1
|
Tiwari MK, Goslinski T. Searching for the Holy Grail - Highly Potent Bridged Endoperoxides for Targeted Cancer Therapy. Bioorg Chem 2024; 153:107893. [PMID: 39454496 DOI: 10.1016/j.bioorg.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The International Agency for Research on Cancer (IARC) recently estimated the global cancer burden in 2050. The statistics are startling, with a 77% hike and 35 million new cancer cases per year. The present discoveries have recommended plant-derived bridged endoperoxides or artemisinin-based semisynthetic analogues as safe, well-tolerated and powerful substitutes that could be effectively utilized as a warhead to fight against global enemies like cancer. In addition, artemisinin-based drug repositioning crucially can reduce overriding drug development expenditures and establish accessibility of approved drugs with low risk to patients. Hence, the present review article provides a comprehensive account of the recent chemical and synthetic advancement of diverse cytotoxic artemisinin derivatives such as C(10)-O, C, N, S linked artemisinin analogues, artemisinin-derived metal complexes, artemisinin-derived hybrids/conjugates with other pharmaceutically active substances, and artemisinin-derived dimers, trimers and tetramers perceived during the last three decades (1997-2024). Moreover, the current preclinical and clinical anticancer application prospects of artemisinin derivatives with other defined drugs and their utilization in combination therapy and also nanoformulation approaches for targeted drug delivery have been discussed.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
2
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
3
|
Sung DB, Lee JS. Natural-product-based fluorescent probes: recent advances and applications. RSC Med Chem 2023; 14:412-432. [PMID: 36970151 PMCID: PMC10034199 DOI: 10.1039/d2md00376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fluorescent probes are attractive tools for biology, drug discovery, disease diagnosis, and environmental analysis. In bioimaging, these easy-to-operate and inexpensive probes can be used to detect biological substances, obtain detailed cell images, track in vivo biochemical reactions, and monitor disease biomarkers without damaging biological samples. Over the last few decades, natural products have attracted extensive research interest owing to their great potential as recognition units for state-of-the-art fluorescent probes. This review describes representative natural-product-based fluorescent probes and recent discoveries, with a particular focus on fluorescent bioimaging and biochemical studies.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
4
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
5
|
Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021; 26:molecules26247521. [PMID: 34946603 PMCID: PMC8707619 DOI: 10.3390/molecules26247521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.
Collapse
|
6
|
Sharma B, Singh P, Singh AK, Awasthi SK. Advancement of chimeric hybrid drugs to cure malaria infection: An overview with special emphasis on endoperoxide pharmacophores. Eur J Med Chem 2021; 219:113408. [PMID: 33989911 DOI: 10.1016/j.ejmech.2021.113408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Emergence and spread of Plasmodium falciparum resistant to artemisinin-based combination therapy has led to a situation of haste in the scientific and pharmaceutical communities. Sincere efforts are redirected towards finding alternative chemotherapeutic agents that are capable of combating multidrug-resistant parasite strains. Extensive research yielded the concept of "Chimeric Bitherapy (CB)" which involves the linking of two molecules with individual pharmacological activity and exhibit dual mode of action into a single hybrid molecule. Current research in this field seems to endorse hybrid molecules as the next-generation antimalarial drugs and are more effective compared to the multi-component drugs because of the lower occurrence of drug-drug adverse effects. This review is an attempt to congregate complete survey on endoperoxide based hybrid antiplasmodial molecules that will give glimpse on the future directions for successful development and discovery of useful antimalarial hybrid drugs.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Preeti Singh
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ashawani Kumar Singh
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
7
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Fonte M, Tassi N, Gomes P, Teixeira C. Acridine-Based Antimalarials-From the Very First Synthetic Antimalarial to Recent Developments. Molecules 2021; 26:molecules26030600. [PMID: 33498868 PMCID: PMC7865557 DOI: 10.3390/molecules26030600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Malaria is among the deadliest infectious diseases in the world caused by Plasmodium parasites. Due to the high complexity of the parasite’s life cycle, we partly depend on antimalarial drugs to fight this disease. However, the emergence of resistance, mainly by Plasmodium falciparum, has dethroned most of the antimalarials developed to date. Given recent reports of resistance to artemisinin combination therapies, first-line treatment currently recommended by the World Health Organization, in Western Cambodia and across the Greater Mekong sub-region, it seems very likely that artemisinin and its derivatives will follow the same path of other antimalarial drugs. Consequently, novel, safe and efficient antimalarial drugs are urgently needed. One fast and low-cost strategy to accelerate antimalarial development is by recycling classical pharmacophores. Quinacrine, an acridine-based compound and the first clinically tested synthetic antimalarial drug with potent blood schizonticide but serious side effects, has attracted attention due to its broad spectrum of biological activity. In this sense, the present review will focus on efforts made in the last 20 years for the development of more efficient, safer and affordable antimalarial compounds, through recycling the classical quinacrine drug.
