1
|
Sapkota K, Lucas JK, Faulkner JW, Lichte MF, Guo YL, Burke DH, Huang F. Post-transcriptional capping generates coenzyme A-linked RNA. RNA Biol 2024; 21:1-12. [PMID: 38032240 PMCID: PMC10761072 DOI: 10.1080/15476286.2023.2288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.
Collapse
Affiliation(s)
- Krishna Sapkota
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Jordyn K. Lucas
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jarrett W. Faulkner
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Matt F. Lichte
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yan-Lin Guo
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Donald H. Burke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
2
|
Cronan JE. How an overlooked gene in coenzyme a synthesis solved an enzyme mechanism predicament. Mol Microbiol 2023; 119:687-694. [PMID: 37140060 PMCID: PMC10330860 DOI: 10.1111/mmi.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Coenzyme A (CoA) is an essential cofactor throughout biology. The first committed step in the CoA synthetic pathway is synthesis of β-alanine from aspartate. In Escherichia coli and Salmonella enterica panD encodes the responsible enzyme, aspartate-1-decarboxylase, as a proenzyme. To become active, the E. coli and S. enterica PanD proenzymes must undergo an autocatalytic cleavage to form the pyruvyl cofactor that catalyzes decarboxylation. A problem was that the autocatalytic cleavage was too slow to support growth. A long-neglected gene (now called panZ) was belatedly found to encode the protein that increases autocatalytic cleavage of the PanD proenzyme to a physiologically relevant rate. PanZ must bind CoA or acetyl-CoA to interact with the PanD proenzyme and accelerate cleavage. The CoA/acetyl-CoA dependence has led to proposals that the PanD-PanZ CoA/acetyl-CoA interaction regulates CoA synthesis. Unfortunately, regulation of β-alanine synthesis is very weak or absent. However, the PanD-PanZ interaction provides an explanation for the toxicity of the CoA anti-metabolite, N5-pentyl pantothenamide.
Collapse
Affiliation(s)
- John E. Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana 61801, USA
| |
Collapse
|
3
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
4
|
Arnott ZLP, Nozaki S, Monteiro DCF, Morgan HE, Pearson AR, Niki H, Webb ME. The Mechanism of Regulation of Pantothenate Biosynthesis by the PanD-PanZ·AcCoA Complex Reveals an Additional Mode of Action for the Antimetabolite N-Pentyl Pantothenamide (N5-Pan). Biochemistry 2017; 56:4931-4939. [PMID: 28832133 PMCID: PMC5724930 DOI: 10.1021/acs.biochem.7b00509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
antimetabolite pentyl pantothenamide has broad spectrum antibiotic
activity but exhibits enhanced activity against Escherichia
coli. The PanDZ complex has been proposed to regulate the
pantothenate biosynthetic pathway in E. coli by limiting
the supply of β-alanine in response to coenzyme A concentration.
We show that formation of such a complex between activated aspartate
decarboxylase (PanD) and PanZ leads to sequestration of the pyruvoyl
cofactor as a ketone hydrate and demonstrate that both PanZ overexpression-linked
β-alanine auxotrophy and pentyl pantothenamide toxicity are
due to formation of this complex. This both demonstrates that the
PanDZ complex regulates pantothenate biosynthesis in a cellular context
and validates the complex as a target for antibiotic development.
