1
|
Henches R, Ozga T, Gao Y, Tu Z, Zhang T, Francis CL. Synthesis and biological evaluation of 2-(Tetrazol-5-yl)sulfonylacetamides as inhibitors of Mycobacterium tuberculosis and Mycobacterium marinum. Bioorg Med Chem Lett 2023; 92:129391. [PMID: 37369331 DOI: 10.1016/j.bmcl.2023.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
A series of 2-(tetrazol-5-yl)sulfonylacetamide derivatives were synthesized and evaluated for their in vitro inhibitory activity against Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). The most active compounds exhibited in vitro MIC90 values of 1.25 μg/mL against Mtb, but they were less effective against Mm (MIC90 ≥ 10 μg/mL). Despite the most active compounds having favourable physicochemical properties and one of them having a half-life of ∼3 h when incubated with mouse liver microsomes, two representative highly active compounds showed strong chemical reactivity to cysteine derivatives, as surrogate in vivo sulfur-centred nucleophiles, indicating excessive electrophilicity, and therefore, likely indiscriminate chemical reactivity in vivo, representing an unacceptably high risk of general toxicity, and low likelihood of being therapeutically effective.
Collapse
Affiliation(s)
- Robin Henches
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia
| | - Théo Ozga
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengchao Tu
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia.
| |
Collapse
|
2
|
Dadlani VG, Chhabhaiya H, Somani RR, Tripathi PK. Synthesis, molecular docking, and biological evaluation of novel 1,2,4-triazole-isatin derivatives as potential Mycobacterium tuberculosis shikimate kinase inhibitors. Chem Biol Drug Des 2022; 100:230-244. [PMID: 35434882 DOI: 10.1111/cbdd.14060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
The issue of emerging resistance to antitubercular drugs has created a formidable barrier in the effective prevention and cure of tuberculosis globally. In an effort to search for new antimycobacterial agents, possibly comprising new pharmacophore, novel triazole-isatin derivatives were designed as Mycobacterium tuberculosis shikimate kinase inhibitors and synthesized by microwave-assisted method. The synthesized molecules were evaluated for their antimycobacterial activity by MABA assay against M. tuberculosis H37Rv. The molecule 5h demonstrated MIC of 0.8 μg/ml and good safety profile with higher selectivity index with HEK293 cell line. The antimycobacterial activity was further substantiated with molecular docking studies. The triazole-isatin derivatives showed significant binding interactions with amino acid residues in the active site of the enzyme. These studies revealed that molecule 5h could act as a potential lead molecule for further studies to find new target-directed molecules.
Collapse
Affiliation(s)
- Vedika G Dadlani
- Department of Pharmaceutical Chemistry, Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar, India
| | - Heta Chhabhaiya
- Department of Pharmaceutical Chemistry, Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar, India
| | - Rakesh R Somani
- Department of Pharmaceutical Chemistry, D Y Patil University School of Pharmacy, Navi Mumbai, India
| | | |
Collapse
|
3
|
Hu JP, Wu ZX, Xie T, Liu XY, Yan X, Sun X, Liu W, Liang L, He G, Gan Y, Gou XJ, Shi Z, Zou Q, Wan H, Shi HB, Chang S. Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review. Protein Pept Lett 2019; 26:648-663. [PMID: 31218945 DOI: 10.2174/0929866526666190620145919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
After decades of efforts, tuberculosis has been well controlled in most places. The existing drugs are no longer sufficient for the treatment of drug-resistant Mycobacterium tuberculosis due to significant toxicity and selective pressure, especially for XDR-TB. In order to accelerate the development of high-efficiency, low-toxic antituberculosis drugs, it is particularly important to use Computer Aided Drug Design (CADD) for rational drug design. Here, we systematically reviewed the specific role of molecular simulation in the discovery of new antituberculosis drugs. The purpose of this review is to overview current applications of molecular simulation methods in the discovery of antituberculosis drugs. Furthermore, the unique advantages of molecular simulation was discussed in revealing the mechanism of drug resistance. The comprehensive use of different molecular simulation methods will help reveal the mechanism of drug resistance and improve the efficiency of rational drug design. With the help of molecular simulation methods such as QM/MM method, the mechanisms of biochemical reactions catalyzed by enzymes at atomic level in Mycobacterium tuberculosis has been deeply analyzed. QSAR and virtual screening both accelerate the development of highefficiency, low-toxic potential antituberculosis drugs. Improving the accuracy of existing algorithms and developing more efficient new methods for CADD will always be a hot topic in the future. It is of great value to utilize molecular dynamics simulation to investigate complex systems that cannot be studied in experiments, especially for drug resistance of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jian-Ping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Zhi-Xiang Wu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Tao Xie