Collapse
|
9
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
10
|
Sissoko A, Vásquez-Ocmín P, Maciuk A, Barbieri D, Neveu G, Rondepierre L, Grougnet R, Leproux P, Blaud M, Hammad K, Michel S, Lavazec C, Clain J, Houzé S, Duval R. A Chemically Stable Fluorescent Mimic of Dihydroartemisinin, Artemether, and Arteether with Conserved Bioactivity and Specificity Shows High Pharmacological Relevance to the Antimalarial Drugs. ACS Infect Dis 2020; 6:1532-1547. [PMID: 32267151 DOI: 10.1021/acsinfecdis.9b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel tracers designed as fluorescent surrogates of artemisinin-derived antimalarial drugs (i.e., dihydroartemisinin, artemether, arteether, and artemisone) were synthesized from dihydroartemisinin. One of these tracers, corresponding to a dihydroartemisinin/artemether/arteether mimic, showed a combination of excellent physicochemical and biological properties such as hydrolytic stability, high inhibitory potency against blood-stage parasites, similar ring-stage survival assay values than the clinical antimalarials, high cytopermeability and specific labeling of live P. falciparum cells, alkylation of heme, as well as specific covalent labeling of drug-sensitive and drug-resistant P. falciparum proteomes at physiological concentrations, consistent with a multitarget action of the drugs. Our study demonstrates that probes containing the complete structural core of clinical artemisinin derivatives can be stable in biochemical and cellular settings, and recapitulate the complex mechanisms of these frontline, yet threatened, antimalarial drugs.
Collapse
Affiliation(s)
- Abdoulaye Sissoko
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, F-92290 Châtenay-Malabry, France
| | - Daniela Barbieri
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Gaëlle Neveu
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Laurine Rondepierre
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | | | - Magali Blaud
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Karim Hammad
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Sylvie Michel
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Catherine Lavazec
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Jérôme Clain
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sandrine Houzé
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- CNR du Paludisme, AP-HP, Hôpital Bichat − Claude-Bernard, F-75018 Paris, France
| | - Romain Duval
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| |
Collapse
|
11
|
Rono CK, Darkwa J, Meyer D, Makhubela BCE. A Novel Series of N-aryltriazole and N-acridinyltriazole Hybrids as Potential Anticancer Agents. Curr Org Synth 2020; 16:900-912. [PMID: 31984911 DOI: 10.2174/1570179416666190704112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triazoles are a class of aza-heterocycles with broad spectrum of biological importance. The synthetic tunability of the triazole moiety allows for the development of new pharmacophores with applications as drugs to contend with the burden of cancer. OBJECTIVE In this study, we aimed to develop a series of N-aryltriazole and N-acridinyltriazole molecular hybrids and evaluate their potential as anticancer agents. METHODS The triazole derivatives (1-10) were synthesized via a tandem nucleophilic substitution of aryl chlorides with sodium azide followed by 1,3-dipolar cycloaddition of the resulting organic azides with terminal/internal alkynes. From terminal alkynes, the well established copper(I) catalyzed azide-alkynes 1,3- dipolar cycloaddition, a premier example of click chemistry, was employed to access the 1,4-regioisomers of N-benzyl-1H-1,2,3-triazoles and N-acridynyl-1H-1,2,3-triazoles. All the compounds thus synthesized were characterized by 1D and 2D NMR spectroscopy and high resolution mass spectrometry. RESULTS Thermally controlled 1,3-dipolar cycloaddition was used to deliver N-aryl-1H-1,2,3-triazoles with 1,4,5-substitution on the triazole framework. The unprecedented high regioselectivity promoted by the sterically-strained silylated 1,4,5-trisubstituted moiety 4a offers a useful synthetic precursor with the silyl group being a synthetic handle for further structural elaboration to the desired 1,(4),5-di(tri)substituted 1,2,3- triazoles. Notably, anticancer evaluation revealed good cytotoxic activities of the novel acridinyltriazole hybrids (6-10) at micromolar concentrations in the range of 12.5 µM-100 µM against cervical cancer HeLa, kidney cancer HEK293, lung cancer A549 and leukemic MT4 cancer cell lines (p < 0.05). CONCLUSION A series of novel triazole-based acridine hybrids have been developed as potential leads for the development of multifaceted anticancer agents.