Collapse
Affiliation(s)
- Zoe L P Arnott
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K.,Hamburg Center for Ultrafast Imaging, Institute of Nanostructure and Solid State Physics, University of Hamburg , Luruper Chaussee 149, Hamburg 22761, Germany
| | - Shingo Nozaki
- Microbial Genetics Laboratory, Genetics Strains Research Center, National Institute of Genetics , 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Diana C F Monteiro
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K.,Hamburg Center for Ultrafast Imaging, Institute of Nanostructure and Solid State Physics, University of Hamburg , Luruper Chaussee 149, Hamburg 22761, Germany
| | - Holly E Morgan
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K
| | - Arwen R Pearson
- Hamburg Center for Ultrafast Imaging, Institute of Nanostructure and Solid State Physics, University of Hamburg , Luruper Chaussee 149, Hamburg 22761, Germany
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetics Strains Research Center, National Institute of Genetics , 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, Graduate University for Advanced Studies (Sokendai) , 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Michael E Webb
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K
| |
Collapse
|
5
|
de Villiers M, Spry C, Macuamule CJ, Barnard L, Wells G, Saliba KJ, Strauss E. Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target. ACS Infect Dis 2017; 3:527-541. [PMID: 28437604 DOI: 10.1021/acsinfecdis.7b00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-Substituted pantothenamides (PanAms) are pantothenate analogues with up to nanomolar potency against blood-stage Plasmodium falciparum (the most virulent species responsible for malaria). Although these compounds are known to target coenzyme A (CoA) biosynthesis and/or utilization, their exact mode of action (MoA) is still unknown. Importantly, PanAms that retain the natural β-alanine moiety are more potent than other variants, consistent with the involvement of processes that are selective for pantothenate (the precursor of CoA) or its derivatives. The transport of pantothenate and its phosphorylation by P. falciparum pantothenate kinase (PfPanK, the first enzyme of CoA biosynthesis) are two such processes previously highlighted as potential targets for the PanAms' antiplasmodial action. In this study, we investigated the effect of PanAms on these processes using their radiolabeled versions (synthesized here for the first time), which made possible the direct measurement of PanAm uptake by isolated blood-stage parasites and PanAm phosphorylation by PfPanK present in parasite lysates. We found that the MoA of PanAms does not involve interference with pantothenate transport and that inhibition of PfPanK-mediated pantothenate phosphorylation does not correlate with PanAm antiplasmodial activity. Instead, PanAms that retain the β-alanine moiety were found to be metabolically activated by PfPanK in a selective manner, forming phosphorylated products that likely inhibit other steps in CoA biosynthesis or are transformed into CoA antimetabolites that can interfere with CoA utilization. These findings provide direction for the ongoing development of CoA-targeted inhibitors as antiplasmodial agents with clinical potential.
Collapse
Affiliation(s)
- Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Gordon Wells
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
6
|
Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development. Biochem Soc Trans 2015; 42:1080-6. [PMID: 25110006 DOI: 10.1042/bst20140131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biosynthesis and utilization of CoA (coenzyme A), the ubiquitous and essential acyl carrier in all organisms, have long been regarded as excellent targets for the development of new antimicrobial drugs. Moreover, bioinformatics and biochemical studies have highlighted significant differences between several of the bacterial enzyme targets and their human counterparts, indicating that selective inhibition of the former should be possible. Over the past decade, a large amount of structural and mechanistic data has been gathered on CoA metabolism and the CoA biosynthetic enzymes, and this has facilitated the discovery and development of several promising candidate antimicrobial agents. These compounds include both target-specific inhibitors, as well as CoA antimetabolite precursors that can reduce CoA levels and interfere with processes that are dependent on this cofactor. In the present mini-review we provide an overview of the most recent of these studies that, taken together, have also provided chemical validation of CoA biosynthesis and utilization as viable targets for antimicrobial drug development.
