1
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem Biol Drug Des 2019; 94:1721-1739. [PMID: 31260188 DOI: 10.1111/cbdd.13582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
Abstract
Enterococcus faecalis (Ef) is one of the major pathogens involved in hospital-acquired infections. It can cause nosocomial bacteremia, surgical wound infection, and urinary tract infection. It is important to mention here that Ef is developing resistance against many commonly occurring antibiotics. The occurrence of multidrug resistance (MDR) and extensive-drug resistance (XDR) is now posing a major challenge to the medical community. In this regard, to combat the infections caused by Ef, we have to look for an alternative. Rational structure-based drug design exploits the three-dimensional structure of the target protein, which can be unraveled by various techniques such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. In this review, we have discussed the complete picture of Ef infections, the possible treatment available at present, and the alternative treatment options to be explored. This study will help in better understanding of novel biological targets against Ef and the compounds, which are likely to bind with these targets. Using these detailed structural informations, rational structure-based drug design is achievable and tight inhibitors against Ef can be prepared.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
2
|
Mackie J, Kumar H, Bearne SL. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization. FEBS Lett 2018; 592:3399-3413. [PMID: 30194685 DOI: 10.1002/1873-3468.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/07/2022]
Abstract
Glutamate racemases (GR) catalyze the racemization of d- and l-glutamate and are targets for the development of antibiotics. We demonstrate that GR from the periodontal pathogen Fusobacterium nucleatum (FnGR) catalyzes the racemization of d-homocysteic acid (d-HCA), while l-HCA is a poor substrate. This enantioselectivity arises because l-HCA perturbs FnGR's monomer-dimer equilibrium toward inactive monomer. The inhibitory effect of l-HCA may be overcome by increasing the total FnGR concentration or by adding glutamate, but not by blocking access to the active site through site-directed mutagenesis, suggesting that l-HCA binds at an allosteric site. This phenomenon is also exhibited by GR from Bacillus subtilis, suggesting that enantiospecific, "substrate"-induced dissociation of oligomers to form inactive monomers may furnish a new inhibition strategy.
Collapse
Affiliation(s)
- Joanna Mackie
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Himank Kumar
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Department of Chemistry, Dalhousie University, Halifax, Canada
| |
Collapse
|
3
|
Mortuza R, Aung HL, Taiaroa G, Opel-Reading HK, Kleffmann T, Cook GM, Krause KL. Overexpression of a newly identified d-amino acid transaminase inMycobacterium smegmatiscomplements glutamate racemase deletion. Mol Microbiol 2017; 107:198-213. [DOI: 10.1111/mmi.13877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Roman Mortuza
- Department of Biochemistry; University of Otago; Otago New Zealand
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - George Taiaroa
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | | | | | - Gregory M. Cook
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - Kurt L. Krause
- Department of Biochemistry; University of Otago; Otago New Zealand
| |
Collapse
|
4
|
Exploring the structure of glutamate racemase from Mycobacterium tuberculosis as a template for anti-mycobacterial drug discovery. Biochem J 2016; 473:1267-80. [PMID: 26964898 DOI: 10.1042/bcj20160186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022]
Abstract
Glutamate racemase (MurI) is responsible for providing D-glutamate for peptidoglycan biosynthesis in bacteria and has been a favoured target in pharmaceutical drug design efforts. It has recently been proven to be essential in Mycobacterium tuberculosis, the causative organism of tuberculosis, a disease for which new medications are urgently needed. In the present study, we have determined the protein crystal structures of MurI from both M. tuberculosis and Mycobacterium smegmatis in complex with D-glutamate to 2.3 Å and 1.8 Å resolution respectively. These structures are conserved, but reveal differences in their active site architecture compared with that of other MurI structures. Furthermore, compounds designed to target other glutamate racemases have been screened but do not inhibit mycobacterial MurI, suggesting that a new drug design effort will be needed to develop inhibitors. A new type of MurI dimer arrangement has been observed in both structures, and this arrangement becomes the third biological dimer geometry for MurI found to date. The mycobacterial MurI dimer is tightly associated, with a KD in the nanomolar range. The enzyme binds D- and L-glutamate specifically, but is inactive in solution unless the dimer interface is mutated. We created triple mutants of this interface in the M. smegmatis glutamate racemase (D26R/R105A/G194R or E) that have appreciable activity (kcat=0.056-0.160 min(-1) and KM=0.26-0.51 mM) and can be utilized to screen proposed antimicrobial candidates for inhibition.