Collapse
Affiliation(s)
- Charles K Rono
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006, Auckland Park, South Africa
| | - James Darkwa
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006, Auckland Park, South Africa
| | - Debra Meyer
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, 2006, Auckland Park, South Africa
| | - Banothile C E Makhubela
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006, Auckland Park, South Africa
| |
Collapse
|
12
|
Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med Res Rev 2020; 40:1220-1275. [PMID: 31930540 DOI: 10.1002/med.21657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
According to WHO World Malaria Report (2018), nearly 219 million new cases of malaria occurred and a total no. of 435 000 people died in 2017 due to this infectious disease. This is due to the rapid spread of parasite-resistant strains. Artemisinin (ART), a sesquiterpene lactone endoperoxide isolated from traditional Chinese herb Artemisia annua, has been recognized as a novel class of antimalarial drugs. The 2015 "Nobel Prize in Physiology or Medicine" was given to Prof Dr Tu Youyou for the discovery of ART. Hence, ART is termed as "Nobel medicine." The present review article accommodates insights from the chronological advancements and direct statistics witnessed during the past 48 years (1971-2019) in the medicinal chemistry of ART-derived antimalarial endoperoxides, and their clinical utility in malaria chemotherapy and drug discovery.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
13
|
Marella A, Verma G, Shaquiquzzaman M, Khan MF, Akhtar W, Alam MM. Malaria Hybrids: A Chronological Evolution. Mini Rev Med Chem 2019; 19:1144-1177. [PMID: 30887923 DOI: 10.2174/1389557519666190315100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/27/2018] [Accepted: 11/03/2018] [Indexed: 01/13/2023]
Abstract
Malaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world's population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
Collapse
Affiliation(s)
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
14
|
Vil’ VA, Terent’ev AO, Mulina OM. Bioactive Natural and Synthetic Peroxides for the Treatment of Helminth and Protozoan Pathogens: Synthesis and Properties. Curr Top Med Chem 2019; 19:1201-1225. [DOI: 10.2174/1568026619666190620143848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
The significant spread of helminth and protozoan infections, the uncontrolled intake of the
known drugs by a large population, the emergence of resistant forms of pathogens have prompted people
to search for alternative drugs. In this review, we have focused attention on structures and synthesis of
peroxides active against parasites causing neglected tropical diseases and toxoplasmosis. To date, promising
active natural, semi-synthetic and synthetic peroxides compounds have been found.
Collapse
Affiliation(s)
- Vera A. Vil’
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Alexander O. Terent’ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| |
Collapse
|
15
|
Aggarwal S, Paliwal D, Kaushik D, Gupta GK, Kumar A. Synthesis, Antimalarial Evaluation and SAR Study of Some 1,3,5-Trisubstituted Pyrazoline Derivatives. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190212145754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of a novel series of 1,3,5-trisubstitiuted pyrazoline was achieved by refluxing
chalcone derivative with different heteroaryl hydrazines. The newly synthesized compounds were
characterized by 1H NMR, 13CNMR, mass spectral and elemental analysis data. The synthetic series of
novel pyrazoline hybrids was screened for in vitro schizont maturation assay against chloroquine sensitive
3D7 strain of Plasmodium falciparum. Most of the compounds showed promising in vitro antimalarial
activity against CQ sensitive strain. The preliminary structure-activity relationship study showed
that quinoline substituted analog at position N-1 showed maximum activity followed by benzothiazole
substitution, while phenyl substitution lowers the antimalarial activity. The observed activity was persistent
by the docking study on P. falciparum cystein protease falcipain-2. The pharmacokinetic properties
were also studied using ADME prediction.