Collapse
|
7
|
Exploiting the coenzyme A biosynthesis pathway for the identification of new antimalarial agents: the case for pantothenamides. Biochem Soc Trans 2015; 42:1087-93. [PMID: 25110007 DOI: 10.1042/bst20140158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malaria kills more than half a million people each year. There is no vaccine, and recent reports suggest that resistance is developing to the antimalarial regimes currently recommended by the World Health Organization. New drugs are therefore needed to ensure malaria treatment options continue to be available. The intra-erythrocytic stage of the malaria parasite's life cycle is dependent on an extracellular supply of pantothenate (vitamin B5), the precursor of CoA (coenzyme A). It has been known for many years that proliferation of the parasite during this stage of its life cycle can be inhibited with pantothenate analogues. We have shown recently that pantothenamides, a class of pantothenate analogues with antibacterial activity, inhibit parasite proliferation at submicromolar concentrations and do so competitively with pantothenate. These compounds, however, are degraded, and therefore rendered inactive, by the enzyme pantetheinase (vanin), which is present in serum. In the present mini-review, we discuss the two strategies that have been put forward to overcome pantetheinase-mediated degradation of pantothenamides. The strategies effectively provide an opportunity for pantothenamides to be tested in vivo. We also put forward our 'blueprint' for the further development of pantothenamides (and other pantothenate analogues) as potential antimalarials.
Collapse
|
8
|
de Villiers M, Barnard L, Koekemoer L, Snoep JL, Strauss E. Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis. FEBS J 2014; 281:4731-53. [PMID: 25156889 DOI: 10.1111/febs.13013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Abstract
N-substituted pantothenamides are analogues of pantothenic acid, the vitamin precursor of CoA, and constitute a class of well-studied bacterial growth inhibitors that show potential as new antibacterial agents. Previous studies have highlighted the importance of pantothenate kinase (PanK; EC 2.7.1.33) (the first enzyme of CoA biosynthesis) in mediating pantothenamide-induced growth inhibition by one of two proposed mechanisms: first, by acting on the pantothenamides as alternate substrates (allowing their conversion into CoA antimetabolites, with subsequent effects on CoA- and acyl carrier protein-dependent processes) or, second, by being directly inhibited by them (causing a reduction in CoA biosynthesis). In the present study we used structurally modified pantothenamides to probe whether PanKs interact with these compounds in the same manner. We show that the three distinct types of eubacterial PanKs that are known to exist (PanKI , PanKII and PanKIII ) respond very differently and, consequently, are responsible for determining the pantothenamide mode of action in each case: although the promiscuous PanKI enzymes accept them as substrates, the highly selective PanKIII s are resistant to their inhibitory effects. Most unexpectedly, Staphylococcus aureus PanK (the only known example of a bacterial PanKII ) experiences uncompetitive inhibition in a manner that is described for the first time. In addition, we show that pantetheine, a CoA degradation product that closely resembles the pantothenamides, causes the same effect. This suggests that, in S. aureus, pantothenamides may act by usurping a previously unknown role of pantetheine in the regulation of CoA biosynthesis, and validates its PanK as a target for the development of new antistaphylococcal agents.
Collapse
|
9
|
Awuah E, Ma E, Hoegl A, Vong K, Habib E, Auclair K. Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase. Bioorg Med Chem 2014; 22:3083-90. [PMID: 24814884 DOI: 10.1016/j.bmc.2014.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 12/26/2022]
Abstract
The coenzyme A (CoA) biosynthetic enzymes have been used to produce various CoA analogues, including mechanistic probes of CoA-dependent enzymes such as those involved in fatty acid biosynthesis. These enzymes are also important for the activation of the pantothenamide class of antibacterial agents, and of a recently reported family of antibiotic resistance inhibitors. Herein we report a study on the selectivity of pantothenate kinase, the first and rate limiting step of CoA biosynthesis. A robust synthetic route was developed to allow rapid access to a small library of pantothenate analogs diversified at the β-alanine moiety, the carboxylate or the geminal dimethyl group. All derivatives were tested as substrates of Escherichia coli pantothenate kinase (EcPanK). Four derivatives, all N-aromatic pantothenamides, proved to be equivalent to the benchmark N-pentylpantothenamide (N5-pan) as substrates of EcPanK, while two others, also with N-aromatic groups, were some of the best substrates reported for this enzyme. This collection of data provides insight for the future design of PanK substrates in the production of useful CoA analogues.