Collapse
|
5
|
Jadeja Y, Kapadiya K, Shah A, Khunt R. Importance of HMBC and NOE 2D NMR techniques for the confirmation of regioselectivity. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:75-80. [PMID: 26307589 DOI: 10.1002/mrc.4315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/11/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Yashwantsinh Jadeja
- National Facility for Drug Discovery Centre, Department of Chemistry, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Khushal Kapadiya
- National Facility for Drug Discovery Centre, Department of Chemistry, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Anamik Shah
- National Facility for Drug Discovery Centre, Department of Chemistry, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Ranjan Khunt
- National Facility for Drug Discovery Centre, Department of Chemistry, Saurashtra University, Rajkot, Gujarat, 360005, India
| |
Collapse
|
6
|
Abstract
A powerful early approach to evaluating the druggability of proteins involved determining the hit rate in NMR-based screening of a library of small compounds. Here, we show that a computational analog of this method, based on mapping proteins using small molecules as probes, can reliably reproduce druggability results from NMR-based screening and can provide a more meaningful assessment in cases where the two approaches disagree. We apply the method to a large set of proteins. The results show that, because the method is based on the biophysics of binding rather than on empirical parametrization, meaningful information can be gained about classes of proteins and classes of compounds beyond those resembling validated targets and conventionally druglike ligands. In particular, the method identifies targets that, while not druggable by druglike compounds, may become druggable using compound classes such as macrocycles or other large molecules beyond the rule-of-five limit.
Collapse
Affiliation(s)
- Dima Kozakov
- Department of Applied Mathematics & Statistics, Stony Brook University , Stony Brook, New York 11794, United States
| | - David R Hall
- Acpharis Inc. , Holliston, Massachusetts 01746, United States
| | | | | | | | | |
Collapse
|
7
|
Oh SY, Richter SG, Missiakas DM, Schneewind O. Glutamate Racemase Mutants of Bacillus anthracis. J Bacteriol 2015; 197:1854-61. [PMID: 25777674 PMCID: PMC4420906 DOI: 10.1128/jb.00070-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED D-Glutamate is an essential component of bacterial peptidoglycan and a building block of the poly-γ-D-glutamic acid (PDGA) capsule of Bacillus anthracis, the causative agent of anthrax. Earlier work suggested that two glutamate racemases, encoded by racE1 and racE2, are each essential for growth of B. anthracis, supplying D-glutamic acid for the synthesis of peptidoglycan and PDGA capsule. Earlier work could not explain, however, why two enzymes that catalyze the same reaction may be needed for bacterial growth. Here, we report that deletion of racE1 or racE2 did not prevent growth of B. anthracis Sterne (pXO1(+) pXO2(-)), the noncapsulating vaccine strain, or of B. anthracis Ames (pXO1(+) pXO2(+)), a fully virulent, capsulating isolate. While mutants with deletions in racE1 and racE2 were not viable, racE2 deletion delayed vegetative growth of B. anthracis following spore germination and caused aberrant cell shapes, phenotypes that were partially restored by exogenous D-glutamate. Deletion of racE1 or racE2 from B. anthracis Ames did not affect the production or stereochemical composition of the PDGA capsule. A model is presented whereby B. anthracis, similar to Bacillus subtilis, utilizes two functionally redundant racemase enzymes to synthesize D-glutamic acid for peptidoglycan synthesis. IMPORTANCE Glutamate racemases, enzymes that convert L-glutamate to D-glutamate, are targeted for antibiotic development. Glutamate racemase inhibitors may be useful for the treatment of bacterial infections such as anthrax, where the causative agent, B. anthracis, requires d-glutamate for the synthesis of peptidoglycan and poly-γ-D-glutamic acid (PDGA) capsule. Here we show that B. anthracis possesses two glutamate racemase genes that can be deleted without abolishing either bacterial growth or PDGA synthesis. These data indicate that drug candidates must inhibit both glutamate racemases, RacE1 and RacE2, in order to block B. anthracis growth and achieve therapeutic efficacy.
