1
|
He T, Giacomini D, Tolomelli A, Baiula M, Gentilucci L. Conjecturing about Small-Molecule Agonists and Antagonists of α4β1 Integrin: From Mechanistic Insight to Potential Therapeutic Applications. Biomedicines 2024; 12:316. [PMID: 38397918 PMCID: PMC10887150 DOI: 10.3390/biomedicines12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Integrins are heterodimeric cell-surface receptors that regulate cell-cell adhesion and cellular functions through bidirectional signaling. On the other hand, anomalous trafficking of integrins is also implicated in severe pathologies as cancer, thrombosis, inflammation, allergies, and multiple sclerosis. For this reason, they are attractive candidates as drug targets. However, despite promising preclinical data, several anti-integrin drugs failed in late-stage clinical trials for chronic indications, with paradoxical side effects. One possible reason is that, at low concentration, ligands proposed as antagonists may also act as partial agonists. Hence, the comprehension of the specific structural features for ligands' agonism or antagonism is currently of the utmost interest. For α4β1 integrin, the situation is particularly obscure because neither the crystallographic nor the cryo-EM structures are known. In addition, very few potent and selective agonists are available for investigating the mechanism at the basis of the receptor activation. In this account, we discuss the physiological role of α4β1 integrin and the related pathologies, and review the few agonists. Finally, we speculate on plausible models to explain agonism vs. antagonism by comparison with RGD-binding integrins and by analysis of computational simulations performed with homology or hybrid receptor structures.
Collapse
Affiliation(s)
- Tingting He
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Alessandra Tolomelli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Monica Baiula
- Department of Pharmacology and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
2
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
3
|
Querrey M, Chiu S, Lecuona E, Wu Q, Sun H, Anderson M, Kelly M, Ravi S, Misharin AV, Kreisel D, Bharat A, Budinger GS. CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation. J Clin Invest 2022; 132:157262. [PMID: 35838047 PMCID: PMC9282933 DOI: 10.1172/jci157262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/25/2022] [Indexed: 02/03/2023] Open
Abstract
Primary graft dysfunction (PGD) is the leading cause of postoperative mortality in lung transplant recipients and the most important risk factor for development of chronic lung allograft dysfunction. The mechanistic basis for the variability in the incidence and severity of PGD between lung transplant recipients is not known. Using a murine orthotopic vascularized lung transplant model, we found that redundant activation of Toll-like receptors 2 and 4 (TLR2 and -4) on nonclassical monocytes activates MyD88, inducing the release of the neutrophil attractant chemokine CXCL2. Deletion of Itgam (encodes CD11b) in nonclassical monocytes enhanced their production of CXCL2 and worsened PGD, while a CD11b agonist, leukadherin-1, administered only to the donor lung prior to lung transplantation, abrogated CXCL2 production and PGD. The damage-associated molecular pattern molecule HMGB1 was increased in peripheral blood samples from patients undergoing lung transplantation after reperfusion and induced CXCL2 production in nonclassical monocytes via TLR4/MyD88. An inhibitor of HMGB1 administered to the donor and recipient prior to lung transplantation attenuated PGD. Our findings suggest that CD11b acts as a molecular brake to prevent neutrophil recruitment by nonclassical monocytes following lung transplantation, revealing an attractive therapeutic target in the donor lung to prevent PGD in lung transplant recipients.