Collapse
Affiliation(s)
- Emelia Awuah
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Eric Ma
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Annabelle Hoegl
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Eric Habib
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| |
Collapse
|
10
|
de Villiers M, Macuamule C, Spry C, Hyun YM, Strauss E, Saliba KJ. Structural modification of pantothenamides counteracts degradation by pantetheinase and improves antiplasmodial activity. ACS Med Chem Lett 2013; 4:784-9. [PMID: 24900746 DOI: 10.1021/ml400180d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022] Open
Abstract
Pantothenamides are secondary or tertiary amides of pantothenic acid, the vitamin precursor of the essential cofactor and universal acyl carrier coenzyme A. A recent study has demonstrated that pantothenamides inhibit the growth of blood-stage Plasmodium falciparum with submicromolar potency by exerting an effect on pantothenic acid utilization, but only when the pantetheinase present in the growth medium has been inactivated. Here, we demonstrate that small modifications of the pantothenamide core structure are sufficient to counteract pantetheinase-mediated degradation and that the resulting pantothenamide analogues still inhibit the in vitro proliferation of P. falciparum by targeting a pantothenic acid-dependent process (or processes). Finally, we investigated the toxicity of the most potent analogues to human cells and show that the selectivity ratio exceeds 100 in one case. Taken together, these results provide further support for pantothenic acid utilization being a viable target for antimalarial drug discovery.
Collapse
Affiliation(s)
- Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Cristiano Macuamule
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | |
Collapse
|
11
|
Combination of pantothenamides with vanin inhibitors as a novel antibiotic strategy against gram-positive bacteria. Antimicrob Agents Chemother 2013; 57:4794-800. [PMID: 23877685 DOI: 10.1128/aac.00603-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activity in vitro, particularly against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents.
Collapse
|
12
|
Spry C, Macuamule C, Lin Z, Virga KG, Lee RE, Strauss E, Saliba KJ. Pantothenamides are potent, on-target inhibitors of Plasmodium falciparum growth when serum pantetheinase is inactivated. PLoS One 2013; 8:e54974. [PMID: 23405100 PMCID: PMC3566143 DOI: 10.1371/journal.pone.0054974] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/21/2012] [Indexed: 12/26/2022] Open
Abstract
Growth of the virulent human malaria parasite Plasmodium falciparum is dependent on an extracellular supply of pantothenate (vitamin B(5)) and is susceptible to inhibition by pantothenate analogues that hinder pantothenate utilization. In this study, on the hunt for pantothenate analogues with increased potency relative to those reported previously, we screened a series of pantothenamides (amide analogues of pantothenate) against P. falciparum and show for the first time that analogues of this type possess antiplasmodial activity. Although the active pantothenamides in this series exhibit only modest potency under standard in vitro culture conditions, we show that the potency of pantothenamides is selectively enhanced when the parasite culture medium is pre-incubated at 37°C for a prolonged period. We present evidence that this finding is linked to the presence in Albumax II (a serum-substitute routinely used for in vitro cultivation of P. falciparum) of pantetheinase activity: the activity of an enzyme that hydrolyzes the pantothenate metabolite pantetheine, for which pantothenamides also serve as substrates. Pantetheinase activity, and thereby pantothenamide degradation, is reduced following incubation of Albumax II-containing culture medium for a prolonged period at 37°C, revealing the true, sub-micromolar potency of pantothenamides. Importantly we show that the potent antiplasmodial effect of pantothenamides is attenuated with pantothenate, consistent with the compounds inhibiting parasite proliferation specifically by inhibiting pantothenate and/or CoA utilization. Additionally, we show that the pantothenamides interact with P. falciparum pantothenate kinase, the first enzyme involved in converting pantothenate to coenzyme A. This is the first demonstration of on-target antiplasmodial pantothenate analogues with sub-micromolar potency, and highlights the potential of pantetheinase-resistant pantothenamides as antimalarial agents.
