1
|
Ghosh A, Upadhyay P, Sarker S, Das S, Bhattacharjee M, Bhattacharya S, Ahir M, Guria S, Gupta P, Chattopadhyay S, Ghosh S, Adhikari S, Adhikary A. Delivery of novel coumarin-dihydropyrimidinone conjugates through mixed polymeric nanoparticles to potentiate therapeutic efficacy against triple-negative breast cancer. Biomater Sci 2021; 9:5665-5690. [PMID: 34259681 DOI: 10.1039/d1bm00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To date, most of the accessible therapeutic options are virtually non-responsive towards triple-negative breast cancer (TNBC) due to its highly aggressive and metastatic nature. Interestingly, chemotherapy reacts soundly in many TNBC cases compared to other types of breast cancer. However, the side effects of many chemotherapeutic agents are still under cross-examination, and thus prohibit their extensive uses. In this present study, we have developed a series of coumarin-dihydropyrimidinone conjugates (CDHPs) and subsequently their poly(lactic-co-glycolic acid) (PLGA)-PEG4000 mixed copolymer nanoparticles as excellent chemotherapeutic nanomedicine to control TNBC. Among all the synthesized CDHPs, CDHP-4 (prepared by the combination of EDCO with 3,4-difluorobenzaldehyde) showed excellent therapeutic effect on a wide variety of cancer cell lines, including TNBC. Besides, it can control the metastasis and stemness property of TNBC. Furthermore, the nano-encapsulation of CDHP-4 in a mixed polymer nanoparticle system (CDHP-4@PP-NPs) and simultaneous delivery showed much improved therapeutic efficacy at a much lower dose, and almost negligible side effects in normal healthy cells or organs. The effectiveness of the present therapeutic agent was observed both in intravenous and oral mode of administration in in vivo experiments. Moreover, on elucidating the molecular mechanism, we found that CDHP-4@PP-NPs could exhibit apoptotic, anti-migratory, as well as anti-stemness activity against TNBC cell lines through the downregulation of miR-138. We validated our findings in MDA-MB-231 xenograft chick embryos, as well as in 4T1-induced mammary tumor-bearing BALB/c mice models, and studied the bio-distribution of CDHP-4@PP-NPs on the basis of the photoluminescence property of nanoparticles. Our recent study, hence for the first time, unravels the synthesis of CDHP-4@PP-NPs and the molecular mechanism behind the anti-migration, anti-stemness and anti-tumor efficacy of the nanoparticles against the TNBC cells through the miR-138/p65/TUSC2 axis.
Collapse
Affiliation(s)
- Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Priyanka Upadhyay
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Manisha Ahir
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Subhajit Guria
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Rajarhat, New Town, Kolkata-700156, West Bengal, India
| | - Susanta Adhikari
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Arghya Adhikary
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| |
Collapse
|
2
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
3
|
Cerny MA, Kalgutkar AS, Obach RS, Sharma R, Spracklin DK, Walker GS. Effective Application of Metabolite Profiling in Drug Design and Discovery. J Med Chem 2020; 63:6387-6406. [PMID: 32097005 DOI: 10.1021/acs.jmedchem.9b01840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At one time, biotransformation was a descriptive activity in pharmaceutical development, viewed simply as structural elucidation of drug metabolites, completed only once compounds entered clinical development. Herein, we present our strategic approach using structural elucidation to enable chemistry design/SAR development. The approach considers four questions that often present themselves to medicinal chemists optimizing their compounds for candidate selection: (1) What are the important clearance mechanisms that mediate the disposition of my molecule? (2) Can metabolic liabilities be modulated in a favorable way? (3) Does my compound undergo bioactivation to a reactive metabolite? (4) Do any of the metabolites possess activity, either on- or off-target? An additional question necessary to support compound development relates to metabolites in safety testing (MIST) and our approach also addresses this question. The value in structural elucidation is derived from its application to better design molecules, guide their clinical development, and underwrite patient safety.
