1
|
Vázquez Rivera A, Donald H, Alaoui-El-Azher M, Skoko JJ, Lazo JS, Parniak MA, Johnston PA, Sluis-Cremer N. Discovery of Benzisothiazolone Derivatives as Bifunctional Inhibitors of HIV-1 Reverse Transcriptase DNA Polymerase and Ribonuclease H Activities. Biomolecules 2024; 14:819. [PMID: 39062532 PMCID: PMC11274943 DOI: 10.3390/biom14070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The ribonuclease H (RNase H) active site of HIV-1 reverse transcriptase (RT) is the only viral enzyme not targeted by approved antiretroviral drugs. Using a fluorescence-based in vitro assay, we screened 65,239 compounds at a final concentration of 10 µM to identify inhibitors of RT RNase H activity. We identified 41 compounds that exhibited 50% inhibitory concentration (i.e., IC50) values < 1.0 µM. Two of these compounds, 2-(4-methyl-3-(piperidin-1-ylsulfonyl)phenyl)benzo[d]isothiazol-3(2H)-one (1) and ethyl 2-(2-(3-oxobenzo[d]isothiazol-2(3H)-yl)thiazol-4-yl)acetate (2), which both share the same benzisothiazolone pharmacophore, demonstrate robust antiviral activity (50% effective concentrations of 1.68 ± 0.94 µM and 2.68 ± 0.54, respectively) in the absence of cellular toxicity. A limited structure-activity relationship analysis identified two additional benzisothiazolone analogs, 2-methylbenzo[d]isothiazol-3(2H)-one (3) and N,N-diethyl-3-(3-oxobenzo[d]isothiazol-2(3H)-yl)benzenesulfonamide (4), which also resulted in the inhibition of RT RNase H activity and virus replication. Compounds 1, 2 and 4, but not 3, inhibited the DNA polymerase activity of RT (IC50 values~1 to 6 µM). In conclusion, benzisothiazolone derivatives represent a new class of multifunctional RT inhibitors that warrants further assessment for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Alondra Vázquez Rivera
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| | - Heather Donald
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| | - Mounia Alaoui-El-Azher
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| | - John J. Skoko
- Department of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA;
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Paul A. Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| |
Collapse
|
2
|
Mostoufi A, Chamkouri N, Kordrostami S, Alghasibabaahmadi E, Mojaddami A. 3-Hydroxypyrimidine-2, 4-dione Derivatives as HIV Reverse Transcriptase-Associated RNase H Inhibitors: QSAR Analysis and Molecular Docking Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:84-97. [PMID: 32922472 PMCID: PMC7462486 DOI: 10.22037/ijpr.2020.1101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIDS, as a lethal disease, is caused by infection with the HIV virus that affects millions of people. Three essential enzymes should be encoded for replication of HIV virus: protease, integrase and reverse transcriptase (RT). RT has two different activities including DNA polymerase and ribonuclease H (RNase H). However, all of the marketed RT inhibitors target only the DNA polymerase activity. Therefore, ribonuclease H activity may serve as a new target for drug discovery. In the present study, a series of 3-Hydroxypyrimidine-2, 4-dione derivatives as potent RT-associated RNase H inhibitors were applied to QSAR analysis. Two methods including multiple linear regressions (MLR) and partial least squared based on genetic algorithm (GA-PLS) were utilized to find the relationship between the structural feathers and inhibitory activities of these compounds. The best multiple linear regression equation was generated by GA-PLS method. A combination of 2D autocorrelations, topological, atom-centered, and geometrical descriptors were selected by GA-PLS as they had more effects on the inhibitory activity. Then, the molecular docking studies were carried out. The results showed that the important amino acids inside the active site of the enzyme responsible for essential interactions were Gln475, Asp549, Tyr501, Ser515, Trp534, Asp493, Tyr472, and Gln480 which took part in hydrogen bond formation. Furthermore, docking energy was plotted against pIC50 predicted by GA-PLS method. The result showed that there is a good correlation with R2=0.71. Consequently, these findings suggest that the better method, GA-PLS, could be applied to design new compounds and predict their inhibitory activity.