Collapse
Affiliation(s)
| | - Deepika Paliwal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Dhirender Kaushik
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry, M.M. College of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala 133203, India
| | - Ajay Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| |
Collapse
|
16
|
Vil' VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions. Molecules 2017; 22:E1881. [PMID: 29099089 PMCID: PMC6150334 DOI: 10.3390/molecules22111881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
The biological activity of organic peroxides is usually associated with the antimalarial properties of artemisinin and its derivatives. However, the analysis of published data indicates that organic peroxides exhibit a variety of biological activity, which is still being given insufficient attention. In the present review, we deal with natural, semi-synthetic and synthetic peroxides exhibiting anthelmintic, antiprotozoal, fungicidal, antiviral and other activities that have not been described in detail earlier. The review is mainly concerned with the development of methods for the synthesis of biologically active natural peroxides, as well as its isolation from natural sources and the modification of natural peroxides. In addition, much attention is paid to the substantially cheaper biologically active synthetic peroxides. The present review summarizes 217 publications mainly from 2000 onwards.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| |
Collapse
|
17
|
Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg Med Chem 2017; 25:3357-3367. [DOI: 10.1016/j.bmc.2017.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
|
18
|
Satheeshkumar R, Sayin K, Kaminsky W, Rajendra Prasad KJ. Synthesis, spectral analysis and quantum chemical studies on molecular geometry, chemical reactivity of 7-chloro-9-(2′-chlorophenyl)-2,3-dihydroacridin-4(1H)-one and 7-chloro-9-(2′-fluorophenyl)-2,3-dihydroacridin-4(1H)-one. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Synthesis and cytotoxicity of novel artemisinin derivatives containing sulfur atoms. Eur J Med Chem 2016; 123:763-768. [PMID: 27537924 DOI: 10.1016/j.ejmech.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Ten novel artemisinin derivatives containing sulfur atoms were designed and synthesized and their structures were confirmed by (1)H NMR, (13)C NMR and HRMS technologies in this study. All compounds were reported for the first time. The in vitro cytotoxicity against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines was evaluated by MTT assay. Compounds 4a and 4f displayed potent antitumor activity against PC-3, SGC-7901 and A549 cells with IC50 ranging from 1.6 to 30.5 μM, which values are compared to that of 5-FU (IC50 from 6.8 to 42.5 μM). Compounds 4a and 4f showed high specificity towards human lung cancer A549 cells compared to normal human hepatic L-02 cells with selectivity index of 16.1 and 50.1 respectively. Our promising findings indicated that the compounds 4a and 4f could stand as potential lead compounds for further investigation.
Collapse
|
20
|
Abstract
Aiming to develop new artemisinin-based combination therapy (ACT) for malaria, antimalarial effect of a new series of pyrrolidine-acridine hybrid in combination with artemisinin derivatives was investigated. Synthesis, antimalarial and cytotoxic evaluation of a series of hybrid of 2-(3-(substitutedbenzyl)pyrrolidin-1-yl)alkanamines and acridine were performed and mode of action of the lead compound was investigated. In vivo pharmacodynamic properties (parasite clearance time, parasite reduction ratio, dose and regimen determination) against multidrug resistant (MDR) rodent malaria parasite and toxicological parameters (median lethal dose, liver function test, kidney function test) were also investigated. 6-Chloro-N-(4-(3-(3,4-dimethoxybenzyl)pyrrolidin-1-yl)butyl)-2-methoxyacridin-9-amine (15c) has shown a dose dependent haem bio-mineralization inhibition and was found to be the most effective and safe compound against MDR malaria parasite in Swiss mice model. It displayed best antimalarial potential with artemether (AM) in vitro as well as in vivo. The combination also showed favourable pharmacodynamic properties and therapeutic response in mice with established MDR malaria infection and all mice were cured at the determined doses. The combination did not show toxicity at the doses administered to the Swiss mice. Taken together, our findings suggest that compound 15c is a potential partner with AM for the ACT and could be explored for further development.
Collapse
|
21
|
Theoretical and experimental investigations on molecular structure of 7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one with cytotoxic studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zhang X, Ba Q, Gu Z, Guo D, Zhou Y, Xu Y, Wang H, Ye D, Liu H. Fluorescent Coumarin-Artemisinin Conjugates as Mitochondria-Targeting Theranostic Probes for Enhanced Anticancer Activities. Chemistry 2015; 21:17415-21. [DOI: 10.1002/chem.201502543] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022]
|
23
|
Jagadishbabu N, Shivashankar K. One pot synthesis of acridine analogues from 1,2-diols as key reagents. RSC Adv 2015. [DOI: 10.1039/c5ra19595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lead tetraacetate is an efficient reagent for the one pot synthesis of acridines from a variety of 1,2-diols, dimedone and ammonium acetate.
