1
|
Alonso de Diego SA, Linares ML, García Molina A, de Lucas AI, Del Cerro A, Alonso JM, Ver Donck L, Cid JM, Trabanco AA, Van Gool M. Discovery of 6,7-Dihydropyrazolo[1,5- a]pyrazin-4(5 H)-one Derivatives as mGluR 2 Negative Allosteric Modulators with In Vivo Activity in a Rodent's Model of Cognition. J Med Chem 2024; 67:15569-15585. [PMID: 39208150 DOI: 10.1021/acs.jmedchem.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Allosteric modulators of the metabotropic group II receptors, mGluR2 and mGluR3, have been widely explored due to their ability to modulate cognitive and neurological functions in mood disorders, although none have been approved yet. In our search for new and selective mGluR2 negative allosteric modulators (NAMs), series of 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one derivatives were identified from our published series of 1,3,5-trisubstituted pyrazoles. SAR evolution of the initial hit resulted in 100-fold improvement in the mGluR2 NAM potency and subsequent selection of compound 11 based on its overall profile, including selectivity and ADMET properties. Further pharmacokinetic-pharmacodynamic (PK-PD) relationship built showed that compound 11 occupied the mGluR2 receptor in a dose-dependent manner. Additionally, the compound revealed in vivo activity in V-maze as a model of cognition from a dose of 0.32 mg/kg. Compound 11 was selected to be evaluated further.
Collapse
Affiliation(s)
- Sergio A Alonso de Diego
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - María Lourdes Linares
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Aránzazu García Molina
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Ana Isabel de Lucas
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Alcira Del Cerro
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Luc Ver Donck
- Neuroscience Discovery, Janssen Pharmaceutica NV, a Johnson and Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jose María Cid
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Andrés A Trabanco
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Michiel Van Gool
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| |
Collapse
|
2
|
Li SH, Abd-Elrahman KS, Ferguson SS. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacol Ther 2022; 239:108275. [DOI: 10.1016/j.pharmthera.2022.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
|
3
|
Liu C, Li Y, Shi WY, Ding YN, Zheng N, Liu HC, Liang YM. Palladium-Catalyzed Chemoselective Oxidative Addition of Allyloxy-Tethered Aryl Iodides: Synthesis of Medium-Sized Rings and Mechanistic Studies. Org Lett 2021; 23:4311-4316. [PMID: 33989000 DOI: 10.1021/acs.orglett.1c01238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Letter describes a Pd-catalyzed Tsuji-Trost-type/Heck reaction with allyloxy-tethered aryl iodides and aziridines. The strategy provides efficient access to benzannulated medium-sized rings via intermolecular cyclization. The substrate aryl iodide has two oxidative addition sites, that is, the aromatic C-I bond and the allyl-oxygen bond. The chemoselective oxidative addition of allyl-oxygen bonds is favored, followed by the activation of aromatic C-I bonds. Aziridine plays a key role. Mechanistic studies shed light on the reaction pathway.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Mtiraoui H, Nsira A, Msaddek M, Renard PY, Sabot C. Regioselective synthesis of o -triazolyl-1,5-benzodiazepin-2-ones and o -isoxazolyl-1,5-benzodiazepin-2-ones via copper-catalyzed 1,3-dipolar cycloaddition reactions. CR CHIM 2017. [DOI: 10.1016/j.crci.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Van Gool M, Alonso De Diego SA, Delgado O, Trabanco AA, Jourdan F, Macdonald GJ, Somers M, Ver Donck L. 1,3,5-Trisubstituted Pyrazoles as Potent Negative Allosteric Modulators of the mGlu2/3Receptors. ChemMedChem 2017; 12:905-912. [DOI: 10.1002/cmdc.201700101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/06/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Michiel Van Gool
- Neuroscience, Janssen Research & Development; Jarama 75A 45007 Toledo Spain
| | | | - Oscar Delgado
- Neuroscience, Janssen Research & Development; Jarama 75A 45007 Toledo Spain
| | - Andrés A. Trabanco
- Neuroscience, Janssen Research & Development; Jarama 75A 45007 Toledo Spain
| | | | - Gregor J. Macdonald
- Neuroscience, Janssen Research & Development; Turnhoutseweg 30 2340 Beerse Belgium
| | - Marijke Somers
- Discovery Sciences, Janssen Research & Development; Turnhoutseweg 30 2340 Beerse Belgium
| | - Luc Ver Donck
- Neuroscience, Janssen Research & Development; Turnhoutseweg 30 2340 Beerse Belgium
| |
Collapse
|
6
|
Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front Pharmacol 2016; 7:130. [PMID: 27242534 PMCID: PMC4873505 DOI: 10.3389/fphar.2016.00130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder which substantially impairs patients' quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5-10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - J. Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| |
Collapse
|
7
|
Celanire S, Sebhat I, Wichmann J, Mayer S, Schann S, Gatti S. Novel metabotropic glutamate receptor 2/3 antagonists and their therapeutic applications: a patent review (2005 - present). Expert Opin Ther Pat 2014; 25:69-90. [PMID: 25435285 DOI: 10.1517/13543776.2014.983899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION This review focuses on the medicinal chemistry efforts directed toward the identification of competitive and noncompetitive antagonists of glutamate at group II metabotropic glutamate receptors (mGluRII: mGlu2/3 and mGlu2). This class of compounds holds promise for the treatment of CNS disorders such as major depression, cognitive deficits and sleep-wake disorders, and several pharmaceutical companies are advancing mGluRII antagonists from discovery research into clinical development. AREA COVERED This review article covers for the first time the patent applications that were published on mGlu2/3 orthosteric and allosteric antagonists between January 2005 and September 2014, with support from the primary literature, posters and oral communications from international congresses. Patent applications published prior to 2005 for which compositions of matter were largely described in peer review articles are briefly discussed with main findings. EXPERT OPINION Recent advances in the prodrug approach of novel mGlu2/3 orthosteric antagonists combined with the design of novel mGlu2/3 and mGlu2 negative allosteric modulators provide new therapeutic opportunities for neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Sylvain Celanire
- CEO, Pragma Therapeutics , 9 rue Ada Byron, Domaine de Chosal, Archamp Technopole, 74166 Saint-Julien-en-Genevois Cedex , France +33 6 79 85 37 06 ;
| | | | | | | | | | | |
Collapse
|
8
|
Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal 2014; 26:2284-97. [PMID: 24793301 DOI: 10.1016/j.cellsig.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.
Collapse
Affiliation(s)
- Shen Yin
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Gilfillan L, Blair A, Morris BJ, Pratt JA, Schweiger L, Pimlott S, Sutherland A. Synthesis and biological evaluation of novel 2,3-dihydro-1H-1,5-benzodiazepin-2-ones; potential imaging agents of the metabotropic glutamate 2 receptor. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00110e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Lundström L, Bissantz C, Beck J, Wettstein JG, Woltering TJ, Wichmann J, Gatti S. Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators. Br J Pharmacol 2012; 164:521-37. [PMID: 21470207 DOI: 10.1111/j.1476-5381.2011.01409.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Altered glutamatergic neurotransmission is linked to several neurological and psychiatric disorders. Metabotropic glutamate receptor 2 (mGlu₂) plays an important role on the presynaptic control of glutamate release and negative allosteric modulators (NAMs) acting on mGlu₂/₃ receptors are under assessment for their potential as antidepressants, neurogenics and cognitive enhancers. Two new potent mGlu₂/₃ NAMs, RO4988546 and RO5488608, are described in this study and the allosteric binding site in the transmembrane (TM) domain of mGlu₂ is characterized. EXPERIMENTAL APPROACH Site directed mutagenesis, functional measurements and β₂-adrenoceptor-based modelling of mGlu₂ were employed to identify important molecular determinants of two new potent mGlu₂/₃ NAMs. KEY RESULTS RO4988546 and RO5488608 affected both [³H]-LY354740 agonist binding at the orthosteric site and the binding of a tritiated positive allosteric modulator (³H-PAM), indicating that NAMs and PAMs could have overlapping binding sites in the mGlu₂ TM domain. We identified eight residues in the allosteric binding pocket that are crucial for non-competitive antagonism of agonist-dependent activation of mGlu₂ and directly interact with the NAMs: Arg³·²⁸, Arg³·²⁹, Phe³·³⁶, His(E2.52) , Leu⁵·⁴³, Trp⁶·⁴⁸, Phe⁶·⁵⁵ and Val⁷·⁴³. The mGlu₂ specific residue His(E2.52) is likely to be involved in selectivity and residues located in the outer part of the binding pocket are more important for [³H]-LY354740 agonist binding inhibition, which is independent of the highly conserved Trp⁶·⁴⁸ residue. CONCLUSIONS AND IMPLICATIONS This is the first complete molecular investigation of the allosteric binding pocket of mGlu₂ and Group II mGluRs and provides new information on what determines mGlu₂ NAMs selective interactions and effects.