Collapse
Affiliation(s)
- Matthew A Cerny
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, 1 Portland Street, Cambridge Massachusetts 02139, United States
| | - R Scott Obach
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Raman Sharma
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Douglas K Spracklin
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory S Walker
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
4
|
Abstract
The efficacious dose of a drug is perhaps the most holistic metric reflecting its therapeutic potential. Dose is predicted at many stages in drug discovery and development. Prior to the 1990s, dose prediction was limited to the drug "working" at a reasonable dose and dose regimen in an animal model. Through the early 2000s, dose predictions were generated at candidate nomination and then refined during clinical development. Currently, dose predictions can be made early in drug discovery to enable drug design. Dose predictions at this stage can identify critical drug properties for a viable dose regimen and provide clinically relevant context to lead optimization. In this paper, we give an overview of the opportunities and challenges associated with dose prediction for drug design. A number of general considerations, approaches, and case examples are discussed.
Collapse
Affiliation(s)
- Tristan S Maurer
- Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | | | - Kevin Beaumont
- Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Li Di
- Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
5
|
Nemeth EF, Van Wagenen BC, Balandrin MF. Discovery and Development of Calcimimetic and Calcilytic Compounds. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:1-86. [PMID: 29680147 DOI: 10.1016/bs.pmch.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular calcium receptor (CaR) is a G protein-coupled receptor (GPCR) and the pivotal molecule regulating systemic Ca2+ homeostasis. The CaR was a challenging target for drug discovery because its physiological ligand is an inorganic ion (Ca2+) rather than a molecule so there was no structural template to guide medicinal chemistry. Nonetheless, small molecules targeting this receptor were discovered. Calcimimetics are agonists or positive allosteric modulators of the CaR, while calcilytics are antagonists and all to date are negative allosteric modulators. The calcimimetic cinacalcet was the first allosteric modulator of a GPCR to achieve regulatory approval and is a first-in-class treatment for secondary hyperparathyroidism in patients on dialysis, and for hypercalcemia in some forms of primary hyperparathyroidism. It is also useful in treating some rare genetic diseases that cause hypercalcemia. Two other calcimimetics are now on the market (etelcalcetide) or under regulatory review (evocalcet). Calcilytics stimulate the secretion of parathyroid hormone and were initially developed as treatments for osteoporosis. Three different calcilytics of two different chemotypes failed in clinical trials due to lack of efficacy. Calcilytics are now being repurposed and might be useful in treating hypoparathyroidism and several rare genetic diseases causing hypocalcemia. The challenges ahead for medicinal chemists are to design compounds that select conformations of the CaR that preferentially target a particular signalling pathway and/or that affect the CaR in a tissue-selective manner.
Collapse
|
6
|
Dhiman S, Nandwana NK, Dhayal S, Saini HK, Kumar D, Kumar A. A Facile Synthesis of Quinazolin-4(3H
)-ones via Copper-Catalyzed One-Pot, Three-Component Tandem Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201701778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry; Birla Institute of Technology and Science; Pilani, Pilani; 333031 Rajasthan India
| | - Nitesh K. Nandwana
- Department of Chemistry; Birla Institute of Technology and Science; Pilani, Pilani; 333031 Rajasthan India
| | - Shreemala Dhayal
- Department of Chemistry; Birla Institute of Technology and Science; Pilani, Pilani; 333031 Rajasthan India
| | - Hitesh K. Saini
- Department of Chemistry; Birla Institute of Technology and Science; Pilani, Pilani; 333031 Rajasthan India
| | - Dalip Kumar
- Department of Chemistry; Birla Institute of Technology and Science; Pilani, Pilani; 333031 Rajasthan India
| | - Anil Kumar
- Department of Chemistry; Birla Institute of Technology and Science; Pilani, Pilani; 333031 Rajasthan India
| |
Collapse
|
7
|
Elattar KM, Doğru Mert B. Recent developments in the chemistry of bicyclic 6-6 systems: chemistry of pyrido[4,3-d]pyrimidines. RSC Adv 2016. [DOI: 10.1039/c6ra12364c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present review reports the chemistry and biological importance of pyrido[4,3-d]pyrimidine analogues.