Collapse
Affiliation(s)
| | - Kalegowda Shivashankar
- P.G. Department of Chemistry
- Central College Campus
- Bangalore University
- Bangalore-560 001
- India
| |
Collapse
|
24
|
Smit FJ, van Biljon RA, Birkholtz LM, N'Da DD. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem 2015; 90:33-44. [DOI: 10.1016/j.ejmech.2014.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
25
|
Sharma S, Singh H, Singh H, Mohinder Singh Bedi P. Chemotherapeutic Potential of Acridine Analogs: An Ample Review. HETEROCYCLES 2015. [DOI: 10.3987/rev-15-826] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Wang L, Świtalska M, Wang N, Du ZJ, Fukumoto Y, Diep NK, Kiguchi R, Nokami J, Wietrzyk J, Inokuchi T. Design, synthesis, and biological evaluation of artemisinin-indoloquinoline hybrids as potent antiproliferative agents. Molecules 2014; 19:19021-35. [PMID: 25412047 PMCID: PMC6271626 DOI: 10.3390/molecules191119021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
A series of artemisinin-indoloquinoline hybrids were designed and synthesized in an attempt to develop potent and selective anti-tumor agents. Compounds 7a–7f, 8 and 9 were prepared and characterized. Their antiproliferative activities against MV4-11, HCT-116, A549, and BALB/3T3 cell lines in vitro were tested. Nearly all of the tested compounds (7–9, except for compounds 7d and 7e against HCT-116) showed an increased antitumor activity against HCT-116 and A549 cell lines when compared to the dihydroartemisinin control. Especially for the artemisinin-indoloquinoline hybrid 8, with an 11-aminopropylamino-10H-indolo[3,2-b]quinoline substituent, the antiproliferative activity against the A549 cell line had improved more than ten times. The IC50 value of hybrid 8 against A549 cell lines was decreased to 1.328 ± 0.586 μM, while dihydroartemisin showed IC50 value of >20 µM in the same cell line. Thus, these results have proven that the strategy of introducing a planar basic fused aromatic moiety, such as the indoloquinoline skeleton, could improve the antiproliferative activity and selectivity towards cancer cell lines.
Collapse
Affiliation(s)
- Li Wang
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Marta Świtalska
- Institute of Immunology and Experimental Therapy, Polish Academy of Science, 12, R. Weigl Street, Wroclaw 53-114, Poland.
| | - Ning Wang
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Zhen-Jun Du
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, Ridai-cho, Kita-ku, Okayama, Japan.
| | - Yuta Fukumoto
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Nguyen Kim Diep
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Ryo Kiguchi
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Junzo Nokami
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, Ridai-cho, Kita-ku, Okayama, Japan.
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Science, 12, R. Weigl Street, Wroclaw 53-114, Poland.
| | - Tsutomu Inokuchi
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
27
|
Marella A, Akhter M, Shaquiquzzaman M, Tanwar O, Verma G, Alam MM. Synthesis, 3D-QSAR and docking studies of pyrimidine nitrile-pyrazoline: a novel class of hybrid antimalarial agents. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1188-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Lödige M, Lewis MD, Paulsen ES, Esch HL, Pradel G, Lehmann L, Brun R, Bringmann G, Mueller AK. A primaquine-chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int J Med Microbiol 2013; 303:539-47. [PMID: 23992634 DOI: 10.1016/j.ijmm.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 07/01/2013] [Accepted: 07/14/2013] [Indexed: 10/26/2022] Open
Abstract
We present a new class of hybrid molecules consisting of the established antiplasmodial drugs primaquine and chloroquine. No drug is known to date that acts comparably against all stages of Plasmodium in its life cycle. Starting from available precursors, we designed and synthesized a new-generation compound consisting of both primaquine and chloroquine components, with the intent to produce agents that exhibit bioactivity against different stages of the parasite's life cycle. In vitro, the hybrid molecule 3 displays activity against both asexual and sexual P. falciparum blood stages as well as P. berghei sporozoites and liver stages. In vivo, the hybrid elicits activity against P. berghei liver and blood stages. Our results successfully validate the concept of utilizing one compound to combine different modes of action that attack different Plasmodium stages in the mammalian host. It is our hope that the novel design of such compounds will outwit the pathogen in the spread of drug resistance. Based on the optimized synthetic pathway, the compound is accessible in a smooth and versatile way and open for potential further molecular modification.
