1
|
Kapuku B, Bohle DS. Synthesis and Photolysis Properties of a New Chloroquine Photoaffinity Probe. Molecules 2024; 29:1084. [PMID: 38474595 DOI: 10.3390/molecules29051084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
A new chloroquine-derived photoaffinity probe has been prepared by a convergent synthesis from derivative of 4,7-dichloroquinoline and N1,N1-diethyl-N4-methylpentane. The features of this probe are a unique 3-azido photolabel, the pyridine ring of the quinoline, and the presence of a secondary amine at the 4-position of the quinoline. These features, particularly the 4-amino methylation, prevent triazole formation through combination of the 3-azide and the 4-amine. This undergoes facile cleavage with exposure to a medium-pressure mercury lamp with a 254 nm excitation wavelength. Trapping of the nitrene byproduct is accomplished with its reaction with N-phenylmaleimide as its cycloazidation product. The structure of a ring-opened DBU amine has been structurally characterized.
Collapse
Affiliation(s)
- Benita Kapuku
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - D Scott Bohle
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| |
Collapse
|
2
|
Li G, Luo D, Luo Q, Huang Z, Zhuang W, Luo H, Yang W. Chemoselectivity of the CuAAC/Ring Cleavage/Cyclization Reaction between Enaminones and α-Acylketenimine. J Org Chem 2024; 89:2190-2199. [PMID: 38279922 DOI: 10.1021/acs.joc.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Ketenimines represent an important class of reactive species, useful synthetic intermediates, and synthons. However, in general, ketenimines preferentially undergoes nucleophilic addition reactions with hydroxyl and amino groups, and carbon functional groups remain a less studied subset of such systems. Herein, we develop a straightforward syntheses of pyridin-4(1H)-imines that is achieved by cyclization of a reacting enaminone unit with α-acylketenimine which is generated from the reactions of sulfonyl azides and terminal ynones in situ (CuAAC/Ring cleavage reaction). The cascade process preferentially starts with the nucleophilic α-C of the enaminone unit instead of an amino group, attacking the electron-deficient central carbon of ketenimine, and the chemoselectivity unconventional products pyridin-4(1H)-imines were formed by intramolecular cyclization.
Collapse
Affiliation(s)
- Guanrong Li
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Danyang Luo
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, P. R. China
| | - Zixin Huang
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weimin Zhuang
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weiguang Yang
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
3
|
Puentes-Díaz N, Chaparro D, Reyes-Marquez V, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S383-S396. [PMID: 37483007 DOI: 10.3233/jad-230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia representing from 60% to 70% of the cases globally. It is a multifactorial disease that, among its many pathological characteristics, has been found to provoke the metal ion dysregulation in the brain, along with an increase in the oxidative stress. There is proof that metallic complexes formed by the amyloid-β peptide (Aβ) and extraneuronal copper can catalyze the production of reactive oxygen species, leading to an increase in oxidative stress, promoting neuronal death. Due to this interaction, bioavailable copper has become an important redox active target to consider within the search protocols of multifunctional agents for AD's treatment. Objective In this study, we examined by using bioinformatics and electronic structure calculations the potential application of 44 salen-type copper chelating ligands and 12 further proposed molecules as possible multifunctional agents in the context of AD. Methods The candidates were evaluated by combining bioinformatic tools and electronic structure calculations, which allowed us to classify the molecules as potential antioxidants, redistributor-like compounds, and the newly proposed suppressor mechanism. Results This evaluation demonstrate that salen-type ligands exhibit properties suitable for interfering in the chain of copper-induced oxidative stress reactions present in AD and potential redistributor and suppressor activity for copper ions. Finally, a novel set of plausible candidates is proposed and evaluated. Conclusion According to the evaluated criteria, a subset of 13 salen-type candidates was found to exhibit promissory pharmacological properties in the AD framework and were classified according to three plausible action mechanisms.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento de Química, Universidad Nacionalde Colombia -Sede Bogotá, Bogotá, Colombia
