) led us to search for similar sequences in other adhesins from C. albicans and Saccharomyces cerevisiae. The beta-aggregation predictor TANGO found highly beta-aggregation-prone sequences in almost all yeast adhesins. These sequences had an unusual amino acid composition: 77% of their residues were beta-branched aliphatic amino acids Ile, Thr, and Val, which is more than 4-fold greater than their prevalence in the S. cerevisiae proteome. High beta-aggregation potential peptides from S. cerevisiae Flo1p and C. albicans Eap1p rapidly formed insoluble amyloids, as determined by Congo red absorbance, thioflavin T fluorescence, and fiber morphology. As examples of the amyloid-forming ability of the native proteins, soluble glycosylphosphatidylinositol (GPI)-less fragments of C. albicans Als5p and S. cerevisiae Muc1p also formed amyloids within a few days under native conditions at nM concentrations. There was also evidence of amyloid formation in vivo: the surfaces of cells expressing wall-bound Als1p, Als5p, Muc1p, or Flo1p were birefringent and bound the fluorescent amyloid-reporting dye thioflavin T. Both of these properties increased upon aggregation of the cells. In addition, amyloid binding dyes strongly inhibited aggregation and flocculation. The results imply that amyloid formation is an intrinsic property of yeast cell adhesion proteins from many gene families and that amyloid formation is an important component of cellular aggregation mediated by these proteins.
Collapse
|
25
|
Fowler SA, Blackwell HE. Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 2009; 7:1508-24. [PMID: 19343235 DOI: 10.1039/b817980h] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligomers of N-substituted glycine, or peptoids, are versatile tools to probe biological processes and hold promise as therapeutic agents. An underlying theme in the majority of recent peptoid research is the connection between peptoid function and peptoid structure. For certain applications, well-folded peptoids are essential for activity, while unstructured peptoids appear to suffice, or even are superior, for other applications. Currently, these structure-function connections are largely made after the design, synthesis, and characterization process. However, as guidelines for peptoid folding are elucidated and the known biological activities are expanded, we anticipate these connections will provide a pathway toward the de novo design of functional peptoids. In this perspective, we review several of the peptoid structure-function relationships that have been delineated over the past five years.
Collapse
Affiliation(s)
- Sarah A Fowler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | | |
Collapse
|
26
|
Vaz B, Brunsveld L. Stable helical peptoids via covalent side chain to side chain cyclization. Org Biomol Chem 2008; 6:2988-94. [PMID: 18688493 DOI: 10.1039/b806847j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptoids are oligomeric N-substituted glycines with potential as biologically relevant compounds. Helical peptoids provide an attractive fold for the generation of protein-protein interaction inhibitors. The generation of helical peptoid folds in organic and aqueous media has been limited to strict design rules, as peptoid-folding is mainly directed via the steric direction of alpha-chiral side-chains. Here a new methodology is presented to induce helical folds in peptoids with the aid of side chain to side chain cyclization. Cyclic peptoids were generated via solid-phase synthesis and their folding was studied. The cyclization induces significant helicity in peptoids in organic media, aids the folding in aqueous media, and requires the incorporation of only relatively few chiral aromatic side chains.
Collapse
Affiliation(s)
- Belén Vaz
- Max Planck Institute of Molecular Physiology, and Chemical Genomics Centre, D-44227, Dortmund, Germany
| | | |
Collapse
|
27
|
Delayed fibril formation of amylin(20–29) by incorporation of alkene dipeptidosulfonamide isosteres obtained by solid phase olefin cross metathesis. Bioorg Med Chem Lett 2008; 18:78-84. [DOI: 10.1016/j.bmcl.2007.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/17/2022]
|