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xin-Yu Liu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Gang He
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Ya Gan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xiao-Jun Gou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Zheng Shi
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Qiang Zou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Hu-Bing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
4
|
Sahu PK, Mohapatra PK, Rajani DP, Raval MK. Structure-based Discovery of Narirutin as a Shikimate kinase Inhibitor with Anti-tubercular Potency. Curr Comput Aided Drug Des 2019; 16:523-529. [PMID: 31654517 DOI: 10.2174/1573409915666191025112150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/05/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Shikimate pathway is essential for tubercular bacillus but it is absent in mammals. Therefore, Shikimate kinase and other enzymes in the pathway are potential targets for the development of novel anti-tuberculosis drugs. OBJECTIVE In the present study, Shikimate kinase is selected as the target for in silico screening of phytochemicals with an aim to discover a novel herbal drug against Mycobacterium tuberculosis (Mtb). METHODS A structure-based drug discovery approach is undertaken for the execution of the objective. Virtual screening of phytochemical database NPACT against the target, Shikimate kinase (PDB ID 3BAF), is carried out followed by toxicity and drug-likeness filtration. Finally, a lead, narirutin was selected for in vitro anti-tubercular study. RESULTS Narirutin, present in citrus fruits, emerges as the lead. It is considered to be non-toxic with predicted high LD50 value, 12000 mg/kg body weight. The phytochemical is tested for its antitubercular activity in vitro. It has MIC99 62.5 μg/mL against the MtbH37Rv strain. CONCLUSION This is the first-ever report to show anti-tuberculosis potency of narirutin.
Collapse
Affiliation(s)
- Pramod Kumar Sahu
- Department of Chemistry, Gangadhar Meher University, Sambalpur, 768004, Odisha, India
| | - Pranab Kishor Mohapatra
- Department of Chemistry, CV Raman College of Engineering, Bidyanagar, Mahura, Janla, Bhubaneswar 752054, Odisha, India
| | - Dhanji Popatbhai Rajani
- Microcare Laboratory and Tuberculosis Research Center, 105, Manthan Point, Unapani Road, Lal Darwaja, Surat - 395003, Gujarat, India
| | - Mukesh Kumar Raval
- Department of Chemistry, Gangadhar Meher University, Sambalpur, 768004, Odisha, India
| |
Collapse
|
5
|
An integrated computational hierarchy for identification of potent inhibitors against Shikimate Kinase enzyme from Shigella sonnei , a major cause of global dysentery. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
7
|
Hadizadeh M, Tabatabaiepour SN, Tabatabaiepour SZ, Hosseini Nave H, Mohammadi M, Sohrabi SM. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method. Microb Drug Resist 2018; 24:8-17. [DOI: 10.1089/mdr.2016.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Morteza Hadizadeh
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | | | | | - Hossein Hosseini Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Mohammadi
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
8
|
Olazarán FE, García-Pérez CA, Bandyopadhyay D, Balderas-Rentería I, Reyes-Figueroa AD, Henschke L, Rivera G. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors. J Mol Model 2017; 23:85. [PMID: 28214932 DOI: 10.1007/s00894-017-3256-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Collapse
Affiliation(s)
- Fabian E Olazarán
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Carlos A García-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Isaias Balderas-Rentería
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Angel D Reyes-Figueroa
- Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, 66600, México
| | - Lars Henschke
- Department of Biology, University of Konstanz, Universitätsstraβe 10, 78457, Konstanz, Germany
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710.