Collapse
Affiliation(s)
- Azar Mostoufi
- Toxicology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Samaneh Kordrostami
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Alghasibabaahmadi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ayyub Mojaddami
- Toxicology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Hassan AA, Aly AA, Mohamed NK, El-Haleem LEA, Bräse S, Nieger M. Tetracyanoethylene as a building block in the facile synthesis of heteroyl-tetrasubstituted thiazoles. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Madrigal-Carrillo EA, Díaz-Tufinio CA, Santamaría-Suárez HA, Arciniega M, Torres-Larios A. A screening platform to monitor RNA processing and protein-RNA interactions in ribonuclease P uncovers a small molecule inhibitor. Nucleic Acids Res 2019; 47:6425-6438. [PMID: 30997498 PMCID: PMC6614837 DOI: 10.1093/nar/gkz285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Ribonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5' tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5' leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.
Collapse
Affiliation(s)
- Ezequiel-Alejandro Madrigal-Carrillo
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos-Alejandro Díaz-Tufinio
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City, Mexico
| | - Hugo-Aníbal Santamaría-Suárez
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcelino Arciniega
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Poongavanam V, Corona A, Steinmann C, Scipione L, Grandi N, Pandolfi F, Di Santo R, Costi R, Esposito F, Tramontano E, Kongsted J. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies. MEDCHEMCOMM 2018; 9:562-575. [PMID: 30108947 PMCID: PMC6072344 DOI: 10.1039/c7md00600d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Persistent HIV infection requires lifelong treatment and among the 2.1 million new HIV infections that occur every year there is an increased rate of transmitted drug-resistant mutations. This fact requires a constant and timely effort in order to identify and develop new HIV inhibitors with innovative mechanisms. The HIV-1 reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only viral encoded enzyme that still lacks an efficient inhibitor despite the fact that it is a well-validated target whose functional abrogation compromises viral infectivity. Identification of new drugs is a long and expensive process that can be speeded up by in silico methods. In the present study, a structure-guided screening is coupled with a similarity-based search on the Specs database to identify a new class of HIV-1 RNase H inhibitors. Out of the 45 compounds selected for experimental testing, 15 inhibited the RNase H function below 100 μM with three hits exhibiting IC50 values <10 μM. The most active compound, AA, inhibits HIV-1 RNase H with an IC50 of 5.1 μM and exhibits a Mg-independent mode of inhibition. Site-directed mutagenesis studies provide valuable insight into the binding mode of newly identified compounds; for instance, compound AA involves extensive interactions with a lipophilic pocket formed by Ala502, Lys503, and Trp (406, 426 and 535) and polar interactions with Arg557 and the highly conserved RNase H primer-grip residue Asn474. The structural insights obtained from this work provide the bases for further lead optimization.
Collapse
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics , Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark . ;
| | - Angela Corona
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
| | - Casper Steinmann
- Department of Physics , Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark . ;
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
| | - Fabiana Pandolfi
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
| | - Enzo Tramontano
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
- Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Monserrato(CA) , Italy
| | - Jacob Kongsted
- Department of Physics , Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark . ;
| |
Collapse
|
6
|
Hassan AA, Mohamed NK, El-Haleem LEA, Bräse S, Nieger M. Facile Synthesis of Naphtho[2,3- d]thiazoles, Naphtho[2,3- e][1,3,4]thiadiazines and Bis(naphtho[2,3- d]thiazolyl)copper(II) Derivatives from Heteroylthiosemicarbazides. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Identification of highly conserved residues involved in inhibition of HIV-1 RNase H function by Diketo acid derivatives. Antimicrob Agents Chemother 2014; 58:6101-10. [PMID: 25092689 DOI: 10.1128/aac.03605-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg(2+)-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence-activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors.