Collapse
Affiliation(s)
- Melissa Querrey
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Chiu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Anderson
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Kelly
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sowmya Ravi
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Zhou X, Zhu K, Zhang Y, Ming Y, Shi D, Tan H, Xiang B, Zhu S, Cheng D, Lai H, Wang C, Liu G. CD11b-Based Pre-Targeted SPECT/CT Imaging Allows for the Detection of Inflammation in Aortic Aneurysm. J Inflamm Res 2022; 15:1921-1933. [PMID: 35321320 PMCID: PMC8935951 DOI: 10.2147/jir.s350593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the feasibility of a pre-targeted imaging strategy based on the cycloaddition between 1,2,4,5-terazine (Tz) and trans-cyclooctene (TCO) for evaluating CD11b expression in inflammatory aortic aneurysm (AA) using single photon emission computed tomography/computed tomography (SPECT/CT). Methods C57BL/6J mice were fed β-aminopropionitrile (1 g/kg/day) for 4 weeks to establish AA models. Anti-CD11b-TCO was synthesized and 99mTc-HYNIC-PEG11-Tz was designed for pre-targeted SPECT/CT. The affinity and specificity of the probe for the inflammatory cell line Raw-264.7 were investigated. Then, anti-CD11b-TCO pre-targeted and 99mTc-HYNIC-PEG11-Tz based SPECT/CT were performed to detect in vivo inflammation in AA. Finally, ex vivo aortic breast-specific gamma imaging (BSGI), Western blot assays, and immunohistochemical CD11b staining were performed to confirm the in vivo findings of SPECT/CT. Results In the AA models, 65.22% (15/23) had aortic lesions, including 43.48% (10/23) AA lesions. The anti-CD11b-TCO presented with a high TCO coupling ratio (7.43), and the 99mTc-HYNIC-PEG11-Tz showed high radio-purity (>95%), good in vitro stability and a rapid clearance rate. Additionally, anti-CD11b-TCO and 99mTc-HYNIC-PEG11-Tz presented high click rate (~89%). The in vitro clicked compound, 99mTc-HYNIC-PEG11-Tz/TCO-anti-CD11b, showed high affinity and specificity for Raw-264.7 cells. 99mTc-HYNIC-PEG11-Tz/TCO-anti-CD11b pre-targeting SPECT/CT successfully demonstrated inflammatory AA with a high AA-to-background ratio in AA mice, compared to AA mice that were injected with 99mTc-HYNIC-Tz/TCO-IgG (8.13 versus 3.71, P < 0.001) and control mice injected with 99mTc-HYNIC-Tz/TCO-anti-CD11b (8.13 versus 3.66, P < 0.001). This result was confirmed by ex vivo BSGI performed immediately after SPECT/CT and immunohistochemical CD11b staining. Conclusion SPECT/CT imaging using the anti-CD11b-TCO/Tz-PEG11-HYNIC-99mTc based pre-targeting imaging strategy allows for the detection of inflammation in progressive AA.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
- Chunsheng Wang, Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People’s Republic of China, Email
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
- Correspondence: Guobing Liu, Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People’s Republic of China, Tel +8618317086732, Fax +86-21-62489191, Email
| |
Collapse
|
5
|
Jin L, Han X, Zhang X, Zhao Z, Ulrich J, Syrovets T, Simmet T. Identification of Oleanolic Acid as Allosteric Agonist of Integrin α M by Combination of In Silico Modeling and In Vitro Analysis. Front Pharmacol 2021; 12:702529. [PMID: 34603018 PMCID: PMC8484648 DOI: 10.3389/fphar.2021.702529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Oleanolic acid is a widely distributed natural product, which possesses promising antitumor, antiviral, antihyperlipidemic, and anti-inflammatory activities. A heterodimeric complex formed by integrin αM (CD11b) and integrin β2 (CD18) is highly expressed on monocytes and macrophages. In the current study, we demonstrate that the I domain of αM (αM-I domain) might present a potential cellular target for oleanolic acid. In vitro data show that oleanolic acid induces clustering of αM on macrophages and reduces their non-directional migration. In accordance with experimental data, molecular docking revealed that oleanolic acid binds to the αM-I domain in its extended-open form, the dominant conformation found in αM clusters. Molecular dynamics simulation revealed that oleanolic acid can increase the flexibility of the α7 helix and promote its movement away from the N-terminus, indicating that oleanolic acid may facilitate the conversion of the αM-I domain from the extended-closed to the extended-open conformation. As demonstrated by metadynamics simulation, oleanolic acid can destabilize the local minimum of the αM-I domain in the open conformation partially through disturbance of the interactions between α1 and α7 helices. In summary, we demonstrate that oleanolic acid might function as an allosteric agonist inducing clustering of αM on macrophages by shifting the balance from the closed to the extended-open conformation. The molecular target identified in this study might hold potential for a purposeful use of oleanolic acid to modulate chronic inflammatory responses.