| |
Collapse
|
9
|
Prado V, Lence E, Thompson P, Hawkins AR, González-Bello C. Freezing the Dynamic Gap for Selectivity: Motion-Based Design of Inhibitors of the Shikimate Kinase Enzyme. Chemistry 2016; 22:17988-18000. [DOI: 10.1002/chem.201602923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Verónica Prado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne, Catherine Cookson Building; Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne, Catherine Cookson Building; Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
10
|
Mehra R, Rajput VS, Gupta M, Chib R, Kumar A, Wazir P, Khan IA, Nargotra A. Benzothiazole Derivative as a Novel Mycobacterium tuberculosis Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition. J Chem Inf Model 2016; 56:930-40. [PMID: 27149193 DOI: 10.1021/acs.jcim.6b00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis shikimate kinase (Mtb-SK) is a key enzyme involved in the biosynthesis of aromatic amino acids through the shikimate pathway. Since it is proven to be essential for the survival of the microbe and is absent from mammals, it is a promising target for anti-TB drug discovery. In this study, a combined approach of in silico similarity search and pharmacophore building using already reported inhibitors was used to screen a procured library of 20,000 compounds of the commercially available ChemBridge database. From the in silico screening, 15 hits were identified, and these hits were evaluated in vitro for Mtb-SK enzyme inhibition. Two compounds presented significant enzyme inhibition with IC50 values of 10.69 ± 0.9 and 46.22 ± 1.2 μM. The best hit was then evaluated for the in vitro mode of inhibition where it came out to be an uncompetitive and noncompetitive inhibitor with respect to shikimate (SKM) and ATP, respectively, suggesting its binding at an allosteric site. Potential binding sites of Mtb-SK were identified which confirmed the presence of an allosteric binding pocket apart from the ATP and SKM binding sites. The docking simulations were performed at this pocket in order to find the mode of binding of the best hit in the presence of substrates and the products of the enzymatic reaction. Molecular dynamics (MD) simulations elucidated the probability of inhibitor binding at the allosteric site in the presence of ADP and shikimate-3-phosphate (S-3-P), that is, after the formation of products of the reaction. The inhibitor binding may prevent the release of the product from Mtb-SK, thereby inhibiting its activity. The binding stability and the key residue interactions of the inhibitor to this product complex were also revealed by the MD simulations. Residues ARG43, ILE45, and PHE57 were identified as crucial that were involved in interactions with the best hit. This is the first report of an allosteric binding site of Mtb-SK, which could largely address the selectivity issue associated with kinase inhibitors.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Vikrant Singh Rajput
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Monika Gupta
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Reena Chib
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Kumar
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Priya Wazir
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Nargotra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| |
Collapse
|
11
|
Gordon S, Simithy J, Goodwin DC, Calderón AI. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:9-20. [PMID: 25861218 PMCID: PMC4362912 DOI: 10.4137/pmc.s13212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Abstract
Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents.
Collapse
Affiliation(s)
- Sara Gordon
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Johayra Simithy
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
12
|
Simithy J, Gill G, Wang Y, Goodwin DC, Calderón AI. Development of an ESI-LC-MS-Based Assay for Kinetic Evaluation of Mycobacterium tuberculosis Shikimate Kinase Activity and Inhibition. Anal Chem 2015; 87:2129-36. [DOI: 10.1021/ac503210n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johayra Simithy
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, Alabama 36849, United States
| | - Gobind Gill
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Yu Wang
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Douglas C. Goodwin
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Angela I. Calderón
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, Alabama 36849, United States
| |
Collapse
|
13
|
Oh T, Hayat F, Yoo E, Cho SN, Sheen YY, Kim DK, Park Choo HY. Antitubercular Activities of the Novel Synthesized 1,2,4-Triazole Derivatives. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taegwon Oh
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Plus Project for the Medical Sciences; Yonsei University College of Medicine; Seoul 120-752 Republic of Korea
| | - Faisal Hayat
- College of Pharmacy & Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Euna Yoo
