1
|
Logesh R, Prasad SR, Chipurupalli S, Robinson N, Mohankumar SK. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim Biophys Acta Rev Cancer 2023; 1878:188968. [PMID: 37657683 DOI: 10.1016/j.bbcan.2023.188968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Sagar Rajendra Prasad
- Department of Pharmacognosy, Varadaraja Institute of Pharmaceutical Education and Research, Tumkur 572102, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Nirmal Robinson
- Cellular Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Suresh Kumar Mohankumar
- Pharmacy, Swansea University Medical School, Singleton Park, Swansea University, Wales SA2 8PP, United Kingdom
| |
Collapse
|
2
|
Tarasek D, Wojtasek H. Rifampicin is not an inhibitor of tyrosinase. Int J Biol Macromol 2022; 216:830-835. [PMID: 35914550 DOI: 10.1016/j.ijbiomac.2022.07.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Rifampicin has been previously described as an inhibitor of tyrosinase (Chai et al., Int. J. Biol. Macromol. 102 (2017) 425-430). However, rifampicin contains a p-diphenol group and compounds with such a moiety have been shown before to reduce tyrosinase-generated o-quinones. Rifampicin also shows strong absorption in a region completely overlapping with the visible absorption band of dopachrome, the oxidation product of L-tyrosine and L-dopa, whose concentration is measured spectrophotometrically in the standard enzymatic assay to monitor the activity of tyrosinase. We have demonstrated that rifampicin is also rapidly oxidized by o-quinones generated from catechols by tyrosinase or by treatment with sodium periodate. Smaller changes of absorbance at 475 nm during oxidation of L-dopa by tyrosinase in the presence of rifampicin do not result from enzyme inhibition but from oxidation of rifampicin by dopaquinone, which leads to rapid decrease of rifampicin absorption in this range. The actual reaction rates are not affected, which we have demonstrated by measurements of oxygen consumption. Rifampicin behaves therefore as other compounds with reducing properties, such as ascorbic acid, hydroquinone, hydrazine derivatives, and flavonoids, some of which have also been incorrectly described before as inhibitors of tyrosinase.
Collapse
Affiliation(s)
- Damian Tarasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052 Opole, Poland
| | - Hubert Wojtasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052 Opole, Poland.
| |
Collapse
|
3
|
Xia W, Chen K, Zhu YZ, Zhang CJ, Chen YL, Wang F, Xie YY, Hider RC, Zhou T. Antioxidant and anti-tyrosinase activity of a novel stilbene analogue as an anti-browning agent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3817-3825. [PMID: 34923627 DOI: 10.1002/jsfa.11731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tyrosinase inhibitors find potential application in food, cosmetic and medicinal products, but most of the identified tyrosinase inhibitors are not suitable for practical use because of safety regulations or other problems. For the purpose of development of novel tyrosinase inhibitors that meet the requirement for practical application, a novel stilbene analogue (SA) was designed. RESULTS SA was found to possess a potent inhibitory effect against both mono- and diphenolase activities of mushroom tyrosinase, with IC50 values of 1.56 and 7.15 μmol L-1 , respectively. Compared with a natural tyrosinase inhibitor - kojic acid - the anti-tyrosinase effect of SA was significantly improved. Analysis of inhibition kinetics indicated that SA was a reversible and competitive-noncompetitive mixed-type inhibitor. SA was also found to possess more potent antioxidant activities (DPPH, superoxide anion radical and hydroxyl radical scavenging ability) than those of kojic acid. Cell viability studies revealed that SA was non-toxic to two cell lines. Furthermore, an anti-browning test demonstrated that SA effectively delayed the blackening of shrimp. CONCLUSION SA has potential as an anti-browning agent in foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Chang-Jun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| |
Collapse
|
4
|
Fu B, Li Y, Peng S, Wang X, Hu J, Lv L, Xia C, Lu D, Qin C. Synthesis and pharmacological characterization of glucopyranosyl-conjugated benzyl derivatives as novel selective cytotoxic agents against colon cancer. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201642. [PMID: 33972860 PMCID: PMC8074679 DOI: 10.1098/rsos.201642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Glucopyranosyl-conjugated benzyl derivatives containing a [1,2,3]-triazole linker were synthesized. Benzyl served as an important pharmacophore in anti-cancer compounds. Compound 8d inhibited the proliferation of colorectal cancer cells with the potency comparable to 5-fluorouracil (5-FU) with improved selectivity towards cancer cells. The antiproliferative activity of 8d is achieved through triggering apoptotic cell death.