Collapse
|
8
|
Hassan AA, Mohamed NK, Abd El-Haleem LE, Bräse S, Nieger M. Synthesis of Some New Heteroylhydrazono-1,3-thiazolidin-4-ones. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alaa A. Hassan
- Faculty of Science, Chemistry Department; Minia University; 61519 El-Minia Egypt
| | - Nasr K. Mohamed
- Faculty of Science, Chemistry Department; Minia University; 61519 El-Minia Egypt
| | | | - Stefan Bräse
- Institute of Organic Chemistry; Karlsruhe Institute of Technology; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Martin Nieger
- Laboratory of Inorganic Chemistry, Department of Chemistry; University of Helsinki; P.O. Box 55, (A. I. Virtasen aukio I) 00014 Helsinki Finland
| |
Collapse
|
9
|
Active site and allosteric inhibitors of the ribonuclease H activity of HIV reverse transcriptase. Future Med Chem 2014; 5:2127-39. [PMID: 24261890 DOI: 10.4155/fmc.13.178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Despite the wealth of information available for the reverse transcriptase (RT)-associated ribonuclease H (RNaseH) domain of lentiviruses, gammaretroviruses and long terminal repeat containing retrotransposons, exploiting this information in the form of an RNaseH inhibitor with high specificity and low cellular toxicity has been disappointing. However, it is now becoming increasingly evident that the two-subunit HIV-1 RT is a highly versatile enzyme, undergoing major structural alterations in order to interact with, position and ultimately hydrolyze the RNA component of an RNA/DNA hybrid. Thus, in addition to targeting the RNaseH active site, identifying small molecules that bind elsewhere and disrupt catalysis allosterically by impairing conformational flexibility is gaining increased attention. This review summarizes current progress towards development of both active site and allosteric RNaseH inhibitors.
Collapse
|
10
|
Ilina T, LaBarge K, Sarafianos SG, Ishima R, Parniak MA. Inhibitors of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. BIOLOGY 2014; 1:521-41. [PMID: 23599900 PMCID: PMC3627382 DOI: 10.3390/biology1030521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HIV-1 enzyme reverse transcriptase (RT) is a major target for antiviral drug development, with over half of current FDA-approved therapeutics against HIV infection targeting the DNA polymerase activity of this enzyme. HIV-1 RT is a multifunctional enzyme that has RNA and DNA dependent polymerase activity, along with ribonuclease H (RNase H) activity. The latter is responsible for degradation of the viral genomic RNA template during first strand DNA synthesis to allow completion of reverse transcription and the viral dsDNA. While the RNase H activity of RT has been shown to be essential for virus infectivity, all currently used drugs directed at RT inhibit the polymerase activity of the enzyme; none target RNase H. In the last decade, the increasing prevalence of HIV variants resistant to clinically used antiretrovirals has stimulated the search for inhibitors directed at stages of HIV replication different than those targeted by current drugs. HIV RNase H is one such novel target and, over the past few years, significant progress has been made in identifying and characterizing new RNase H inhibitor pharmacophores. In this review we focus mainly on the most potent low micromolar potency compounds, as these provide logical bases for further development. We also discuss why HIV RNase H has been a difficult target for antiretroviral drug development.
Collapse
Affiliation(s)
- Tatiana Ilina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA; (T.I.); (K.L.)
| | - Krystal LaBarge
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA; (T.I.); (K.L.)