Collapse
Affiliation(s)
- Christina Spry
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cristiano Macuamule
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch, South África
| | - Zhiyang Lin
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kristopher G. Virga
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, United States of America
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard E. Lee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch, South África
| | - Kevin J. Saliba
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
- Medical School, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
13
|
Akinnusi TO, Vong K, Auclair K. Geminal dialkyl derivatives of N-substituted pantothenamides: synthesis and antibacterial activity. Bioorg Med Chem 2011; 19:2696-706. [PMID: 21440446 PMCID: PMC3084188 DOI: 10.1016/j.bmc.2011.02.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 11/20/2022]
Abstract
As a key precursor of coenzyme A (CoA) biosynthesis, pantothenic acid has proven to be a useful backbone to elaborate probes of this biosynthetic pathway, study CoA-utilizing systems, and design molecules with antimicrobial activity. The increasing prevalence of bacterial strains resistant to one or more antibiotics has prompted a renewed interest for molecules with a novel mode of antibacterial action such as N-substituted pantothenamides. Although numerous derivatives have been reported, most are varied at the terminal N-substituent, and fewer at the β-alanine moiety. Modifications at the pantoyl portion are limited to the addition of an ω-methyl group. We report a synthetic route to N-substituted pantothenamides with various alkyl substituents replacing the geminal dimethyl groups. Our methodology is also applicable to the synthesis of pantothenic acid, pantetheine and CoA derivatives. Here a small library of new N-substituted pantothenamides was synthesized. Most of these compounds display antibacterial activity against sensitive and resistant Staphylococcus aureus. Interestingly, replacement of the ProR methyl with an allyl group yielded a new N-substituted pantothenamide which is amongst the most potent reported so far.
Collapse
Affiliation(s)
- T. Olukayode Akinnusi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| | - Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| |
Collapse
|
14
|
Yan X, Akinnusi TO, Larsen AT, Auclair K. Synthesis of 4'-aminopantetheine and derivatives to probe aminoglycoside N-6'-acetyltransferase. Org Biomol Chem 2011; 9:1538-46. [PMID: 21225062 PMCID: PMC3084192 DOI: 10.1039/c0ob01018a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient synthesis of 4'-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4'-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6'-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA.
Collapse
Affiliation(s)
- Xuxu Yan
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - T. Olukayode Akinnusi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Aaron T. Larsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
15
|
Rootman I, de Villiers M, Brand LA, Strauss E. Creating Cellulose-Binding Domain Fusions of the Coenzyme A Biosynthetic Enzymes to Enable Reactor-Based Biotransformations. ChemCatChem 2010. [DOI: 10.1002/cctc.201000197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
|
17
|
Mercer AC, Meier JL, Torpey JW, Burkart MD. In vivo modification of native carrier protein domains. Chembiochem 2009; 10:1091-100. [PMID: 19308927 DOI: 10.1002/cbic.200800838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carrier proteins are central to the biosynthesis of primary and secondary metabolites in all organisms. Here we describe metabolic labeling and manipulation of native acyl carrier proteins in both type I and II fatty acid synthases. By utilizing natural promiscuity in the CoA biosynthetic pathway in combination with synthetic pantetheine analogues, we demonstrate metabolic labeling of endogenous carrier proteins with reporter tags in Gram-positive and Gram-negative bacteria and in a human carcinoma cell line. The highly specific nature of the post-translational modification that was utilized for tagging allows for simple visualization of labeled carrier proteins, either by direct fluorescence imaging or after chemical conjugation to a fluorescent reporter. In addition, we demonstrate the utility of this approach for the isolation and enrichment of carrier proteins by affinity purification. Finally, we use these techniques to identify a carrier protein from an unsequenced organism, a finding that validates this proteomic approach to natural product biosynthetic enzyme discovery.
Collapse
Affiliation(s)
- Andrew C Mercer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
18
|
Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009; 38:2012-45. [DOI: 10.1039/b805115c] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|