- College of Pharmacy & Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Plus Project for the Medical Sciences; Yonsei University College of Medicine; Seoul 120-752 Republic of Korea
| | - Yhun Yhung Sheen
- College of Pharmacy & Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Dae-Kee Kim
- College of Pharmacy & Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Hea-Young Park Choo
- College of Pharmacy & Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Republic of Korea
| |
Collapse
|
14
|
Simithy J, Reeve N, Hobrath JV, Reynolds RC, Calderón AI. Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis (Edinb) 2014; 94:152-8. [DOI: 10.1016/j.tube.2013.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/14/2013] [Accepted: 12/19/2013] [Indexed: 11/27/2022]
|
15
|
Kaplancıklı ZA, Yurttaş L, Özdemir A, Turan-Zitouni G, Çiftçi GA, Yıldırım ŞU, Mohsen UA. Synthesis and antiproliferative activity of new 1,5-disubstituted tetrazoles bearing hydrazone moiety. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0717-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Blanco B, Prado V, Lence E, Otero JM, Garcia-Doval C, van Raaij MJ, Llamas-Saiz AL, Lamb H, Hawkins AR, González-Bello C. Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. J Am Chem Soc 2013; 135:12366-76. [PMID: 23889343 DOI: 10.1021/ja405853p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shikimate kinase (SK) is an essential enzyme in several pathogenic bacteria and does not have any counterpart in human cells, thus making it an attractive target for the development of new antibiotics. The key interactions of the substrate and product binding and the enzyme movements that are essential for catalytic turnover of the Mycobacterium tuberculosis shikimate kinase enzyme (Mt-SK) have been investigated by structural and computational studies. Based on these studies several substrate analogs were designed and assayed. The crystal structure of Mt-SK in complex with ADP and one of the most potent inhibitors has been solved at 2.15 Å. These studies reveal that the fixation of the diaxial conformation of the C4 and C5 hydroxyl groups recognized by the enzyme or the replacement of the C3 hydroxyl group in the natural substrate by an amino group is a promising strategy for inhibition because it causes a dramatic reduction of the flexibility of the LID and shikimic acid binding domains. Molecular dynamics simulation studies showed that the product is expelled from the active site by three arginines (Arg117, Arg136, and Arg58). This finding represents a previously unknown key role of these conserved residues. These studies highlight the key role of the shikimic acid binding domain in the catalysis and provide guidance for future inhibitor designs.
Collapse
Affiliation(s)
- Beatriz Blanco
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kaplancikli ZA, Yurttaş L, Özdemir A, Turan-Zitouni G, Işcan G, Akalın G, Abu Mohsen U. Synthesis, anticandidal activity and cytotoxicity of some tetrazole derivatives. J Enzyme Inhib Med Chem 2013; 29:43-8. [PMID: 23323990 DOI: 10.3109/14756366.2012.752363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, 14 different 2-[(1-methyl-1H-tetrazole-5-yl)thio]-1-(phenyl)ethanone derivatives (1-14) were synthesized. The structures of the obtained compounds were elucidated using IR, (1)H-NMR, (13)C-NMR and FAB(+)-MS spectral data and elemental analyses results. The compounds were screened for their anticandidal activity using the microbroth dilution method and for their cytotoxic effects using the MTT assay against NIH/3T3 cells. Some of the compounds were found to be potent anticandidal agents with weak cytotoxicities.
Collapse
Affiliation(s)
- Zafer Asim Kaplancikli
- Department of Pharmaceutical Chemistry, Graduate School of Health Sciences, Anadolu University , Eskisehir , Turkey
| | | | | | | | | | | | | |
Collapse
|
18
|
Desai NHP, Bairwa R, Kakwani M, Tawari N, Ray MK, Rajan MG, Degani M. Novel 4H-1,2,4-triazol-3-yl cycloalkanols as potent antitubercular agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0043-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Vianna CP, de Azevedo WF. Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 2011; 18:755-64. [DOI: 10.1007/s00894-011-1113-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
20
|
Simmons KJ, Chopra I, Fishwick CWG. Structure-based discovery of antibacterial drugs. Nat Rev Microbiol 2011; 8:501-10. [PMID: 20551974 DOI: 10.1038/nrmicro2349] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The modern era of antibacterial chemotherapy began in the 1930s, and the next four decades saw the discovery of almost all the major classes of antibacterial agents that are currently in use. However, bacterial resistance to many of these drugs is becoming an increasing problem. As such, the discovery of drugs with novel modes of action will be vital to meet the threats created by the emergence of resistance. Success in discovering inhibitors using high-throughput screening of chemical libraries is rare. In this Review we explore the exciting opportunities for antibacterial-drug discovery arising from structure-based drug design.