| | - Diego Chaparro
- Departamento de Química, Universidad Nacionalde Colombia -Sede Bogotá, Bogotá, Colombia
- Departamento de Química, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Viviana Reyes-Marquez
- Departamentode Ciencias Químico-Biológicas, Universidad de Sonora, Luis Encinas y Rosales S/N, Hermosillo, México
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, México
| | - Areli Flores-Gaspar
- Departamento de Química, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacionalde Colombia -Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
4
|
Orozco MI, Moreno P, Guevara M, Abonia R, Quiroga J, Insuasty B, Barreto M, Burbano ME, Crespo-Ortiz MDP. In silico prediction and in vitro assessment of novel heterocyclics with antimalarial activity. Parasitol Res 2023; 123:75. [PMID: 38155300 PMCID: PMC10754745 DOI: 10.1007/s00436-023-08089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The development of new antimalarials is paramount to keep the goals on reduction of malaria cases in endemic regions. The search for quality hits has been challenging as many inhibitory molecules may not progress to the next development stage. The aim of this work was to screen an in-house library of heterocyclic compounds (HCUV) for antimalarial activity combining computational predictions and phenotypic techniques to find quality hits. The physicochemical determinants, pharmacokinetic properties (ADME), and drug-likeness of HCUV were evaluated in silico, and compounds were selected for structure-based virtual screening and in vitro analysis. Seven Plasmodium target proteins were selected from the DrugBank Database, and ligands and receptors were processed using UCSF Chimera and Open Babel before being subjected to docking using Autodock Vina and Autodock 4. Growth inhibition of P. falciparum (3D7) cultures was tested by SYBR Green assays, and toxicity was assessed using hemolytic activity tests and the Galleria mellonella in vivo model. From a total of 792 compounds, 341 with good ADME properties, drug-likeness, and no interference structures were subjected to in vitro analysis. Eight compounds showed IC50 ranging from 0.175 to 0.990 µM, and active compounds included pyridyl-diaminopyrimido-diazepines, pyridyl-N-acetyl- and pyridyl-N-phenyl-pyrazoline derivatives. The most potent compound (UV802, IC50 0.178 µM) showed no toxicophoric and was predicted to interact with P. falciparum 1-cysperoxidredoxin (PfPrx1). For the remaining 7 hits (IC50 < 1 μM), 3 showed in silico binding to PfPrx1, one was predicted to bind the haloacid dehalogenase-like hydrolase and plasmepsin II, and one interacted with the plasmodial heat shock protein 90.
Collapse
Affiliation(s)
| | - Pedro Moreno
- Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Miguel Guevara
- Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Rodrigo Abonia
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Jairo Quiroga
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | | | - Mauricio Barreto
- Department of Microbiology, Group of Microbiology and Infectious Diseases, Universidad del Valle, San Fernando Campus, Calle 4 B #36-00, 760043, Cali, Colombia
| | - Maria Elena Burbano
- Department of Microbiology, Group of Microbiology and Infectious Diseases, Universidad del Valle, San Fernando Campus, Calle 4 B #36-00, 760043, Cali, Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Department of Microbiology, Group of Microbiology and Infectious Diseases, Universidad del Valle, San Fernando Campus, Calle 4 B #36-00, 760043, Cali, Colombia.