Collapse
Affiliation(s)
- Boqiao Fu
- Hubei Provincial Collaborative Innovation Center of Biomass Resources Transformation and Utilization, College of Chemistry and Materials Science, Hubei Engineering University, Hubei 432000, People's Republic of China
| | - Yingjie Li
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
| | - Shaoyong Peng
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
| | - Jingying Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, People's Republic of China
| | - Long Lv
- Hubei Provincial Collaborative Innovation Center of Biomass Resources Transformation and Utilization, College of Chemistry and Materials Science, Hubei Engineering University, Hubei 432000, People's Republic of China
| | - Caifen Xia
- Hubei Provincial Collaborative Innovation Center of Biomass Resources Transformation and Utilization, College of Chemistry and Materials Science, Hubei Engineering University, Hubei 432000, People's Republic of China
| | - Dai Lu
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, TX 78363, USA
| | - Caiqin Qin
- Hubei Provincial Collaborative Innovation Center of Biomass Resources Transformation and Utilization, College of Chemistry and Materials Science, Hubei Engineering University, Hubei 432000, People's Republic of China
| |
Collapse
|
5
|
Gong CF, Wang YX, Wang ML, Su WC, Wang Q, Chen QX, Shi Y. Evaluation of the Structure and Biological Activities of Condensed Tannins from Acanthus ilicifolius Linn and Their Effect on Fresh-Cut Fuji Apples. Appl Biochem Biotechnol 2019; 189:855-870. [PMID: 31131419 DOI: 10.1007/s12010-019-03038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Condensed tannins (CTS) have been isolated and purified from leaves of Acanthus ilicifolius Linn. And their structures were investigated by three methods: 13C nuclear magnetic resonance (13C NMR), reversed-phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed that the CTS were a mixture of catechin/epicatechin, galatechin/epicatechin, and amphicin/epigalin, and that the polymer chain lengths were 3-mers to 14-mers. Antityrosinase activities and antioxidant activities of the CTS from A. ilicifolius leaves were further studied. The IC50 of the CTS on mushroom tyrosinase activity was determined to be 19.7 ± 0.13 μg/mL, and inhibition type analyses indicated that the CTS were mixed type inhibitors and their inhibition CTS was reversible. The CTS from A. ilicifolius leaves also exhibited potential antioxidant activity. The IC50 of DPPH and ABTS scavenging activities were 104 ± 0.894 μg/mL and 86 ± 0.616 μg/mL, respectively. And the FRAP value was 758.28 ± 2.42 mg AAE/g. In addition, we found that the CTS from A. ilicifolius leaves had an excellent effect on preserving the quality of fresh-cut apples by preventing apples from browning through reducing polyphenol oxidase activities in apples.
Collapse
Affiliation(s)
- Chen-Fang Gong
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Yu-Xia Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Meng-Li Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Wei-Chao Su
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Qin Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Qing-Xi Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Yan Shi
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
6
|
Vargas AJ, Sittadjody S, Thangasamy T, Mendoza EE, Limesand KH, Burd R. Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors. Integr Cancer Ther 2017; 10:328-40. [DOI: 10.1177/1534735410391661] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Melanoma is an aggressive tumor that expresses the pigmentation enzyme tyrosinase. Tyrosinase expression increases during tumorigenesis, which could allow for selective treatment of this tumor type by strategies that use tyrosinase activity. Approaches targeting tyrosinase would involve gene transcription or signal transduction pathways mediated by p53 in a direct or indirect manner. Two pathways are proposed for exploiting tyrosinase expression: ( a) a p53-dependent pathway leading to apoptosis or arrest and ( b) a reactive oxygen species–mediated induction of endoplasmic reticulum stress in p53 mutant tumors. Both strategies could use tyrosinase-mediated activation of quercetin, a dietary polyphenol that induces the expression of p53 and modulates reactive oxygen species. In addition to antitumor signaling properties, activation of quercetin could complement conventional cancer therapy by the induction of phase II detoxification enzymes resulting in p53 stabilization and transduction of its downstream targets. In conclusion, recent advances in tyrosinase enzymology, prodrug chemistry, and modern chemotherapeutics present an intriguing and selective multitherapy targeting system where dietary bioflavonoids could be used to complement conventional cancer treatments.
Collapse
|
7
|
Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorg Med Chem Lett 2016; 27:530-532. [PMID: 28011217 DOI: 10.1016/j.bmcl.2016.12.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/17/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022]
Abstract
Two series of novel kojic acid analogues (4a-j) and (5a-d) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35±2.15-17.50±2.75μM, whereas standard inhibitor kojic acid have IC50 values 20.00±1.08μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35±2.15μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.