Collapse
Affiliation(s)
- Lu Jin
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Han
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
DeNardo DG, Galkin A, Dupont J, Zhou L, Bendell J. GB1275, a first-in-class CD11b modulator: rationale for immunotherapeutic combinations in solid tumors. J Immunother Cancer 2021; 9:jitc-2021-003005. [PMID: 34452928 PMCID: PMC8404448 DOI: 10.1136/jitc-2021-003005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICI) and other anticancer therapies is often associated with the accumulation of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Therefore, targeting MDSC recruitment or function is of significant interest as a strategy to treat patients with ICI-resistant cancer. The migration and recruitment of MDSCs to the TME is mediated in part by the CD11b/CD18 integrin heterodimer (Mac-1; αMβ2), expressed on both MDSCs and TAMs. However, inhibition or blockade of CD11b/CD18 has had limited success in clinical trials to date, likely since saturation of CD11b requires doses that are not clinically tolerable with the agents tested so far. Interestingly, activation of CD11b with leukadherin-1 was found to reduce macrophage and neutrophil migration in animal models of inflammatory conditions. Preclinical studies with GB1275, a salt form of leukadherin-1, demonstrated that activation of CD11b improves the antitumor immune response and enhances the response to immunotherapy in mouse models of pancreatic adenocarcinoma, breast cancer and lung cancer. Based on the promising results from preclinical studies, a phase 1/2 clinical study (NCT04060342) of GB1275 in patients with advanced solid tumor types known to be resistant or less likely responsive to immuno-oncology therapies, including pancreatic, breast, prostate, and microsatellite-stable colorectal cancer, is ongoing. In this review, we examine targeting MDSCs as a therapeutic approach in cancer therapy, with a special focus on GB1275 preclinical studies laying the rationale for the phase 1/2 clinical study.
Collapse
Affiliation(s)
- David G DeNardo
- Department of Medicine, ICCE Institute, Department of Pathology and Immunology, Siteman Cancer Center, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | | | | | - Lei Zhou
- Gossamer Bio, San Diego, California, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
8
|
Tolomelli A, Galletti P, Baiula M, Giacomini D. Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators. Cancers (Basel) 2017; 9:cancers9070078. [PMID: 28678151 PMCID: PMC5532614 DOI: 10.3390/cancers9070078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
The ability of integrins to activate and integrate intracellular communication illustrates the potential of these receptors to serve as functional distribution hubs in a bi-directional signal transfer outside-in and inside-out of the cells. Tight regulation of the integrin signaling is paramount for normal physiological functions such as migration, proliferation, and differentiation, and misregulated integrin activity could be associated with several pathological conditions. Because of the important roles of integrins and their ligands in biological development, immune responses, leukocyte traffic, haemostasis, and cancer, their potential as therapeutic tools is now widely recognized. Nowadays extensive efforts have been made to discover and develop small molecule ligands as integrin antagonists, whereas less attention has been payed to agonists. In recent years, it has been recognized that integrin agonists could open up novel opportunities for therapeutics, which gain benefits to increase rather than decrease integrin-dependent adhesion and transductional events. For instance, a significant factor in chemo-resistance in melanoma is a loss of integrin-mediated adhesion; in this case, stimulation of integrin signaling by agonists significantly improved the response to chemotherapy. In this review, we overview results about small molecules which revealed an activating action on some integrins, especially those involved in cancer, and examine from a medicinal chemistry point of view, their structure and behavior.
