1
|
Dong W, Zhao Z, Gu CZ, Liu JG, Yang S, Fang X. Copper-Catalyzed Umpolung Reactivity of Propargylic Carbonates in the Presence of Diboronates: One Stone Four Birds. J Am Chem Soc 2023; 145:27539-27554. [PMID: 38019885 DOI: 10.1021/jacs.3c09155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Allylation and propargylation are two powerful synthetic strategies for making new substances that have been of significant importance in chemistry, medicine, and material fields. Conventional tactics employ various preformed allylation and propargylation reagents. In this study, a conceptually novel copper-catalyzed and B2pin2-mediated Umpolung reactivity of propargylic carbonates has been achieved for the first time, realizing both allylation and propargylation of aldehydes and ketones without additional reductants. Three types of allylation products and one type of propargylation product are generated efficiently, and all allylation products are formed with syn-configurations predominantly. The choice of ligands plays a vital role in modulating the Umpolung modes. The synthetic applications have been demonstrated in a myriad of further transformations including natural product synthesis, and systematic mechanistic studies have been conducted to reveal detailed insights into the Umpolung processes.
Collapse
Affiliation(s)
- Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Cheng-Zhi Gu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Jing-Gong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Othman MA, Sivasothy Y. Acylphenols and Dimeric Acylphenols from the Genus Myristica: A Review of Their Phytochemistry and Pharmacology. PLANTS (BASEL, SWITZERLAND) 2023; 12:1589. [PMID: 37111813 PMCID: PMC10143527 DOI: 10.3390/plants12081589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The genus Myristica is a medicinally important genus belonging to the Myristicaceae. Traditional medicinal systems in Asia have employed plants from the genus Myristica to treat a variety of ailments. Acylphenols and dimeric acylphenols are a rare group of secondary metabolites, which, to date, have only been identified in the Myristicaceae, in particular, in the genus Myristica. The aim of the review would be to provide scientific evidence that the medicinal properties of the genus Myristica could be attributed to the acylphenols and dimeric acylphenols present in the various parts of its plants and highlight the potential in the development of the acylphenols and dimeric acylphenols as pharmaceutical products. SciFinder-n, Web of Science, Scopus, ScienceDirect, and PubMed were used to conduct the literature search between 2013-2022 on the phytochemistry and the pharmacology of acylphenols and dimeric acylphenols from the genus Myristica. The review discusses the distribution of the 25 acylphenols and dimeric acylphenols within the genus Myristica, their extraction, isolation, and characterization from the respective Myristica species, the structural similarities and differences within each group and between the different groups of the acylphenols and dimeric acylphenols, and their in vitro pharmacological activities.
Collapse
Affiliation(s)
- Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
3
|
Rastegari A, Manayi A, Rezakazemi M, Eftekhari M, Khanavi M, Akbarzadeh T, Saeedi M. Phytochemical analysis and anticholinesterase activity of aril of Myristica fragrans Houtt. BMC Chem 2022; 16:106. [PMID: 36437466 PMCID: PMC9703800 DOI: 10.1186/s13065-022-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the ethyl acetate fraction of Myristica fragrans Houtt. was investigated for its in vitro anticholinesterase activity as well as neuroprotectivity against H2O2-induced cell death in PC12 neuronal cells and the ability to chelate bio-metals (Zn2+, Fe2+, and Cu2+). The fraction was inactive toward acetylcholinesterase (AChE); however, it inhibited the butyrylcholinesterase (BChE) with IC50 value of 68.16 µg/mL, compared with donepezil as the reference drug (IC50 = 1.97 µg/mL) via Ellman's method. It also showed good percentage of neuroprotection (86.28% at 100 µg/mL) against H2O2-induced neurotoxicity and moderate metal chelating ability toward Zn2+, Fe2+, and Cu2+. The phytochemical study led to isolation and identification of malabaricone A (1), malabaricone C (2), 4-(4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl)benzene-1,2-diol (3), nectandrin B (4), macelignan (5), and 4-(4-(benzo[d][1,3]dioxol-5-yl)-1-methoxy-2,3-dimethylbutyl)-2-methoxyphenol (6) which were assayed for their cholinesterase (ChE) inhibitory activity. Compounds 1 and 3 were not previously reported for M. fragrans. Among isolated compounds, compound 2 showed the best activity toward both AChE and BChE with IC50 values of 25.02 and 22.36 μM, respectively, compared with donepezil (0.07 and 4.73 μM, respectively).