Collapse
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | - Başak Doğru Mert
- Chemistry Department
- Science and Letters Faculty
- Çukurova University
- Turkey
| |
Collapse
|
8
|
Kalgutkar AS, Dalvie D. Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol 2014; 55:35-54. [PMID: 25292426 DOI: 10.1146/annurev-pharmtox-010814-124720] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Because of the inability to predict and quantify the risk of idiosyncratic adverse drug reactions (IADRs) and because reactive metabolites (RMs) are thought to be responsible for the pathogenesis of some IADRs, the potential for RM formation within new chemical entities is routinely examined with the ultimate goal of eliminating or reducing the liability through iterative design. Likewise, avoidance of structural alerts is almost a standard practice in drug design. However, the perceived safety concerns associated with the use of structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be overexaggerated. Numerous marketed drugs form RMs but do not cause idiosyncratic toxicity. In this review article, we present a critique of the structural alert/RM concept as applied in drug discovery and evaluate the evidence linking structural alerts and RMs to observed toxic effects. Pragmatic risk mitigation strategies to aid the advancement of drug candidates that carry a RM liability are also discussed.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Worldwide Research and Development, 1Cambridge, Massachusetts 02139 and
| | | |
Collapse
|
9
|
Wuyts B, Keemink J, De Jonghe S, Annaert P, Augustijns P. Biopharmaceutical profiling of a pyrido[4,3-d] pyrimidine compound library. Int J Pharm 2013; 455:19-30. [PMID: 23933051 DOI: 10.1016/j.ijpharm.2013.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 12/19/2022]
|
10
|
Li B, Samp L, Sagal J, Hayward CM, Yang C, Zhang Z. Synthesis of quinazolin-4(3H)-ones via amidine N-arylation. J Org Chem 2013; 78:1273-7. [PMID: 23289853 DOI: 10.1021/jo302515c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrido[4,3-d]pyrimidin-4(3H)-one (1) was prepared by reacting 2-trifluoromethyl-4-iodo-nicotinic acid (2) with amidine 9a catalyzed by Pd(2)(dba)(3) and Xantphos, followed by cyclization effected with HBTU and subsequent demethylation using PhBCl(2). The amidine arylation method was found applicable for the syntheses of quinazolin-4(3H)-ones. Thus, reaction of 2-bromo or 2-iodo benzoate esters with amdidines afforded substituted quinazolin-4(3H)-ones in 44-89% yields.
Collapse
Affiliation(s)
- Bryan Li
- Chemical R & D - Pharmaceutical Science Worldwide Research and Development, Groton Laboratories, Pfizer Inc., Groton, Connecticut 06340, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Huang Y, Cavanaugh A, Breitwieser GE. Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. ADVANCES IN PHARMACOLOGY 2012; 62:143-73. [PMID: 21907909 DOI: 10.1016/b978-0-12-385952-5.00007-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gain- or loss-of-function mutations and polymorphisms of the calcium-sensing receptor (CaSR) cause Ca(2+) handling diseases. Altered expression and/or signaling of wild-type CaSR can also contribute to pathology. Recent studies have demonstrated that a significant proportion of mutations cause altered targeting and/or trafficking of CaSR to the plasma membrane. Pharmacological approaches to rescue of CaSR function include treatment with allosteric modulators, which potentiate the effects of the orthosteric agonist Ca(2+). Dissection of the mechanism(s) contributing to allosteric agonist-mediated rescue of loss-of-function CaSR mutants has demonstrated pharmacologic chaperone actions coincident with CaSR biosynthesis. The distinctive responses to the allosteric agonist (NPS R-568), which promotes CaSR stability, and the allosteric antagonist (NPS 2143), which promotes CaSR degradation, have led to a model for a conformational checkpoint during CaSR biosynthesis. The conformational checkpoint would "tune" CaSR biosynthesis to cellular signaling state. Navigation of a distinct checkpoint for endoplasmic release can also be augmented by pharmacologic chaperones. The diverse, post-endoplasmic reticulum quality control site(s) for pharmacologic chaperone modulation of CaSR stability and trafficking redefines the role(s) of allosteric modulators in regulation of overall GPCR function.