Collapse
Affiliation(s)
- Melanie Lödige
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
La Pensée L, Sabbani S, Sharma R, Bhamra I, Shore E, Chadwick AE, Berry NG, Firman J, Araujo NC, Cabral L, Cristiano MLS, Bateman C, Janneh O, Gavrila A, Wu YH, Hussain A, Ward SA, Stocks PA, Cosstick R, O'Neill PM. Artemisinin-polypyrrole conjugates: synthesis, DNA binding studies and preliminary antiproliferative evaluation. ChemMedChem 2013; 8:709-18. [PMID: 23495190 DOI: 10.1002/cmdc.201200536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Indexed: 11/06/2022]
Abstract
Greater than the sum of its parts: Artemisinins are currently in phase I-II clinical trials against breast, colorectal and non-small-cell lung cancers. In an attempt to offer increased specificity, a series of hybrid artemisinin-polypyrrole minor groove binder conjugates are described. DNA binding/modelling studies and preliminary biological evaluation give insights into their mechanism of action and the potential of this strategy.
Collapse
Affiliation(s)
- Louise La Pensée
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis and cytotoxicity of novel 10-substituted dihydroartemisinin derivatives containing N-arylphenyl-ethenesulfonamide groups. Molecules 2013; 18:2864-77. [PMID: 23459298 PMCID: PMC6270595 DOI: 10.3390/molecules18032864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/16/2022] Open
Abstract
The manuscript describes the synthesis of 10-substituted dihydroartemisinin derivatives containing N-aryl phenylethenesulfonamide groups and their in vitro anti-tumor activities against the HT-29, MDA-MB-231, U87MG, H460, A549 and HL-60 cancer cell lines and the normal WI-38 cell line. Most tested compounds showed enhanced cytotoxic activities and good selectivity toward the MDA-MB-231, HT-29 and HL-60 cell lines, with IC50 values in the single-digit μM range as compared with dihydroartemisinin (DHA), and all of them displayed less toxicity towards WI-38 cells. Among them, compounds 3c and 6c with trifluoromethoxy groups on the N-phenyl ring were found to be most active compounds against the six tested cancer cell lines.
Collapse
|
31
|
Bruno M, Trucchi B, Monti D, Romeo S, Kaiser M, Verotta L. Synthesis of a potent antimalarial agent through natural products conjugation. ChemMedChem 2013; 8:221-5. [PMID: 23307699 PMCID: PMC3836189 DOI: 10.1002/cmdc.201200503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/07/2022]
Abstract
Au naturel! (+)-Usnic acid (green) is a weak antimalarial agent, however, in conjugation with known antimalarial scaffolds and drugs, such as dihydroartemisinin (blue), potent activity against the blood-stage parasite can be seen both in vitro and in vivo. The compound shown exhibits an IC(50) value of 1.4 nM against Plasmodium falciparum in vitro and proved nearly as efficacious as artesunate in a mouse model of infection.
Collapse
Affiliation(s)
- Michela Bruno
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano (Italy)
| | - Beatrice Trucchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano (Italy)
| | - Diego Monti
- Istituto di Scienze e Tecnologie Molecolari, CNR, Via C. Golgi 19, 20133, Milano (Italy)
| | - Sergio Romeo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milano (Italy)
| | - Marcel Kaiser
- Department of Medical Parasitology & Infection Biology, Swiss, Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel (Switzerland)
- University of Basel, Petersplatz 1, 4003 Basel (Switzerland)
| | - Luisella Verotta
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano (Italy)
| |
Collapse
|
32
|
Microbial transformation of azaarenes and potential uses in pharmaceutical synthesis. Appl Microbiol Biotechnol 2012; 95:871-89. [PMID: 22740048 DOI: 10.1007/s00253-012-4220-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Pyridine, quinoline, acridine, indole, carbazole, and other heterocyclic nitrogen-containing compounds (azaarenes) can be transformed by cultures of bacteria and fungi to produce a variety of new derivatives, many of which have biological activity. In many cases, the microbial biotransformation processes are regio- and stereoselective so that the transformation products may be useful for the synthesis of new candidate drugs.