Collapse
Affiliation(s)
- L Lundström
- Neuroscience Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Sheffler DJ, Pinkerton AB, Dahl R, Markou A, Cosford NDP. Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators. ACS Chem Neurosci 2011; 2:382-93. [PMID: 22860167 DOI: 10.1021/cn200008d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/18/2011] [Indexed: 11/28/2022] Open
Abstract
Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors.
Collapse
Affiliation(s)
- Douglas J. Sheffler
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232, United States
| | - Anthony B. Pinkerton
- Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Russell Dahl
- Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Nicholas D. P. Cosford
- Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 4. In vivo active potent and selective non-competitive metabotropic glutamate receptor 2/3 antagonists. Bioorg Med Chem Lett 2010; 20:6969-74. [PMID: 20971004 DOI: 10.1016/j.bmcl.2010.09.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/24/2010] [Accepted: 09/25/2010] [Indexed: 11/23/2022]
|
13
|
Schann S, Mayer S, Franchet C, Frauli M, Steinberg E, Thomas M, Baron L, Neuville P. Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. J Med Chem 2010; 53:8775-9. [PMID: 21105727 DOI: 10.1021/jm101069m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using an mGluR2 FRET-based binding assay, binders of the transmembrane region devoid of functional activity were identified. It is reported that slight chemical modifications of these SAMs can dramatically change activity of the resulting analogues without altering their affinities. Starting from compound 1, three mGluR2 NAMs showing also mGluR3 PAM activities were obtained. SAMs therefore represent a useful approach to explore the chemical space for GPCR allosteric modulator identification.
Collapse
Affiliation(s)
- Stephan Schann
- Domain Therapeutics SA, Bioparc, Boulevard Sebastien Brant, F-67400 Strasbourg-Illkirch, France. sschann@domaintherapeutics
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50:295-322. [PMID: 20055706 DOI: 10.1146/annurev.pharmtox.011008.145533] [Citation(s) in RCA: 1368] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
15
|
Woltering TJ, Wichmann J, Goetschi E, Adam G, Kew JNC, Knoflach F, Ballard TM, Huwyler J, Mutel V, Gatti S. Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 3. New potent non-competitive metabotropic glutamate receptor 2/3 antagonists. Bioorg Med Chem Lett 2008; 18:2725-9. [PMID: 18374569 DOI: 10.1016/j.bmcl.2008.02.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
A series of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives was evaluated as non-competitive mGluR2/3 antagonists. Replacement of the (2-aryl)-ethynyl-moiety in 8-position with smaller less lipophilic substituents produced compounds inhibiting the binding of [3H]-LY354740 to rat mGluR2 with low nanomolar affinity and consistent functional effect at both mGluR2 and mGluR3. These compounds were able to reverse LY354740-mediated inhibition of field excitatory postsynaptic potentials in the rat dentate gyrus and in vivo activity could be demonstrated by reversal of the LY354740-induced hypoactivity in mice after oral administration.
Collapse
Affiliation(s)
- Thomas J Woltering
- F. Hoffmann-La Roche Ltd., Pharma Discovery Chemistry CNS, CH-4070 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|