Collapse
Affiliation(s)
- So-Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Stefan G Richter
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique M Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Le X, Gu Q, Xu J. Identifying MurI uncompetitive inhibitors by correlating decomposed binding energies with bioactivity. RSC Adv 2015. [DOI: 10.1039/c5ra03079j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MurI uncompetitive inhibitors can be virtually identified by a new method that correlates decomposed binding free energies with the bioactivity.
Collapse
Affiliation(s)
- Xiu Le
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Qiong Gu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Jun Xu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| |
Collapse
|
9
|
Pal M, Bearne SL. Inhibition of glutamate racemase by substrate-product analogues. Bioorg Med Chem Lett 2014; 24:1432-6. [PMID: 24507924 DOI: 10.1016/j.bmcl.2013.12.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
Abstract
D-Glutamate is an essential biosynthetic building block of the peptidoglycans that encapsulate the bacterial cell wall. Glutamate racemase catalyzes the reversible formation of D-glutamate from L-glutamate and, hence, the enzyme is a potential therapeutic target. We show that the novel cyclic substrate-product analogue (R,S)-1-hydroxy-1-oxo-4-amino-4-carboxyphosphorinane is a modest, partial noncompetitive inhibitor of glutamate racemase from Fusobacterium nucleatum (FnGR), a pathogen responsible, in part, for periodontal disease and colorectal cancer (Ki=3.1±0.6 mM, cf. Km=1.41±0.06 mM). The cyclic substrate-product analogue (R,S)-4-amino-4-carboxy-1,1-dioxotetrahydro-thiopyran was a weak inhibitor, giving only ∼30% inhibition at a concentration of 40 mM. The related cyclic substrate-product analogue 1,1-dioxo-tetrahydrothiopyran-4-one was a cooperative mixed-type inhibitor of FnGR (Ki=18.4±1.2 mM), while linear analogues were only weak inhibitors of the enzyme. For glutamate racemase, mimicking the structure of both enantiomeric substrates (substrate-product analogues) serves as a useful design strategy for developing inhibitors. The new cyclic compounds developed in the present study may serve as potential lead compounds for further development.
Collapse
Affiliation(s)
- Mohan Pal
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
10
|
Senhorães N, Costa AL, Silva DI, Proença MF, Dias AM. N1- and C6-substituted adenines: a regioselective and efficient synthesis. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Whalen KL, Spies MA. Flooding enzymes: quantifying the contributions of interstitial water and cavity shape to ligand binding using extended linear response free energy calculations. J Chem Inf Model 2013; 53:2349-59. [PMID: 24111836 PMCID: PMC3782002 DOI: 10.1021/ci400244x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Glutamate
racemase (GR) is a cofactor independent amino acid racemase that has
recently garnered increasing attention as an antimicrobial drug target.
There are numerous high resolution crystal structures of GR, yet these
are invariably bound to either d-glutamate or very weakly
bound oxygen-based salts. Recent in silico screens have identified
a number of new competitive inhibitor scaffolds, which are not based
on d-Glu, but exploit many of the same hydrogen bond donor
positions. In silico studies on 1-H-benzimidazole-2-sulfonic
acid (BISA) show that the sulfonic acid points to the back of the
GR active site, in the most buried region, analogous to the C2-carboxylate
binding position in the GR-d-glutamate complex. Furthermore,
BISA has been shown to be the strongest nonamino acid competitive
inhibitor. Previously published computational studies have suggested
that a portion of this binding strength is derived from complexation
with a more closed active site, relative to weaker ligands, and in
which the internal water network is more isolated from the bulk solvent.