Collapse
Affiliation(s)
- Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rezakazemi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Shen RS, Cao D, Chen FL, Wu XJ, Gao J, Bai LP, Zhang W, Jiang ZH, Zhu GY. New Monoterpene-Conjugated Phenolic Constituents from Nutmeg and Their Autophagy Modulating Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9684-9693. [PMID: 35904183 DOI: 10.1021/acs.jafc.2c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The seed of Myristica fragrans Houtt (nutmeg) is one of the important spices that have been extensively used in the culinary, food, beverage, and also in medicinal products industry. Previous phytochemical studies on nutmeg were mainly focused on lignans and neolignans. However, the other constituents have been poorly studied. In this study, 11 new monoterpene-conjugated phenolic derivatives, named myrifratins A-K (1-11), and five known compounds were isolated from nutmeg. The novel neolignan-diarylnonanoid-monoterpene conjugates (1 and 2) were first isolated in nature. Compounds 3-7 were rarely monoterpene-diarylnonanoid-conjugated derivatives, and 8-11 were the first examples of monoterpene-neolignan conjugates. Compounds 4-6, 12, and 13 showed potent autophagy inhibitory activities in a concentration-dependent manner. Our findings showed an uncommon class of monoterpene-conjugated phenolic derivatives in nature and reported their autophagy inhibition activities for the first time, which may give a new insight into the benefits or safety of nutmeg in foods.
Collapse
Affiliation(s)
- Rong-Sheng Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Dai Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Fei-Long Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Xu-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jin Gao
- Increasepharm(Hengqin) Institute Co., Limited, National Engineering Research Center for Modernization of Traditional Chinese Medicine New DDS Branch, Guangdong Province Engineering Research Center for Aerosol Inhalation Preparation, Zhuhai 519000, China
- Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Ha MT, Vu NK, Tran TH, Kim JA, Woo MH, Min BS. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: an updated review. Arch Pharm Res 2020; 43:1067-1092. [DOI: 10.1007/s12272-020-01285-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
|
6
|
Dechayont B, Phuaklee P, Chunthorng-Orn J, Poomirat S, Juckmeta T, Phumlek K, Mokmued K, Ouncharoen K. Antimicrobial, Anti-inflammatory, and Antioxidant Activities of the Wood ofMyristica fragrans. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/10496475.2019.1676861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bhanuz Dechayont
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pathompong Phuaklee
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Jitpisute Chunthorng-Orn
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Saovapak Poomirat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Thana Juckmeta
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kalyarut Phumlek
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Khwanchanok Mokmued
- Division of Applied Thai Traditional Medicine, Faculty of Public Health, Naresuan University, Phitsanulok, Thailand
| | - Kulisara Ouncharoen
- Division of Applied Thai Traditional Medicine, Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
7
|
Hiranrat A, Hiranrat W. Myristigranol, a new diarylpropane derivative from the wood of Myristica fragrans. Nat Prod Res 2018; 33:2958-2963. [DOI: 10.1080/14786419.2018.1512988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asadhawut Hiranrat
- Natural Products Research Laboratory, Department of Chemistry, Faculty of Science, Thaksin University, Paphayom, Phatthalung 93210, Thailand
| | - Wanrudee Hiranrat
- Natural Products Research Laboratory, Department of Chemistry, Faculty of Science, Thaksin University, Paphayom, Phatthalung 93210, Thailand
| |
Collapse
|
8
|