| |
Collapse
|
5
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
6
|
Dey K, Jayaraman N. Anomeric alkylations and acylations of unprotected mono- and disaccharides mediated by pyridoneimine in aqueous solutions. Chem Commun (Camb) 2022; 58:2224-2227. [PMID: 35072677 DOI: 10.1039/d1cc07056h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A site-specific deprotonation followed by alkylations and acylations of sugar hemiacetals to the corresponding alkyl glycosides and acylated sugars in aqueous solutions is disclosed herein. Pyridoneimine as a new base is developed to mediate the deprotonation of readily available sugar hemiacetals and further reactions with alkylation and acylation agents.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
7
|
Biological Evaluation and Mechanistic Studies of Quinolin-(1 H)-Imines as a New Chemotype against Leishmaniasis. Antimicrob Agents Chemother 2021; 65:e0151320. [PMID: 33903112 DOI: 10.1128/aac.01513-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is one of the most challenging neglected tropical diseases and remains a global threat to public health. Currently available therapies for leishmaniases present significant drawbacks and are rendered increasingly inefficient due to parasite resistance, making the need for more effective, safer, and less expensive drugs an urgent one. In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, we have screened in-house antiplasmodial libraries against axenic and intracellular forms of Leishmania infantum, Leishmania amazonensis, and Leishmania major. Several of the screened compounds showed half-maximal inhibitory concentrations (IC50s) against intracellular L. infantum parasites in the submicromolar range (compounds 1h, IC50 = 0.9 μM, and 1n, IC50 = 0.7 μM) and selectivity indexes of 11 and 9.7, respectively. Compounds also displayed activity against L. amazonensis and L. major parasites, albeit in the low micromolar range. Mechanistic studies revealed that compound 1n efficiently inhibits oxygen consumption and significantly decreases the mitochondrial membrane potential in L. infantum axenic amastigotes, suggesting that this chemotype acts, at least in part, by interfering with mitochondrial function. Structure-activity analysis suggests that compound 1n is a promising antileishmanial lead and emphasizes the potential of the quinoline-(1H)-imine chemotype for the future development of new antileishmanial agents.
Collapse
|
8
|
Zafar MN, Masood S, Nazar MF, Raza MA, Tahir MN, Mugal EU, Rafique H, Gul-e-Saba. Solvent-free Synthesis of Water-Soluble New Pyridinium Amines: Spectroscopic Characterization, Biological Screening, and Interaction Study with DNA. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sara Masood
- Department of Chemistry; Quaid-e-Azam University; Islamabad Pakistan
| | | | | | | | | | - Hummera Rafique
- Department of Chemistry; University of Gujrat; Gujrat Pakistan
| | - Gul-e-Saba
- Institution of Marine Biotechnology; University Malaysia Terengganu; Kuala Terengganu Malaysia
| |
Collapse
|
9
|
Zafar MN, Perveen F, Nazar MF, Mughal EU, Rafique H, Tahir MN, Akbar MS, Zahra S. Synthesis, characterization, DNA-Binding, enzyme inhibition and antioxidant studies of new N -methylated derivatives of pyridinium amine. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
|
11
|
Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem 2015; 89:743-816. [PMID: 25462280 PMCID: PMC7115492 DOI: 10.1016/j.ejmech.2014.10.076] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
The biological activity of Mannich bases, a structurally heterogeneous class of chemical compounds that are generated from various substrates through the introduction of an aminomethyl function by means of the Mannich reaction, is surveyed, with emphasis on the relationship between structure and biological activity. The review covers extensively the literature reports that have disclosed Mannich bases as anticancer and cytotoxic agents, or compounds with potential antibacterial and antifungal activity in the last decade. The most relevant studies on the activity of Mannich bases as antimycobacterial agents, antimalarials, or antiviral candidates have been included as well. The review contains also a thorough coverage of anticonvulsant, anti-inflammatory, analgesic and antioxidant activities of Mannich bases. In addition, several minor biological activities of Mannich bases, such as their ability to regulate blood pressure or inhibit platelet aggregation, their antiparasitic and anti-ulcer effects, as well as their use as agents for the treatment of mental disorders have been presented. The review gives in the end a brief overview of the potential of Mannich bases as inhibitors of various enzymes or ligands for several receptors.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers, 41A Aleea Gr. Ghica Vodă, Iaşi 700487, Romania.