In order to validate key contacts between the buried sulfonate moiety
of BISA and moieties in the back of the enzyme active site, as well
as to probe the energetic importance of the potentially large number
of interstitial waters contacted by the BISA scaffold, we have designed
several mutants of Asn75. GR-N75A removes a key hydrogen bond donor
to the sulfonate of BISA, but also serves to introduce an additional
interstitial water, due to the newly created space of the mutation.
GR- N75L should also show the loss of a hydrogen bond donor to the
sulfonate of BISA, but does not (a priori) seem to permit an additional
interstitial water contact. In order to investigate the dynamics,
structure, and energies of this water-mediated complexation, we have
employed the extended linear response (ELR) approach for the calculation
of binding free energies to GR, using the YASARA2 knowledge based
force field on a set of ten GR complexes, and yielding an R-squared
value of 0.85 and a RMSE of 2.0 kJ/mol. Surprisingly, the inhibitor
set produces a uniformly large interstitial water contribution to
the electrostatic interaction energy (⟨Vel⟩), ranging from 30 to >50%, except for the natural
substrate (d-glutamate), which has only a 7% contribution
of ⟨Vel⟩ from water. The
broader implications for predicting and exploiting significant interstitial
water contacts in ligand–enzyme complexation are discussed.
Collapse
Affiliation(s)
- Katie L Whalen
- College of Pharmacy, Division of Medicinal and Natural Products Chemistry, and ‡Carver College of Medicine, Department of Biochemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
12
|
A ligand-based approach for enhancing the pharmacokinetic profile of highly charged antibacterial agents. Med Chem Res 2012. [DOI: 10.1007/s00044-010-9538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Nicolaou KC, Ellery SP, Rivas F, Saye K, Rogers E, Workinger TJ, Schallenberger M, Tawatao R, Montero A, Hessell A, Romesberg F, Carson D, Burton D. Synthesis and biological evaluation of 2',4'- and 3',4'-bridged nucleoside analogues. Bioorg Med Chem 2011; 19:5648-69. [PMID: 21840722 PMCID: PMC3348725 DOI: 10.1016/j.bmc.2011.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Most nucleosides in solution typically exist in equilibrium between two major sugar pucker forms, N-type and S-type, but bridged nucleosides can be locked into one of these conformations depending on their specific structure. While many groups have researched these bridged nucleosides for the purpose of determining their binding affinity for antisense applications, we opted to look into the potential for biological activity within these conformationally-locked structures. A small library of 2',4'- and 3',4'-bridged nucleoside analogues was synthesized, including a novel 3',4'-carbocyclic bridged system. The synthesized compounds were tested for antibacterial, antitumor, and antiviral activities, leading to the identification of nucleosides possessing such biological activities. To the best of our knowledge, these biologically active compounds represent the first example of 2',4'-bridged nucleosides to demonstrate such properties. The most potent compound, nucleoside 33, exhibited significant antiviral activity against pseudoviruses SF162 (IC(50)=7.0 μM) and HxB2 (IC(50)=2.4 μM). These findings render bridged nucleosides as credible leads for drug discovery in the anti-HIV area of research.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Verones V, Flouquet N, Farce A, Carato P, Leonce S, Pfeiffer B, Berthelot P, Lebegue N. Synthesis, biological evaluation and docking studies of 4-amino-tetrahydroquinazolino[3,2-e]purine derivatives. Eur J Med Chem 2010; 45:5678-84. [DOI: 10.1016/j.ejmech.2010.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
15
|