Collapse
Affiliation(s)
- Ying Huang
- Cancer Drug Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
12
|
Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem 2011; 3:535-47. [PMID: 21526895 DOI: 10.4155/fmc.11.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The only bone anabolic agents currently available on the market are based on the parathyroid hormone (PTH). Secretion of endogenous PTH is controlled by a calcium-sensing receptor at the surface of the parathyroid glands. Antagonists of this receptor (calcilytics) induce the release of the hormone. Provided the effect of the calcilytic is of short duration, a bone anabolic effect should also result. Although the first calcilytic series became known approximately 10 years ago, the number of different structural types is still small today. This article outlines the quest from hits to potent development candidates of all relevant calcilytic series currently known. Even after the front-runners unexpectedly failed in the clinic, the approach for an oral alternative to parenteral PTH remains highly attractive.
Collapse
|
13
|
Zhang R, Zhang D, Liang Y, Zhou G, Dong D. Vilsmeier Reaction of 3-Aminopropenamides: One-Pot Synthesis of Pyrimidin-4(3H)-ones. J Org Chem 2011; 76:2880-3. [DOI: 10.1021/jo101949y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dingyuan Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yongjiu Liang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guangyuan Zhou
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dewen Dong
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
14
|
Shinagawa Y, Inoue T, Katsushima T, Kiguchi T, Ikenogami T, Ogawa N, Fukuda K, Hirata K, Harada K, Takagi M, Nakagawa T, Kimura S, Matsuo Y, Maekawa M, Hayashi M, Soejima Y, Takahashi M, Shindo M, Hashimoto H. Discovery of a potent and short-acting oral calcilytic with a pulsatile secretion of parathyroid hormone. ACS Med Chem Lett 2011; 2:238-42. [PMID: 24900301 PMCID: PMC4018071 DOI: 10.1021/ml100268k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/21/2010] [Indexed: 12/24/2022] Open
Abstract
Short-acting oral calcilytics, calcium-sensing receptor (CaSR) antagonists, have been considered as alternatives for parathyroid hormone (PTH), an injectable bone anabolic drug used in the treatment of osteoporosis. Previously, we identified aminopropandiol 1, which transiently stimulated endogenous PTH secretion in rats. However, the inhibition of cytochrome P450 (CYP) 2D6 and the low bioavailability of 1 remain to be solved. Attempts to change the physicochemical properties of the highly lipophilic amine 1 by introduction of a carboxylic acid group as well as further structural modifications led to the discovery of the highly potent biphenylcarboxylic acid 15, with a markedly reduced CYP2D6 inhibition and a significantly improved bioavailability. Compound 15 evoked a rapid and transient elevation of endogenous PTH levels in rats after oral administration in a dose-dependent manner at a dose as low as 1 mg/kg. The PTH secretion pattern correlated with the pharmacokinetic profile and agreed well with that of the exogenous PTH injection which exerts a bone anabolic effect.