Vuorinen A, Engeli RT, Leugger S, Bachmann F, Akram M, Atanasov AG, Waltenberger B, Temml V, Stuppner H, Krenn L, Ateba SB, Njamen D, Davis RA, Odermatt A, Schuster D. Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2. JOURNAL OF NATURAL PRODUCTS 2017; 80:965-974. [PMID: 28319389 PMCID: PMC5411959 DOI: 10.1021/acs.jnatprod.6b00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 05/16/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) converts the active steroid hormones estradiol, testosterone, and 5α-dihydrotestosterone into their weakly active forms estrone, Δ4-androstene-3,17-dione, and 5α-androstane-3,17-dione, respectively, thereby regulating cell- and tissue-specific steroid action. As reduced levels of active steroids are associated with compromised bone health and onset of osteoporosis, 17β-HSD2 is considered a target for antiosteoporotic treatment. In this study, a pharmacophore model based on 17β-HSD2 inhibitors was applied to a virtual screening of various databases containing natural products in order to discover new lead structures from nature. In total, 36 hit molecules were selected for biological evaluation. Of these compounds, 12 inhibited 17β-HSD2 with nanomolar to low micromolar IC50 values. The most potent compounds, nordihydroguaiaretic acid (1), IC50 0.38 ± 0.04 μM, (-)-dihydroguaiaretic acid (4), IC50 0.94 ± 0.02 μM, isoliquiritigenin (6), IC50 0.36 ± 0.08 μM, and ethyl vanillate (12), IC50 1.28 ± 0.26 μM, showed 8-fold or higher selectivity over 17β-HSD1. As some of the identified compounds belong to the same structural class, structure-activity relationships were derived for these molecules. Thus, this study describes new 17β-HSD2 inhibitors from nature and provides insights into the binding pocket of 17β-HSD2, offering a promising starting point for further research in this area.
Collapse
Affiliation(s)
- Anna Vuorinen
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Roger T. Engeli
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Susanne Leugger
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Fabio Bachmann
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Muhammad Akram
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Atanas G. Atanasov
- Department
of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Institute
of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland
| | - Birgit Waltenberger
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Veronika Temml
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Liselotte Krenn
- Department
of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Sylvin B. Ateba
- Laboratory
of Animal Physiology, Department of Animal Biology and Physiology,
Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
| | - Dieudonné Njamen
- Laboratory
of Animal Physiology, Department of Animal Biology and Physiology,
Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
| | - Rohan A. Davis
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Alex Odermatt
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Daniela Schuster
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Zhu Z, Yang S, Zhao W, Li R, Zhao C. A Comparative Pharmacokinetic Study of Myrislignan by UHPLC-MS After Oral Administration of a Monomer and Myristica fragrans Extract to Rats. J Chromatogr Sci 2016; 54:689-96. [PMID: 26774114 DOI: 10.1093/chromsci/bmv227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/13/2022]
Abstract
An ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) method was developed and validated to quantify myrislignan in rat plasma using podophyllotoxin as an internal standard (IS). The chromatographic separation of myrislignan and IS was performed on a 3.0 µm Hypersil C18 column (50 mm × 4.6 mm) with methanol and water containing 0.1% acetic acid (80:20, v/v) as the mobile phase at a flow rate of 0.3 mL/min. An electrospray ionization was used in the positive selective-ion monitoring mode for the target ions at m/z 397 and m/z 437 for the quantification of myrislignan and IS. The total run time was 3.6 min for each run. The calibration curve was linear over the range of 0.75-300 ng/mL (r> 0.995) with the lower limit of quantitation at 0.75 ng/mL. Intra- and interday precision was below 11.49%, and the mean accuracy ranged from -9.75 to 7.45%. The proposed method was successfully applied to evaluate the pharmacokinetic properties of myrislignan after oral administration of the myrislignan monomer and Myristica fragrans extract in rats. Statistical analyses indicate that the pharmacokinetic properties of myrislignan in rats have significant differences between two groups.