| |
Collapse
|
12
|
Rodrigues T, Ressurreição AS, da Cruz FP, Albuquerque IS, Gut J, Carrasco MP, Gonçalves D, Guedes RC, dos Santos DJVA, Mota MM, Rosenthal PJ, Moreira R, Prudêncio M, Lopes F. Flavones as isosteres of 4(1H)-quinolones: discovery of ligand efficient and dual stage antimalarial lead compounds. Eur J Med Chem 2013; 69:872-80. [PMID: 24125849 DOI: 10.1016/j.ejmech.2013.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 11/20/2022]
Abstract
Malaria is responsible for nearly one million deaths annually, and the increasing prevalence of multi-resistant strains of Plasmodium falciparum poses a great challenge to controlling the disease. A diverse set of flavones, isosteric to 4(1H)-quinolones, were prepared and profiled for their antiplasmodial activity against the blood stage of P. falciparum W2 strain, and the liver stage of the rodent parasite Plasmodium berghei. Ligand efficient leads were identified as dual stage antimalarials, suggesting that scaffold optimization may afford potent antiplasmodial compounds.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carrasco MP, Gut J, Rodrigues T, Ribeiro MHL, Lopes F, Rosenthal PJ, Moreira R, Dos Santos DJVA. Exploring the Molecular Basis of Qo bc1 Complex Inhibitors Activity to Find Novel Antimalarials Hits. Mol Inform 2013; 32:659-70. [PMID: 27481771 DOI: 10.1002/minf.201300024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/11/2013] [Indexed: 02/01/2023]
Abstract
Cytochrome bc1 complex is a crucial element in the mitochondrial respiratory chain, being indispensable for the survival of several species of Plasmodia that cause malaria and, therefore, it is a promising target for antimalarial drug development. We report a molecular docking study building on the most recently obtained X-ray structure of the Saccharomyces cerevisiae bc1 complex (PDB code: 3CX5) using several reported inhibitors with experimentally determined IC50 values against the Plasmodium falciparum bc1 complex. We produced a molecular docking model that correlated the calculated binding free energy with the experimental inhibitory activity of each compound. This Qo model was used to search the drug-like database included in the MOE package for novel potential bc1 complex inhibitors. Twenty three compounds were chosen to be tested for their antimalarial activity and four of these compounds demonstrated activity against the chloroquine-resistant W2 strain of P. falciparum. The most active compounds were also active against the atovaquone-resistant P. falciparum FCR3 strain and S. cerevisiae. Our study suggests the validity of the yeast bc1 complex structure as a model for the discovery of new antimalarial hits.
Collapse
Affiliation(s)
- Marta P Carrasco
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94143-0811, USA
| | - Tiago Rodrigues
- Departement Chemie und Angewandte Biowissenschaften, Eidgenössische Technische Hochschule (ETH), Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Maria H L Ribeiro
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Francisca Lopes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94143-0811, USA
| | - Rui Moreira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Daniel J V A Dos Santos
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470. .,REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto, R. do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
14
|
Rodrigues T, da Cruz FP, Lafuente-Monasterio MJ, Gonçalves D, Ressurreição AS, Sitoe AR, Bronze MR, Gut J, Schneider G, Mota MM, Rosenthal PJ, Prudêncio M, Gamo FJ, Lopes F, Moreira R. Quinolin-4(1H)-imines are potent antiplasmodial drugs targeting the liver stage of malaria. J Med Chem 2013; 56:4811-5. [PMID: 23701465 DOI: 10.1021/jm400246e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel series of quinolin-4(1H)-imines as dual-stage antiplasmodials, several-fold more active than primaquine in vitro against Plasmodium berghei liver stage. Among those, compounds 5g and 5k presented low nanomolar IC50 values. The compounds are metabolically stable and modulate several drug targets. These results emphasize the value of quinolin-4(1H)-imines as a new chemotype and their suitable properties for further drug development.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-019 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Faidallah HM, Rostom SAF, Khan KA, Basaif SA. Synthesis and characterization of some hydroxypyridone derivatives and their evaluation as antimicrobial agents. J Enzyme Inhib Med Chem 2012; 28:926-35. [DOI: 10.3109/14756366.2012.694880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hassan M. Faidallah