Collapse
Affiliation(s)
- Katie J Simmons
- Antimicrobial Research Centre, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
21
|
Brooijmans N, Cross JB, Humblet C. Biased retrieval of chemical series in receptor-based virtual screening. J Comput Aided Mol Des 2010; 24:1053-62. [DOI: 10.1007/s10822-010-9394-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/19/2010] [Indexed: 11/30/2022]
|
22
|
Kumar M, Verma S, Sharma S, Srinivasan A, Singh TP, Kaur P. Structure-based in silico design of a high-affinity dipeptide inhibitor for novel protein drug target Shikimate kinase of Mycobacterium tuberculosis. Chem Biol Drug Des 2010; 76:277-84. [PMID: 20626408 DOI: 10.1111/j.1747-0285.2010.01005.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis remains one of the most dreaded infectious diseases notwithstanding the availability of a number of anti-tuberculosis drugs. The recent rise of multidrug-resistant tuberculosis and its association with HIV infection poses a challenging health concern. Therefore, there exists a pressing requirement to identify novel drug targets and develop new anti-tuberculosis drugs that will be effective against multidrug-resistant-tuberculosis. Shikimate kinase is a novel and attractive drug target as it is vital for the survival of Mycobacterium tuberculosis but is absent in mammals. Hence, inhibitors designed against shikimate kinase will be specific to the pathogen and be least harmful to the host. Till date, no drug candidates are available against this target. The crystal structure of Mycobacterium tuberculosis shikimate kinase complexed with shikimate has been used to identify a dipeptide inhibitor using in silico structure-based design approach. The designed peptidic inhibitor has a predicted binding affinity of 5.5 nm which is 8000 times better than substrate shikimate and 10 times greater than the best suggested inhibitor. It is potent in both the known open and closed LID conformations of target protein. As small peptides are known to be non-toxic, this inhibitor could be a lead compound for development of specific anti-tuberculosis drugs.
Collapse
|
23
|
Brooijmans N, Humblet C. Chemical space sampling by different scoring functions and crystal structures. J Comput Aided Mol Des 2010; 24:433-47. [DOI: 10.1007/s10822-010-9356-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
24
|
Inhibitors of Leishmania GDP-mannose pyrophosphorylase identified by high-throughput screening of small-molecule chemical library. Antimicrob Agents Chemother 2010; 54:1712-9. [PMID: 20160053 DOI: 10.1128/aac.01634-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment for leishmaniasis is based on chemotherapy, which relies on a handful of drugs with serious limitations, such as high cost, toxicity, and a lack of efficacy in regions of endemicity. Therefore, the development of new, effective, and affordable antileishmanial drugs is a global health priority. Leishmania synthesizes a range of mannose-rich glycoconjugates that are essential for parasite virulence and survival. A prerequisite for glycoconjugate biosynthesis is the conversion of monosaccharides to the activated mannose donor, GDP-mannose, the product of a reaction catalyzed by GDP-mannose pyrophosphorylase (GDP-MP). The deletion of the gene encoding GDP-MP in Leishmania led to a total loss of virulence, indicating that the enzyme is an ideal drug target. We developed a phosphate sensor-based high-throughput screening assay to quantify the activity of GDP-MP and screened a library containing approximately 80,000 lead-like compounds for GDP-MP inhibitors. On the basis of their GDP-MP inhibitory properties and chemical structures, the activities of 20 compounds which were not toxic to mammalian cells were tested against ex vivo amastigotes and in macrophage amastigote assays. The most potent compound identified in the primary screen (compound 3), a quinoline derivative, demonstrated dose-dependent activity in both assays (50% inhibitory concentration = 21.9 microM in the macrophage assay) and was shown to be nontoxic to human fibroblasts. In order to elucidate signs of an early structure-activity relationship (SAR) for this class of compounds, we obtained and tested analogues of compound 3 and undertook limited medicinal chemistry optimization, which included the use of a number of SAR probes of the piperazinyl aryl substituent of compound 3. We have identified novel candidate compounds for the design and synthesis of antileishmanial therapeutics.