Collapse
Affiliation(s)
- Zhe Zhu
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Yang
- General Surgery Department, The First Hospital DEPT.2 of Jilin University, Changchun 130021, China
| | - Waiou Zhao
- Cardiology Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Rui Li
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chengliang Zhao
- The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Cho SJ, Kwon HS. Tyrosinase Inhibitory Activities of Safrole fromMyristica fragransHoutt. ACTA ACUST UNITED AC 2015. [DOI: 10.3839/jabc.2015.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Soo Jeong Cho
- Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea
| | - Hyun Sook Kwon
- Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan 712-260, Republic of Korea
| |
Collapse
|
11
|
Choi MS, Jeong HJ, Kang TH, Shin HM, Oh ST, Choi Y, Jeon S. Meso-dihydroguaiaretic acid induces apoptosis and inhibits cell migration via p38 activation and EGFR/Src/intergrin β3 downregulation in breast cancer cells. Life Sci 2015; 141:81-9. [PMID: 26382595 DOI: 10.1016/j.lfs.2015.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/16/2015] [Accepted: 09/11/2015] [Indexed: 01/09/2023]
Abstract
AIMS Meso-dihydroguaiaretic acid (MDA) is known for its anti-inflammatory, anti-oxidant, anti-bacterial, and anti-tumor activity. However, the anti-breast cancer effect and the mechanism of MDA remain undefined. MAIN METHODS In this study, we examined the anti-cancer activity and the mechanisms of action of MDA in breast cancer cell lines, 4T-1 and MCF-7 cells; and 4T-1 bearing mouse model. KEY FINDINGS MDA showed cytotoxic effects on 4T-1 and MCF-7 cells in a dose-dependent manner. Moreover, MDA increased the amount of Annexin V-positive apoptotic bodies, phosphorylated JNK and p38 in 4T-1 cells. MDA also down-regulated cell-cycle dependent proteins, CDK-4 and cyclin D1; and induced cleaved caspase-3 in MDA-treated 4T-1 cells. We further verified that MDA-induced apoptosis is mediated by p38 and caspase-3 activation in 4T-1 cells. Next, we studied the effect of MDA treatment on cell migration and found that MDA significantly reduced cell migration. Moreover, MDA reduced EGFR and intergrin β3 expression, and dephosphorylated Src in a dose-dependent manner in 4T-1 cells. Furthermore, we observed in vivo effect of MDA in 4T-1 cell inoculated mice. MDA (20mg/kg/day) significantly suppressed mammary tumor volume and activated caspase-3 in tumor tissues. SIGNIFICANCE These results suggest novel targets of MDA in breast cancer in vitro and in vivo, making it a potential candidate as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Min Sun Choi
- Department of Obstetrics & Gynecology, College of Traditional Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Ha Jin Jeong
- Dongguk University Research Institute of Biotechnology, Seoul 100-715, Republic of Korea
| | - Tae-Hoon Kang
- Natural Product Bank of Korea Promotion Institute for Traditional Medical Industry, Gyeongsangbuk-do, Republic of Korea
| | - Heung-Mook Shin
- Natural Product Bank of Korea Promotion Institute for Traditional Medical Industry, Gyeongsangbuk-do, Republic of Korea; Department of Internal Medicine, Graduate School of Oriental Medicine, Dongguk University International Hospital, 814, Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773, Republic of Korea
| | - Seung Tack Oh
- Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Yura Choi
- Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Songhee Jeon
- Dongguk University Research Institute of Biotechnology, Seoul 100-715, Republic of Korea.