Collapse
|
33
|
Perković I, Tršinar S, Žanetić J, Kralj M, Martin-Kleiner I, Balzarini J, Hadjipavlou-Litina D, Katsori AM, Zorc B. Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine − synthesis, cytostatic, antiviral and antioxidative studies. J Enzyme Inhib Med Chem 2012; 28:601-10. [DOI: 10.3109/14756366.2012.663366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| | - Sara Tršinar
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| | - Jelena Žanetić
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Rudjer Bošković Institute,
Zagreb, Croatia
| | | | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven,
Leuven, Belgium
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki,
Thessaloniki, Greece
| | - Anna Maria Katsori
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki,
Thessaloniki, Greece
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| |
Collapse
|
34
|
Yu XM, Ramiandrasoa F, Guetzoyan L, Pradines B, Quintino E, Gadelle D, Forterre P, Cresteil T, Mahy JP, Pethe S. Synthesis and biological evaluation of acridine derivatives as antimalarial agents. ChemMedChem 2012; 7:587-605. [PMID: 22331612 DOI: 10.1002/cmdc.201100554] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/13/2012] [Indexed: 11/11/2022]
Abstract
New N-alkylaminoacridine derivatives attached to nitrogen heterocycles were synthesized, and their antimalarial potency was examined. They were tested in vitro against the growth of Plasmodium falciparum, including chloroquine (CQ)-susceptible and CQ-resistant strains. This biological evaluation has shown that the presence of a heterocyclic ring significantly increases the activity against P. falciparum. The best compound shows a nanomolar IC(50) value toward parasite proliferation on both CQ-susceptible and CQ-resistant strains. The antimalarial activity of these new acridine derivatives can be explained by the two mechanisms studied in this work. First, we showed the capacity of these compounds to inhibit heme biocrystallization, a detoxification process specific to the parasite and essential for its survival. Second, in our search for alternative targets, we evaluated the in vitro inhibitory activity of these compounds toward Sulfolobus shibatae topoisomerase VI-mediated DNA relaxation. The preliminary results obtained reveal that all tested compounds are potent DNA intercalators, and significantly inhibit the activity of S. shibatae topoisomerase VI at concentrations ranging between 2.0 and 2.5 μM.
Collapse
Affiliation(s)
- Xiao-Min Yu
- Université Paris-Sud 11, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Equipe de Chimie Bioorganique et Bioinorganique, Orsay 91405 CEDEX, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xie L, Zhai X, Ren L, Meng H, Liu C, Zhu W, Zhao Y. Design, synthesis and antitumor activity of novel artemisinin derivatives using hybrid approach. Chem Pharm Bull (Tokyo) 2011; 59:984-90. [PMID: 21804243 DOI: 10.1248/cpb.59.984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an attempt to develop potent and selective anti-tumor agents, two novel series of artemisinin-chalcone hybrids were designed, synthesized and screened for their antitumor activities against HT-29, A549, MDA-MB-231, HeLa and H460 cell lines in vitro. Nearly all of the tested compounds showed significantly increased anti-tumor activity compared with the corresponding dihydroartemisinin (DHA). Most of the title compounds displayed good selectivity toward HT-29 and HeLa cell lines with IC₅₀ values ranging from 0.09 to 0.85 µM. Among them, the most promising compound 9c (IC₅₀) range of 0.09-0.93 µM) was 10.5- to 70-times more active than DHA (IC₅₀ range of 5.6-15.6 µM) respectively.
Collapse
Affiliation(s)
- Lijun Xie
- Key Laboratory of Original New Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Feng TS, Guantai EM, Nell M, van Rensburg CEJ, Ncokazi K, Egan TJ, Hoppe HC, Chibale K. Effects of highly active novel artemisinin-chloroquinoline hybrid compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum. Biochem Pharmacol 2011; 82:236-47. [PMID: 21596024 DOI: 10.1016/j.bcp.2011.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 11/25/2022]
Abstract
4-Aminoquinolines were hybridized with artemisinin and 1,4-naphthoquinone derivatives via the Ugi-four-component condensation reaction, and their biological activities investigated. The artemisinin-containing compounds 6a-c and its salt 6c-citrate were the most active target compounds in the antiplasmodial assays. However, despite the potent in vitro activities, they also displayed cytotoxicity against a mammalian cell-line, and had lower therapeutic indices than chloroquine. Morphological changes in parasites treated with these artemisinin-containing hybrid compounds were similar to those observed after addition of artemisinin. These hybrid compounds appeared to share mechanism(s) of action with both chloroquine and artemisinin: they exhibited potent β-hematin inhibitory activities; they caused an increase in accumulation of hemoglobin within the parasites that was intermediate between the increase observed with artesunate and chloroquine; and they also appeared to inhibit endocytosis as suggested by the decrease in the number of transport vesicles in the parasites. No cross-resistance with chloroquine was observed for these hybrid compounds, despite the fact that they contained the chloroquinoline moiety. The hybridization strategy therefore appeared to be borrowing the best from both classes of antimalarials.