Collapse
Affiliation(s)
| | | | | | - Toshihiro Kiguchi
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Taku Ikenogami
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoki Ogawa
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kenji Fukuda
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazuyuki Hirata
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazuhito Harada
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masaki Takagi
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takashi Nakagawa
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shuichi Kimura
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yushi Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mariko Maekawa
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mikio Hayashi
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yuki Soejima
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mitsuru Takahashi
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masanori Shindo
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hiromasa Hashimoto
- Central Pharmaceutical Research Institute, Japan Tobacco
Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
15
|
Kalgutkar AS. Handling reactive metabolite positives in drug discovery: What has retrospective structure-toxicity analyses taught us? Chem Biol Interact 2010; 192:46-55. [PMID: 20833160 DOI: 10.1016/j.cbi.2010.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022]
Abstract
Because of the inability to predict and quantify the risk of idiosyncratic adverse drug reactions (IADRs) and because reactive metabolites (RMs) as opposed to the parent molecules from which they are derived are thought to be responsible for the pathogenesis of some IADRs, procedures (RM trapping/covalent binding) are being incorporated into the discovery screening funnel early-on to assess the risk of RM formation. Utility of the methodology in structure-toxicity relationships and scope in abrogating RM formation at the lead optimization stage are discussed in this article. Interpretation of the output from RM assessment assays, however, is confounded by the fact that many successfully marketed drugs are false positives. Therefore, caution must be exercised in deprioritizing a compound based on a positive result, so that the development of a useful and potentially profitable compound won't be unnecessarily halted. Risk mitigation strategies (e.g., competing detoxication pathways, low daily dose, etc.) when selecting RM positives for clinical development are also reviewed.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
16
|
Southers JA, Bauman JN, Price DA, Humphries PS, Balan G, Sagal JF, Maurer TS, Zhang Y, Oliver R, Herr M, Healy DR, Li M, Kapinos B, Fate GD, Riccardi KA, Paralkar VM, Brown TA, Kalgutkar AS. Metabolism-guided design of short-acting calcium-sensing receptor antagonists. ACS Med Chem Lett 2010; 1:219-23. [PMID: 24900198 DOI: 10.1021/ml100058w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/10/2010] [Indexed: 12/22/2022] Open
Abstract
As part of a strategy to deliver short-acting calcium-sensing receptor (CaSR) antagonists, the metabolically labile thiomethyl functionality was incorporated into the zwitterionic amino alcohol derivative 3 with the hope of increasing human clearance through oxidative metabolism, while delivering a pharmacologically inactive sulfoxide metabolite. The effort led to the identification of thioanisoles 22 and 23 as potent and orally active CaSR antagonists with a rapid onset of action and short pharmacokinetic half-lives, which led to a rapid and transient stimulation of parathyroid hormone in a dose-dependent fashion following oral administration to rats. On the basis of the balance between target pharmacology, safety, and human disposition profiles, 22 and 23 were advanced as clinical candidates for the treatment of osteoporosis.
Collapse
Affiliation(s)
| | | | - David A. Price
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | | | - Gayatri Balan
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | - John F. Sagal
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | | | - Yan Zhang
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Robert Oliver
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Michael Herr
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | - David R. Healy
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Mei Li
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Brendon Kapinos
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | | | | | | | - Thomas A. Brown
- Pfizer Global Research and Development, Groton, Connecticut 06340
| | | |
Collapse
|
17
|
Kalgutkar AS, Griffith DA, Ryder T, Sun H, Miao Z, Bauman JN, Didiuk MT, Frederick KS, Zhao SX, Prakash C, Soglia JR, Bagley SW, Bechle BM, Kelley RM, Dirico K, Zawistoski M, Li J, Oliver R, Guzman-Perez A, Liu KKC, Walker DP, Benbow JW, Morris J. Discovery Tactics To Mitigate Toxicity Risks Due to Reactive Metabolite Formation with 2-(2-Hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one Derivatives, Potent Calcium-Sensing Receptor Antagonists and Clinical Candidate(s) for the Treatment of Osteoporosis. Chem Res Toxicol 2010; 23:1115-26. [DOI: 10.1021/tx100137n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - David A. Griffith
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Tim Ryder
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Hao Sun
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Zhuang Miao
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Jonathan N. Bauman
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Mary T. Didiuk
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Kosea S. Frederick
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Sabrina X. Zhao
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Chandra Prakash
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - John R. Soglia
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Scott W. Bagley
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Bruce M. Bechle
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Ryan M. Kelley
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Kenneth Dirico
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Michael Zawistoski
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Jianke Li
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Robert Oliver
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Angel Guzman-Perez
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Kevin K. C. Liu
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Daniel P. Walker
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - John W. Benbow
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Joel Morris
- Pharmacokinetics, Dynamics and Metabolism Department and Department of Medicinal Chemistry, Pfizer Global Research and Development, Groton, Connecticut 06340
| |
Collapse
|
18
|
Zawistoski MP, Decker SM, Griffith DA. Synthesis of 4,5-disubstituted-3-trihalomethylisothiazoles. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|