| |
Collapse
|
12
|
Metabolic characterization of meso-dihydroguaiaretic acid in liver microsomes and in mice. Food Chem Toxicol 2015; 76:94-102. [DOI: 10.1016/j.fct.2014.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/17/2022]
|
13
|
Zhang J, Chen J, Liang Z, Zhao C. New lignans and their biological activities. Chem Biodivers 2014; 11:1-54. [PMID: 24443425 DOI: 10.1002/cbdv.201100433] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 11/10/2022]
Abstract
Lignans, which are widely distributed in higher plants, represent a vast and rather diverse group of phenylpropane derivatives. They have attracted considerable attention due to their pharmacological activities. Some of the lignans have been developed approved therapeutics, and others are considered as lead structures for new drugs. This article is based on our previous review of lignans discovered in the period 2000-2004, and it provides a comprehensive compilation of the 354 new naturally occurring lignans obtained from 61 plant families between 2005 and 2011. We classified five main types according to their structural features, and provided the details of their sources, some typical structures, and diverse biological activities. A tabular compilation of the novel lignans by species is presented at the end. A total of 144 references were considered for this review.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology (Beijing Normal University), Ministry of Education; Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing 100875, P. R. China (phone: +86-10-58805046; fax: +86-10-58807720)
| | | | | | | |
Collapse
|
14
|
Kwon HS, Cho SJ, Ha TJ, Harikishore A, Yoon HS, Park KH, Kim IS, Jang DS. Lipoxygenase Inhibitory Effects of Dibenzylbutane Lignans from the Seeds of Myristica fragrans (Nutmeg). B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.3095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Cuong TD, Hung TM, Han HY, Sik Roh H, Seok JH, Lee JK, Jeong JY, Choi JS, Kim JA, Min BS. Potent Acetylcholinesterase Inhibitory Compounds from Myristica fragrans. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The anti-cholinesterase activity was evaluated of the ethyl acetate fraction of the methanol extract of Myristica fragrans Houtt (Myristicaceae) seeds and of compounds isolated from it by various chromatographic techniques. The chemical structures of the compounds were determined from spectroscopic analyses (NMR data). Thirteen compounds (1—13) were isolated and identified. Compound 8 {[(7S)-8′-(4′-hydroxy-3′-methoxyphenyl)-7-hydroxypropyl]benzene-2,4-diol} showed the most effective activity with an IC50 value of 35.1 μM, followed by compounds 2 [(8R,8′S)-7′-(3′,4′-methylenedioxyphenyl)-8,8′-dimethyl-7-(3,4-dihydroxyphenyl)-butane] and 11 (malabaricone C) with IC50 values of 42.1 and 44.0 μM, respectively. This is the first report of significant anticholinesterase properties of M. fragrans seeds. The findings demonstrate that M. fragrans could be used beneficially in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- To Dao Cuong
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Korea
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Tran Manh Hung
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Korea
| | | | - Hang Sik Roh
- Korea Institute of Toxicology, Deajeon 305-343, Korea
| | - Ji-Hyeon Seok
- Korea Food & Drug Administration, Osong Health Technology Administration Complex, Chungcheongbuk-do 363-951, Korea
| | - Jong Kwon Lee
- Korea Food & Drug Administration, Osong Health Technology Administration Complex, Chungcheongbuk-do 363-951, Korea
| | - Ja Young Jeong
- Korea Food & Drug Administration, Osong Health Technology Administration Complex, Chungcheongbuk-do 363-951, Korea
| | - Jae Sue Choi
- Faculty of Food Science and Biotechnology, Pukyung National University, Busan 608-73 7, Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701 Korea
| | - Byung Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Korea
| |
Collapse
|
16
|
Cao GY, Yang XW, Xu W, Li F. New inhibitors of nitric oxide production from the seeds of Myristica fragrans. Food Chem Toxicol 2013; 62:167-71. [DOI: 10.1016/j.fct.2013.08.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/01/2013] [Accepted: 08/20/2013] [Indexed: 11/27/2022]
|
17
|