Spies MA, Reese JG, Dodd D, Pankow KL, Blanke SR, Baudry J. Determinants of catalytic power and ligand binding in glutamate racemase. J Am Chem Soc 2009; 131:5274-84. [PMID: 19309142 DOI: 10.1021/ja809660g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate racemases (EC 5.1.1.3) catalyze the cofactor-independent stereoinversion of D- and L-glutamate and are important for viability in several gram-negative and -positive bacteria. As the only enzyme involved in the stereoinversion of L- to D-glutamate for peptidoglycan biosynthesis, glutamate racemase is an attractive target for the design of antibacterial agents. However, the development of competitive tight-binding inhibitors has been problematic and highly species specific. Despite a number of recent crystal structures of cofactor-independent epimerases and racemases, cocrystallized with substrates or substrate analogues, the source of these enzymes' catalytic power and their ability to acidify the C alpha of amino acids remains unknown. The present integrated computational and experimental study focuses on the glutamate racemase from Bacillus subtilis (RacE). A particular focus is placed on the interaction of the glutamate carbanion intermediate with RacE. Results suggest that the reactive form of the RacE-glutamate carbanion complex, vis-à-vis proton abstraction from C alpha, is significantly different than the RacE-D-glutamate complex on the basis of the crystal structure and possesses dramatically stronger enzyme-ligand interaction energy. In silico and experimental site-directed mutagenesis indicates that the strength of the RacE-glutamate carbanion interaction energy is highly distributed among numerous electrostatic interactions in the active site, rather than being dominated by strong hydrogen bonds. Results from this study are important for laying the groundwork for discovery and design of high-affinity ligands to this class of cofactor-independent racemases.
Collapse
Affiliation(s)
- M Ashley Spies
- Department of Biochemistry, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Potent and selective inhibitors of Helicobacter pylori glutamate racemase (MurI): pyridodiazepine amines. Bioorg Med Chem Lett 2008; 19:930-6. [PMID: 19097892 DOI: 10.1016/j.bmcl.2008.11.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/14/2022]
Abstract
An SAR study of an HTS screening hit generated a series of pyridodiazepine amines as potent inhibitors of Helicobacter pylori glutamate racemase (MurI) showing highly selective anti-H. pylori activity, marked improved solubility, and reduced plasma protein binding. X-ray co-crystal E-I structures were obtained. These uncompetitive inhibitors bind at the MurI dimer interface.
Collapse
|
17
|
Breault GA, Comita-Prevoir J, Eyermann CJ, Geng B, Petrichko R, Doig P, Gorseth E, Noonan B. Exploring 8-benzyl pteridine-6,7-diones as inhibitors of glutamate racemase (MurI) in Gram-positive bacteria. Bioorg Med Chem Lett 2008; 18:6100-3. [DOI: 10.1016/j.bmcl.2008.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
|
18
|
Fisher SL. Glutamate racemase as a target for drug discovery. Microb Biotechnol 2008; 1:345-60. [PMID: 21261855 PMCID: PMC3815242 DOI: 10.1111/j.1751-7915.2008.00031.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 02/15/2008] [Indexed: 11/28/2022] Open
Abstract
The bacterial cell wall is a highly cross-linked polymeric structure consisting of repeating peptidoglycan units, each of which contains a novel pentapeptide substitution which is cross-linked through transpeptidation. The incorporation of D-glutamate as the second residue is strictly conserved across the bacterial kingdom. Glutamate racemase, a member of the cofactor-independent, two-thiol-based family of amino acid racemases, has been implicated in the production and maintenance of sufficient d-glutamate pool levels required for growth. The subject of over four decades of research, it is now evident that the enzyme is conserved and essential for growth across the bacterial kingdom and has a conserved overall topology and active site architecture; however, several different mechanisms of regulation have been observed. These traits have recently been targeted in the discovery of both narrow and broad spectrum inhibitors. This review outlines the biological history of this enzyme, the recent biochemical and structural characterization of isozymes from a wide range of species and developments in the identification of inhibitors that target the enzyme as possible therapeutic agents.
Collapse
Affiliation(s)
- Stewart L Fisher
- Infection Discovery, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| |
Collapse
|