1
|
Kobayashi A, Matsuzawa T, Hosoya T, Yoshida S. Thioxanthone Synthesis from Benzoic Acid Esters through Directed ortho-Lithiation. CHEM LETT 2021. [DOI: 10.1246/cl.210293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiro Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
2
|
Gyűjtő I, Porcs-Makkay M, Várda EF, Pusztai G, Tóth G, Simig G, Volk B. Transformation of 2 H-1,2,3-benzothiadiazine 1,1-dioxides variously substituted at the aromatic ring, via nucleophilic substitution and demethylation reactions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1801748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Imre Gyűjtő
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Márta Porcs-Makkay
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
| | - Ernák Ferenc Várda
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
| | - Gyöngyvér Pusztai
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
| | - Gábor Tóth
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyula Simig
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, Budapest, Hungary
| |
Collapse
|
3
|
Mutsuura K, Sakata Y, Uchida K, Hosoya T, Yoshida S. Synthesis of Thioxanthones through Formal C–H Thiolation of Benzoic Acid Esters and Acid-mediated Direct Cyclization. CHEM LETT 2020. [DOI: 10.1246/cl.200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kotaro Mutsuura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
4
|
Lopes A, Martins E, Silva R, Pinto MMM, Remião F, Sousa E, Fernandes C. Chiral Thioxanthones as Modulators of P-glycoprotein: Synthesis and Enantioselectivity Studies. Molecules 2018. [PMID: 29534440 PMCID: PMC6017912 DOI: 10.3390/molecules23030626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, thioxanthone derivatives were found to protect cells against toxic P-glycoprotein (P-gp) substrates, acting as potent inducers/activators of this efflux pump. The study of new P-gp chiral modulators produced from thioxanthone derivatives could clarify the enantioselectivity of this ABC transporter towards this new class of modulators. The aim of this study was to evaluate the P-gp modulatory ability of four enantiomeric pairs of new synthesized chiral aminated thioxanthones (ATxs) 1–8, studying the influence of the stereochemistry on P-gp induction/ activation in cultured Caco-2 cells. The data displayed that all the tested compounds (at 20 μM) significantly decreased the intracellular accumulation of a P-gp fluorescent substrate (rhodamine 123) when incubated simultaneously for 60 min, demonstrating an increased activity of the efflux, when compared to control cells. Additionally, all of them except ATx 3 (+), caused similar results when the accumulation of the P-gp fluorescent substrate was evaluated after pre-incubating cells with the test compounds for 24 h, significantly reducing the rhodamine 123 intracellular accumulation as a result of a significant increase in P-gp activity. However, ATx 2 (−) was the only derivative that, after 24 h of incubation, significantly increased P-gp expression. These results demonstrated a significantly increased P-gp activity, even without an increase in P-gp expression. Therefore, ATxs 1–8 were shown to behave as P-gp activators. Furthermore, no significant differences were detected in the activity of the protein when comparing the enantiomeric pairs. Nevertheless, ATx 2 (−) modulates P-gp expression differently from its enantiomer, ATx 1 (+). These results disclosed new activators and inducers of P-gp and highlight the existence of enantioselectivity in the induction mechanism.
Collapse
Affiliation(s)
- Ana Lopes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Eva Martins
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Madalena M M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Fernando Remião
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Carla Fernandes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
5
|
Mary YS, Panicker CY, Yamuna TS, Siddegowda MS, Yathirajan HS, Al-Saadi AA, Van Alsenoy C. Theoretical investigations on the molecular structure, vibrational spectral, HOMO-LUMO and NBO analysis of 9-[3-(Dimethylamino)propyl]-2-trifluoro-methyl-9H-thioxanthen-9-ol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:491-501. [PMID: 24892527 DOI: 10.1016/j.saa.2014.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
The experimental FT-IR and FT-Raman spectra of 9-[3-(Dimethylamino)propyl]-2-trifluoro-methyl-9H-thioxanthen-9-ol have been recorded. Quantum chemical calculations of geometry and vibrational wavenumbers of 9-[3-(Dimethylamino)propyl]-2-trifluoro-methyl-9H-thioxanthen-9-ol are carried out theoretically. Four possible stable conformations of the title compound were determined. In terms of the conformational analysis, one of the most interesting structural features of the title compound is the intra molecular OH⋯N hydrogen bond. The barrier of planarity between the most stable and planar form is also predicted. The optimized geometrical parameters obtained by B3LYP method show a good agreement with XRD data. The difference between the observed and theoretical wavenumbers is very small. The complete assignments were performed on the basis of potential energy distribution of the vibrational modes calculated theoretically. The calculated HOMO and LUMO energies allow the calculation of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As seen from the MEP map, negative potential regions are over the hydroxyl group and positive potential regions are over the methyl groups.
Collapse
Affiliation(s)
- Y Sheena Mary
- Department of Physics, Fatima Mata National College, Kollam, Kerala, India
| | - C Yohannan Panicker
- Department of Physics, TKM College of Arts and Science, Kollam, Kerala, India.
| | - T S Yamuna
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - M S Siddegowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - H S Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
6
|
Netto-Ferreira JC, Lopes da Silva ES, de Lucas NC. Photochemistry of thioxanthen-9-one-10,10-dioxide: A remarkably reactive triplet excited state. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Dolle RE, Bourdonnec BL, Goodman AJ, Morales GA, Thomas CJ, Zhang W. Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2007. ACTA ACUST UNITED AC 2008; 10:753-802. [PMID: 18991466 DOI: 10.1021/cc800119z] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roland E. Dolle
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Bertrand Le Bourdonnec
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Allan J. Goodman
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Guillermo A. Morales
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Craig J. Thomas
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Wei Zhang
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| |
Collapse
|