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA;
| | - Stefan G. Sarafianos
- Structural Biology, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA;
| | - Rieko Ishima
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA;
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA; (T.I.); (K.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-412-648-1927; Fax: +1-412-648-9653
| |
Collapse
|
11
|
Corona A, Esposito F, Tramontano E. Can the ever-promising target HIV reverse transcriptase-associated RNase H become a success story for drug development? Future Virol 2014. [DOI: 10.2217/fvl.14.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angela Corona
- Dept. of Life & Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato (Cagliari), Italy
| | - Francesca Esposito
- Dept. of Life & Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato (Cagliari), Italy
| | - Enzo Tramontano
- Dept. of Life & Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato (Cagliari), Italy
| |
Collapse
|
12
|
Esposito F, Tramontano E. Past and future. Current drugs targeting HIV-1 integrase and reverse transcriptase-associated ribonuclease H activity: single and dual active site inhibitors. Antivir Chem Chemother 2014; 23:129-44. [PMID: 24150519 DOI: 10.3851/imp2690] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
Catalytic HIV type-1 (HIV-1) integrase (IN) and ribonuclease H (RNase H) domains belong to the polynucleotidyl transferase superfamily and are characterized by highly conserved motifs that coordinate two divalent Mg(2+) cations and are attractive targets for new antiviral agents. Several structural features of both domains are now available. Drugs targeting the HIV-1 IN are currently approved for anti-HIV therapy, while no drug targeting the HIV-1 RNase H function is yet available. This review describes HIV-1 IN and the RNase H function and structures, compounds targeting their active sites and dual inhibition as a new approach for drug development.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | | |
Collapse
|
13
|
Poongavanam V, Kongsted J. Virtual screening models for prediction of HIV-1 RT associated RNase H inhibition. PLoS One 2013; 8:e73478. [PMID: 24066050 PMCID: PMC3774690 DOI: 10.1371/journal.pone.0073478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 11/28/2022] Open
Abstract
The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1 reverse transcriptase associated ribonuclease H (RNase H) function provides a novel target for anti-HIV chemotherapy. Here we report on the applicability of conceptually different in silico approaches as virtual screening (VS) tools in order to efficiently identify RNase H inhibitors from large chemical databases. The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa nearest neighbor), shape similarity (rapid overlay of chemical structures), pharmacophore, molecular interaction fields-based fingerprints for ligands and protein (FLAP) and flexible ligand docking methods. The results show that receptor-based flexible docking experiments provides good enrichment (80–90%) compared to ligand-based approaches such as FLAP (74%), shape similarity (75%) and random forest (72%). Thus, this study suggests that flexible docking experiments is the model of choice in terms of best retrieval of active from inactive compounds and efficiency and efficacy schemes. Moreover, shape similarity, machine learning and FLAP models could also be used for further validation or filtration in virtual screening processes. The best models could potentially be use for identifying structurally diverse and selective RNase H inhibitors from large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond acceptors play a key role in inhibition of the RNase H domain through metal chelation.
Collapse
Affiliation(s)
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- * E-mail:
| |
Collapse
|
14
|
The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes. PLoS Pathog 2013; 9:e1003125. [PMID: 23349632 PMCID: PMC3551811 DOI: 10.1371/journal.ppat.1003125] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022] Open
Abstract
Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development. Current therapy for HBV blocks DNA synthesis by the viral reverse transcriptase and can control the infection indefinitely, but treatment rarely cures patients. More patients could be cured by suppressing HBV replication further using a new drug in combination with the existing ones. The HBV RNAseH is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. We expressed active recombinant HBV RNAseHs and demonstrated that it was suitable for antiviral drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified based on antagonists of the HIV RNAseH and integrase enzymes. Twelve of these compounds inhibited the HBV RNAseH in enzymatic assays, and one inhibited HBV replication in cell-based assays. The high percentage of compounds developed against the HIV RNAseH and integrase that were also active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can be used to guide anti-HBV RNAseH drug discovery.