Collapse
|
8
|
Frąckowiak-Wojtasek B, Gąsowska-Bajger B, Mazurek M, Raniszewska A, Logghe M, Smolarczyk R, Cichoń T, Szala S, Wojtasek H. Synthesis and analysis of activity of a potential anti-melanoma prodrug with a hydrazine linker. Eur J Med Chem 2014; 71:98-104. [DOI: 10.1016/j.ejmech.2013.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022]
|
9
|
Si YX, Ji S, Fang NY, Wang W, Yang JM, Qian GY, Park YD, Lee J, Yin SJ. Effects of piperonylic acid on tyrosinase: Mixed-type inhibition kinetics and computational simulations. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
A novel synthesized tyrosinase inhibitor: (E)-2-((2,4-dihydroxyphenyl)diazenyl)phenyl 4-methylbenzenesulfonate as an azo-resveratrol analog. Biosci Biotechnol Biochem 2013; 77:65-72. [PMID: 23291747 DOI: 10.1271/bbb.120547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We synthesized a novel series of (E)-2-((substituted phenyl)diazenyl)phenyl 4-methylbenzenesulfonate derivatives (2 and 3) and (E)-2-((substituted phenyl)diazenyl)phenol derivatives (4 and 5), and conducted an evaluation in order to determine their inhibitory effects on mushroom tyrosinase, with the aim of discovering a tyrosinase inhibitor. Most of the compounds (3-5) exhibited higher inhibitory effects than kojic acid (IC(50) = 49.08 µM), a representative tyrosinase inhibitor. A novel synthesized compound, (E)-2-((2,4-dihydroxyphenyl)diazenyl)phenyl 4-methylbenzenesulfonate (3), showed the best results with an IC(50) of 17.85 µM, and showed competitive inhibition on Lineweaver-Burk plots, as further confirmed by the docking results. In addition, active compounds 3-5 were not cytotoxic to cultured B16F10 cells at the concentrations tested, and inhibited both tyrosinase and melanin synthesis. Therefore the active compounds (3-5) might be considered excellent candidates for use in the development of therapeutic agents for diseases associated with hyperpigmentation.
Collapse
|
11
|
Chen LH, Hu YH, Song W, Song KK, Liu X, Jia YL, Zhuang JX, Chen QX. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: novel tyrosinase inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1542-1547. [PMID: 22250887 DOI: 10.1021/jf204420x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
p-Hydroxybenzaldehyde thiosemicarbazone (HBT) and p-methoxybenzaldehyde thiosemicarbazone (MBT) were synthesized and established by (1)H NMR and mass spectra. Both compounds were evaluated for their inhibition activities on mushroom tyrosinase and free-cell tyrosinase and melanoma production from B(16) mouse melanoma cells. Results showed that both compounds exhibited significant inhibitory effects on the enzyme activities. HBT and MBT decreased the steady state of the monophenolase activity sharply, and the IC(50) values were estimated as 0.76 and 7.0 μM, respectively. MBT lengthened the lag time, but HBT could not. HBT and MBT inhibited diphenolase activity dose-dependently, and their IC(50) values were estimated as 3.80 and 2.62 μM, respectively. Kinetic analyses showed that inhibition type by both compounds was reversible and their mechanisms were mixed-type. Their inhibition constants were also determined and compared. The research may supply the basis for the development of new food preservatives and cosmetic additives.
Collapse
Affiliation(s)
- Liang-Hua Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li ZC, Chen LH, Yu XJ, Hu YH, Song KK, Zhou XW, Chen QX. Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12537-12540. [PMID: 21062043 DOI: 10.1021/jf1033625] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
2-Chlorobenzaldehyde thiosemicarbazone (2-Cl-BT) and 4-chlorobenzaldehyde thiosemicarbazone (4-Cl-BT) were synthesized, and their inhibitory kinetics on the activity of mushroom tyrosinase were investigated. Results showed that these compounds exhibited significant inhibitory potency on both monophenolase activity and diphenolase activity of tyrosinase. For the monophenolase activity, both compounds could decrease the steady-state activity of the enzyme sharply, without any influence on the lag period. The IC50 values of them were estimated to be 15.4 μM and 6.7 μM, respectively. For the diphenolase activity, both compounds belonged to reversible inhibitors, but their mechanisms were different: 2-Cl-BT was a noncompetitive type inhibitor, while 4-Cl-BT was a mixed-type inhibitor. Their inhibition constants were determined and compared.
Collapse
Affiliation(s)
- Zhi-Cong Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Gasowska-Bajger B, Frackowiak-Wojtasek B, Koj S, Cichoń T, Smolarczyk R, Szala S, Wojtasek H. Oxidation of carbidopa by tyrosinase and its effect on murine melanoma. Bioorg Med Chem Lett 2009; 19:3507-10. [PMID: 19457668 DOI: 10.1016/j.bmcl.2009.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/01/2009] [Accepted: 05/03/2009] [Indexed: 11/24/2022]
Abstract
Oxidation of the anti-Parkinsonian agent carbidopa by tyrosinase was investigated. The products of this reaction were identified as 3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid and 6,7-dihydroxy-3-methylcinnoline. These results demonstrate that after oxidation of the catechol moiety to an o-quinone either a redox exchange with the hydrazine group or a cyclization reaction occur. The cyclization product underwent additional oxidation reactions leading to aromatization. The cyclization reaction is undesired in the case of hydrazine-containing anti-melanoma prodrugs and will have to be taken into account in designing such compounds. Carbidopa was tested against B16(F10) melanoma cells in culture and showed cytotoxicity significantly higher than either of its oxidation products and l-dopa. This effect, however, was not specific to this cell line.
Collapse
|