Lim CJ, Cuong TD, Hung TM, Ryoo SW, Lee JH, Kim EH, Woo MH, Choi JS, Min BS. Arginase II Inhibitory Activity of Phenolic Compounds from Saururus chinensis. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.9.3079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Sulaiman SF, Ooi KL. Antioxidant and anti food-borne bacterial activities of extracts from leaf and different fruit parts of Myristica fragrans Houtt. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Wang Y, Liu JX, Zhang YB, Li F, Yang XW. Determination and Distribution Study of Myrislignan in Rat Tissues by RP-HPLC. Chromatographia 2012. [DOI: 10.1007/s10337-012-2219-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Hien TT, Oh WK, Nguyen PH, Oh SJ, Lee MY, Kang KW. Nectandrin B activates endothelial nitric-oxide synthase phosphorylation in endothelial cells: role of the AMP-activated protein kinase/estrogen receptor α/phosphatidylinositol 3-kinase/Akt pathway. Mol Pharmacol 2011; 80:1166-78. [PMID: 21940786 DOI: 10.1124/mol.111.073502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
We revealed previously that nectandrin B isolated from Myristica fragrans (nutmeg, Myristicaceae) functions as a potent AMP-activated protein kinase (AMPK) activator and showed its antiobesity effect. In this study, we investigated whether nectandrin B affects phosphorylation of endothelial nitric-oxide synthase (eNOS) in human endothelial cells. Nectandrin B increased the phosphorylation of eNOS and nitric oxide (NO) production in a concentration-dependent manner and maximal effect was found at 10 μg/ml. Nectandrin B activates AMPK, presumably via Ca(2+)/calmodulin kinase II activation and nectandrin B-stimulated eNOS phosphorylation was reversed by AMPK inhibition. Both the enzyme activity of phosphatidylinositol 3-kinase (PI3K) and the estrogen receptor (ER)-dependent reporter gene transcription were enhanced by nectandrin B. ERα inhibition by specific antagonist or small interfering siRNA (siRNA) suppressed nectandrin B-mediated eNOS phosphorylation. Moreover, AMPK inhibition significantly reversed the activation of ER-dependent transcription and PI3K activation in response to nectandrin B. Nectandrin B evoked endothelium-dependent relaxation in rat aortic rings, and this was blocked by inhibition of AMPK, ER, or PI3K. These results suggest that potent AMPK activator nectandrin B enhances NO production via eNOS phosphorylation in endothelial cells and ERα-dependent PI3K activity is required.
Collapse
Affiliation(s)
- Tran Thi Hien
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Min BS, Cuong TD, Hung TM, Min BK, Shin BS, Woo MH. Inhibitory Effect of Lignans from Myristica fragrans on LPS-induced NO Production in RAW264.7 Cells. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.4059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Highly diastereoselective synthesis of new heterolignan-like 6,7-methylendioxy-tetrahydroquinolines using the clove bud essential oil as raw material. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.01.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Pan JY, Chen SL, Yang MH, Wu J, Sinkkonen J, Zou K. An update on lignans: natural products and synthesis. Nat Prod Rep 2009; 26:1251-92. [PMID: 19779640 DOI: 10.1039/b910940d] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian-Yu Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100094, China
| | | | | | | | | | | |
Collapse
|
24
|
Jeong TS, Ryu YB, Kim HY, Curtis-Long MJ, An S, An SJ, Lee JH, Lee WS, Park KH. Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens. Biol Pharm Bull 2009; 31:2097-102. [PMID: 18981580 DOI: 10.1248/bpb.31.2097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidation of low density lipoprotein (LDL) is strongly implicated as a key process in the onset of atherosclerosis. In this study, nine alkylated (C10-C5) flavonoids from Sophora flavescens were examined for their inhibitory effects on copper-induced LDL oxidation. Of the flavonoids tested, sophoraflavanone G (1), kurarinone (2), kurarinol (3), norkurarinol (4), and kuraridin (9) inhibited the generation of thiobarbituric acid reactive substances (TBARS) with IC50s of 7.9, 14.5, 22.0, 26.9, and 17.5 microM, respectively. The most potent inhibitor, compound 1, also demonstrated significant activities in complementary in vitro investigations, such as lag time (130 min at 5 microM), relative electrophoretic mobility (REM) of ox-LDL (80% inhibition at 20 microM), and fragmentation of apoB-100 (inhibition of 71% at 20 microM). Analysis of the structures of these compounds reveals that a resorcinol moiety in the B-ring is strongly correlated with protection of LDL-oxidation.
Collapse
Affiliation(s)
- Tae-Sook Jeong
- National Research Laboratory of Lipid Metabolism & Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|