Collapse
|
15
|
Bauzá A, Quiñonero D, Deyà PM, Frontera A. Theoretical ab initio study of lone pair and anion–π interactions in fluorinated tropolones. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Suchaud V, Bailly F, Lion C, Tramontano E, Esposito F, Corona A, Christ F, Debyser Z, Cotelle P. Development of a series of 3-hydroxyquinolin-2(1H)-ones as selective inhibitors of HIV-1 reverse transcriptase associated RNase H activity. Bioorg Med Chem Lett 2012; 22:3988-92. [PMID: 22607675 DOI: 10.1016/j.bmcl.2012.04.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 12/01/2022]
Abstract
We report herein the synthesis of a series of 3-hydroxyquinolin-2(1H)-one derivatives. Esters and amide groups were introduced at position 4 of the basis scaffold and some modulations of the benzenic moiety were performed. Most compounds presented selective inhibitory properties in the 10-20 μM range against HIV-1 reverse transcriptase associated ribonuclease H activity, without affecting the integrase and reverse transcriptase DNA polymerase activities. Unfortunately all tested compounds exhibited high cellular cytotoxicity in cell culture which limited their applications as antiviral agents.
Collapse
|
17
|
Felts AK, Labarge K, Bauman JD, Patel DV, Himmel DM, Arnold E, Parniak MA, Levy RM. Identification of alternative binding sites for inhibitors of HIV-1 ribonuclease H through comparative analysis of virtual enrichment studies. J Chem Inf Model 2011; 51:1986-98. [PMID: 21714567 DOI: 10.1021/ci200194w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribonuclease H (RNase H) domain on the p66 monomer of HIV-1 reverse transcriptase enzyme has become a target for inhibition. The active site is one potential binding site, but other RNase H sites can accommodate inhibitors. Using a combination of experimental and computational studies, potential new binding sites and binding modes have been identified. Libraries of compounds were screened with an experimental assay to identify actives without knowledge of the binding site. The compounds were computationally docked at putative binding sites. Based on positive enrichment of natural-product actives relative to the database of compounds, we propose that many inhibitors bind to an alternative, potentially allosteric, site centered on Q507 of p66. For a series of hydrazone compounds, a small amount of positive enrichment was obtained when active compounds were bound by induced-fit docking at the interface between the DNA:RNA substrate and the RNase H domain near residue Q500.
Collapse
Affiliation(s)
- Anthony K Felts
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chung S, Himmel DM, Jiang JK, Wojtak K, Bauman JD, Rausch JW, Wilson JA, Beutler JA, Thomas CJ, Arnold E, Le Grice SF. Synthesis, activity, and structural analysis of novel α-hydroxytropolone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J Med Chem 2011; 54:4462-73. [PMID: 21568335 PMCID: PMC3133734 DOI: 10.1021/jm2000757] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The α-hydroxytroplone, manicol (5,7-dihydroxy-2-isopropenyl-9-methyl-1,2,3,4-tetrahydro-benzocyclohepten-6-one), potently and specifically inhibits ribonuclease H (RNase H) activity of human immunodeficiency virus reverse transcriptase (HIV RT) in vitro. However, manicol was ineffective in reducing virus replication in culture. Ongoing efforts to improve the potency and specificity over the lead compound led us to synthesize 14 manicol derivatives that retain the divalent metal-chelating α-hydroxytropolone pharmacophore. These efforts were augmented by a high resolution structure of p66/p51 HIV-1 RT containing the nonnucleoside reverse transcriptase inhibitor (NNRTI), TMC278 and manicol in the DNA polymerase and RNase H active sites, respectively. We demonstrate here that several modified α-hydroxytropolones exhibit antiviral activity at noncytotoxic concentrations. Inclusion of RNase H active site mutants indicated that manicol analogues can occupy an additional site in or around the DNA polymerase catalytic center. Collectively, our studies will promote future structure-based design of improved α-hydroxytropolones to complement the NRTI and NNRTI currently in clinical use.
Collapse
Affiliation(s)
- Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Daniel M. Himmel
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | - Krzysztof Wojtak
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Jennifer A. Wilson
- Molecular Discovery Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - John A. Beutler
- Molecular Discovery Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA,To whom correspondence should be addressed. Tel. 301-846-5256, Fax. 301-846-6013,
| |
Collapse
|