- Department of Chemistry, Faculty of Science, King Abdulaziz University,
Jeddah, Saudi Arabia
| | - Sherif A. F. Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University,
Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University,
Alexandria, Egypt
| | - Khalid A. Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University,
Jeddah, Saudi Arabia
| | - Salem A. Basaif
- Department of Chemistry, Faculty of Science, King Abdulaziz University,
Jeddah, Saudi Arabia
| |
Collapse
|
16
|
da Cruz FP, Martin C, Buchholz K, Lafuente-Monasterio MJ, Rodrigues T, Sönnichsen B, Moreira R, Gamo FJ, Marti M, Mota MM, Hannus M, Prudêncio M. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J Infect Dis 2012; 205:1278-86. [PMID: 22396598 PMCID: PMC3308910 DOI: 10.1093/infdis/jis184] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmodium parasites undergo a clinically silent and obligatory developmental phase in the host's liver cells before they are able to infect erythrocytes and cause malaria symptoms. To overcome the scarcity of compounds targeting the liver stage of malaria, we screened a library of 1037 existing drugs for their ability to inhibit Plasmodium hepatic development. Decoquinate emerged as the strongest inhibitor of Plasmodium liver stages, both in vitro and in vivo. Furthermore, decoquinate kills the parasite's replicative blood stages and is active against developing gametocytes, the forms responsible for transmission. The drug acts by selectively and specifically inhibiting the parasite's mitochondrial bc(1) complex, with little cross-resistance with the antimalarial drug atovaquone. Oral administration of a single dose of decoquinate effectively prevents the appearance of disease, warranting its exploitation as a potent antimalarial compound.
Collapse
Affiliation(s)
- Filipa P da Cruz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodrigues T, Lopes F, Moreira R. Microwave-Assisted Wittig Reaction of Semistabilized Nitro-Substituted Benzyltriphenyl-Phosphorous Ylides with Aldehydes in Phase-Transfer Conditions. SYNTHETIC COMMUN 2011. [DOI: 10.1080/00397911.2010.530378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Tiago Rodrigues
- a Faculty of Pharmacy, University of Lisbon , Lisbon , Portugal
| | - Francisca Lopes
- a Faculty of Pharmacy, University of Lisbon , Lisbon , Portugal
| | - Rui Moreira
- a Faculty of Pharmacy, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
18
|
Rodrigues T, Moreira R, Gut J, Rosenthal PJ, O Neill PM, Biagini GA, Lopes F, dos Santos DJVA, Guedes RC. Identification of new antimalarial leads by use of virtual screening against cytochrome bc₁. Bioorg Med Chem 2011; 19:6302-8. [PMID: 21958736 DOI: 10.1016/j.bmc.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
Abstract
Cytochrome bc(1) is a validated drug target in malaria parasites. The spread of Plasmodium falciparum strains resistant to multiple antimalarials emphasizes the urgent need for new drugs. We screened in silico the ZINC and MOE databases, using ligand- and structure-based approaches, to identify new leads for development. The most active compound presented an IC(50) value against cultured P. falciparum of 2 μM and a docking pose consistent with its activity.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Faidallah HM, Khan KA, Asiri AM. Synthesis and characterization of a novel series of benzenesulfonylurea and thiourea derivatives of 2H-pyran and 2H-pyridine-2-ones as antibacterial, antimycobacterial and antifungal agents. ACTA ACUST UNITED AC 2011. [DOI: 10.5155/eurjchem.2.2.243-250.257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Bekhit AA, Hymete A, Damtew A, Mohamed AMI, Bekhit AEDA. Synthesis and biological screening of some pyridine derivatives as anti-malarial agents. J Enzyme Inhib Med Chem 2011; 27:69-77. [DOI: 10.3109/14756366.2011.575071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria,
Alexandria, Egypt
- Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University,
Addis Ababa, Ethiopia
| | - Ariaya Hymete
- Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University,
Addis Ababa, Ethiopia
| | - Ashenafi Damtew
- Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University,
Addis Ababa, Ethiopia
- Department of Pharmacy, Central University College,
Addis Ababa, Ethiopia
| | - Abdel Maaboud I. Mohamed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University,
Addis Ababa, Ethiopia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Assiut,
Assiut, Egypt
| | | |
Collapse
|