Collapse
|
25
|
Siwek A, Wujec M, Plech T, Kuśmierz E, Jagiełło-Wójtowicz E, Chodkowska A. Structure-activity relationship of s-triazoles and thiadiazoles as analgesics. HETEROATOM CHEMISTRY 2010. [DOI: 10.1002/hc.20605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Siddiqi MI, Kumar A. Review of knowledge for rational design and identification of anti-tubercular compounds. Expert Opin Drug Discov 2009; 4:1005-15. [PMID: 23480394 DOI: 10.1517/17460440903253876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The synergy between tuberculosis and the AIDS epidemic, along with the surge of multi-drug resistant isolates of Mycobacterium tuberculosis, has reaffirmed tuberculosis as a primary public health threat. Discovery of novel anti-tubercular entities is a highly complex and, therefore, more rational design strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions are required. The combination of available knowledge of several 3D protein structures with thousands of anti-tubercular small-molecules have attracted the attention of scientists from all over the world for the application of structure- and ligand-based drug design approaches. OBJECTIVE In this review, an outline of the recent knowledge concerning rational design that chemists and biomedical scientists are currently using to rapidly identify and design novel anti-tubercular agents is presented. The recent successes in rational design of anti-tubercular agents mentioned in the review could give insights into the wide range of possibilities of using rational drug design methodologies. CONCLUSION The key conclusion is that future research through the aid of combined ligand and receptor-based design and chemo-bioinformatics will bring not only new hope, but also create a new class of anti-tubercular drugs that will help millions of patients.
Collapse
Affiliation(s)
- Mohammad Imran Siddiqi
- Central Drug Research Institute, Molecular and Structural Biology Division, Lucknow, 226001, India +91 522 2612411 ; +91 522 2623938 ; ,
| | | |
Collapse
|
27
|
Structural studies of shikimate dehydrogenase from Bacillus anthracis complexed with cofactor NADP. J Mol Model 2008; 15:147-55. [PMID: 19043750 DOI: 10.1007/s00894-008-0403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/16/2008] [Indexed: 02/06/2023]
Abstract
Bacillus anthracis has been employed as an agent of bioterrorism, with high mortality, despite anti-microbial treatment, which strongly indicates the need of new drugs to treat anthrax. Shikimate pathway is a seven step biosynthetic route which generates chorismic acid from phosphoenol pyruvate and erythrose-4-phosphate. Chorismic acid is the major branch point in the synthesis of aromatic amino acids, ubiquinone, and secondary metabolites. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals. Therefore, these enzymes are potential targets for the development of nontoxic antimicrobial agents and herbicides and have been submitted to intensive structural studies. The forth enzyme of this pathway is responsible for the conversion of dehydroshikimate to shikimate in the presence of NADP. In order to pave the way for structural and functional efforts toward development of new antimicrobials we describe the molecular modeling of shikimate dehydrogenase from Bacillus anthracis complexed with the cofactor NADP. This study was able to identify the main residues of the NADP binding site responsible for ligand affinities. This structural study can be used in the design of more specific drugs against infectious diseases.
Collapse
|
28
|
Pauli I, Caceres RA, de Azevedo WF. Molecular modeling and dynamics studies of Shikimate Kinase from Bacillus anthracis. Bioorg Med Chem 2008; 16:8098-108. [PMID: 18706819 DOI: 10.1016/j.bmc.2008.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/17/2008] [Accepted: 07/19/2008] [Indexed: 11/16/2022]
Abstract
Bacillus anthracis has been used as weapon in bioterrorist activities, with high mortality, despite anti-microbial treatment, which strongly indicates a need of new drugs to treat anthrax. Shikimate Pathway is a seven-step biosynthetic route which generates chorismic acid. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals. Therefore, these enzymes are potential targets for the development of non-toxic anti-microbial agents and herbicides and have been submitted to intensive structural studies. Shikimate Kinase is the fifth enzyme of shikimate pathway and catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimate using ATP as a co-substrate, resulting in shikimate-3-phosphate and ADP. The present work describes for the first time a structural model for the Shikimate Kinase from B. anthracis using molecular modeling approach and molecular dynamics simulations. This study was able to identify the main residues of the ATP-binding and the shikimate pockets responsible for ligand affinities. Analysis of the molecular dynamics simulations indicates the structural features responsible for the stability of the structure. This study may help in the identification of new inhibitors for this enzyme.
Collapse
Affiliation(s)
- Ivani Pauli
- Faculdade de Biociências, Laboratório de Bioquímica Estrutural, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, 90619-900 Rio Grande do Sul, CEP, Brazil
| | | | | |
Collapse
|