Collapse
Affiliation(s)
- Tzu-Shean Feng
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Synthesis of triterpenoid-based 1,2,4-trioxolanes and 1,2,4-dioxazolidines by ozonolysis of allobetulin derivatives. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Liu Y, Lok CN, Ko BCB, Shum TYT, Wong MK, Che CM. Subcellular localization of a fluorescent artemisinin derivative to endoplasmic reticulum. Org Lett 2010; 12:1420-3. [PMID: 20192248 DOI: 10.1021/ol902890j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cytotoxic artemisinin derivative conjugated with a fluorescent dansyl moiety was synthesized and its subcellular localization in Hep3B cells was examined. Comparison of the localization signals of the fluorescent artemisinin derivative with organelle specific dyes revealed that endoplasmic reticulum (ER) is the main site of its accumulation.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
39
|
Muregi FW, Ishih A. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. Drug Dev Res 2010; 71:20-32. [PMID: 21399701 PMCID: PMC3049227 DOI: 10.1002/ddr.20345] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Malaria is a disease that affects nearly 40% of the global population, and chemotherapy remains the mainstay of its control strategy. The global malaria situation is increasingly being exacerbated by the emergence of drug resistance to most of the available antimalarials, necessitating search for novel drugs. A recent rational approach of antimalarial drug design characterized as "covalent bitherapy" involves linking two molecules with individual intrinsic activity into a single agent, thus packaging dual-activity into a single hybrid molecule. Current research in this field seems to endorse hybrid molecules as the next-generation antimalarial drugs. If the selective toxicity of hybrid prodrugs can be demonstrated in vivo with good bioavailability at the target site in the parasite, it would offer various advantages including dosage compliance, minimized toxicity, ability to design better drug combinations, and cheaper preclinical evaluation while achieving the ultimate object of delaying or circumventing the development of resistance. This review is focused on several hybrid molecules that have been developed, with particular emphasis on those deemed to have high potential for development for clinical use. Drug Dev Res 71: 20-32, 2010. © 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francis W Muregi
- Department of Infectious Diseases, Hamamatsu University School of MedicineHamamatsu, Japan
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI)Nairobi, Kenya
| | - Akira Ishih
- Department of Infectious Diseases, Hamamatsu University School of MedicineHamamatsu, Japan
| |
Collapse
|
40
|
Fernandes I, Vale N, de Freitas V, Moreira R, Mateus N, Gomes P. Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine. Bioorg Med Chem Lett 2009; 19:6914-7. [DOI: 10.1016/j.bmcl.2009.10.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 11/28/2022]
|
41
|
Zhang S, Gerhard GS. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One 2009; 4:e7472. [PMID: 19862332 PMCID: PMC2764339 DOI: 10.1371/journal.pone.0007472] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/28/2009] [Indexed: 11/19/2022] Open
Abstract
Heme (Fe2+ protoporphyrin IX) is an essential molecule that has been implicated the potent antimalarial action of artemisinin and its derivatives, although the source and nature of the heme remain controversial. Artemisinins also exhibit selective cytotoxicity against cancer cells in vitro and in vivo. We demonstrate that intracellular heme is the physiologically relevant mediator of the cytotoxic effects of artemisinins. Increasing intracellular heme synthesis through the addition of aminolevulinic acid, protoporphyrin IX, or transferrin-bound iron increased the cytotoxicity of dihydroartemisinin, while decreasing heme synthesis through the addition of succinyl acetone decreased its cytotoxic activity. A simple and robust high throughput assay was developed to screen chemical compounds that were capable of interacting with heme. A natural products library was screened which identified the compound coralyne, in addition to artemisinin, as a heme interacting compound with heme synthesis dependent cytotoxic activity. These results indicate that cellular heme may serve a general target for the development of both anti-parasitic and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Shiming Zhang
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States of America
| | - Glenn S. Gerhard
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States of America
| |
Collapse
|