Collapse
Affiliation(s)
- Alessandra Tolomelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Faridi MH, Khan SQ, Zhao W, Lee HW, Altintas MM, Zhang K, Kumar V, Armstrong AR, Carmona-Rivera C, Dorschner JM, Schnaith AM, Li X, Ghodke-Puranik Y, Moore E, Purmalek M, Irizarry-Caro J, Zhang T, Day R, Stoub D, Hoffmann V, Khaliqdina SJ, Bhargava P, Santander AM, Torroella-Kouri M, Issac B, Cimbaluk DJ, Zloza A, Prabhakar R, Deep S, Jolly M, Koh KH, Reichner JS, Bradshaw EM, Chen J, Moita LF, Yuen PS, Li Tsai W, Singh B, Reiser J, Nath SK, Niewold TB, Vazquez-Padron RI, Kaplan MJ, Gupta V. CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest 2017; 127:1271-1283. [PMID: 28263189 PMCID: PMC5373862 DOI: 10.1172/jci88442] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic variations in the ITGAM gene (encoding CD11b) strongly associate with risk for systemic lupus erythematosus (SLE). Here we have shown that 3 nonsynonymous ITGAM variants that produce defective CD11b associate with elevated levels of type I interferon (IFN-I) in lupus, suggesting a direct link between reduced CD11b activity and the chronically increased inflammatory status in patients. Treatment with the small-molecule CD11b agonist LA1 led to partial integrin activation, reduced IFN-I responses in WT but not CD11b-deficient mice, and protected lupus-prone MRL/Lpr mice from end-organ injury. CD11b activation reduced TLR-dependent proinflammatory signaling in leukocytes and suppressed IFN-I signaling via an AKT/FOXO3/IFN regulatory factor 3/7 pathway. TLR-stimulated macrophages from CD11B SNP carriers showed increased basal expression of IFN regulatory factor 7 (IRF7) and IFN-β, as well as increased nuclear exclusion of FOXO3, which was suppressed by LA1-dependent activation of CD11b. This suggests that pharmacologic activation of CD11b could be a potential mechanism for developing SLE therapeutics.
Collapse
Affiliation(s)
- Mohd Hafeez Faridi
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Samia Q. Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Wenpu Zhao
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Ha Won Lee
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M. Altintas
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Vinay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Andrew R. Armstrong
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Xiaobo Li
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Erica Moore
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Monica Purmalek
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Jorge Irizarry-Caro
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Tingting Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Rachael Day
- Department of Chemistry and Biochemistry, Dordt College, Sioux Center, Iowa, USA
| | - Darren Stoub
- Department of Chemistry and Biochemistry, Dordt College, Sioux Center, Iowa, USA
| | - Victoria Hoffmann
- Pathology Branch, Division of Veterinary Resources, Office of the Director, NIH, Bethesda, Maryland, USA
| | | | - Prachal Bhargava
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ana M. Santander
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marta Torroella-Kouri
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Biju Issac
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David J. Cimbaluk
- Department of Pathology, Rush University Medical School, Chicago, Illinois, USA
| | - Andrew Zloza
- Section of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, and Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Meenakshi Jolly
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical School, Chicago, Illinois, USA
| | - Kwi Hye Koh
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jonathan S. Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Elizabeth M. Bradshaw
- Division of Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luis F. Moita
- Innate Immune and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Peter S. Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Bhupinder Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jochen Reiser
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | | | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
10
|
Roberts AL, Fürnrohr BG, Vyse TJ, Rhodes B. The complement receptor 3 (CD11b/CD18) agonist Leukadherin-1 suppresses human innate inflammatory signalling. Clin Exp Immunol 2016; 185:361-71. [PMID: 27118513 PMCID: PMC4991522 DOI: 10.1111/cei.12803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023] Open
Abstract
Complement receptor 3 (CR3, CD11b/CD18) is a multi‐functional receptor expressed predominantly on myeloid and natural killer (NK) cells. The R77H variant of CD11b, encoded by the ITGAM rs1143679 polymorphism, is associated robustly with development of the autoimmune disease systemic lupus erythematosus (SLE) and impairs CR3 function, including its regulatory role on monocyte immune signalling. The role of CR3 in NK cell function is unknown. Leukadherin‐1 is a specific small‐molecule CR3 agonist that has shown therapeutic promise in animal models of vascular injury and inflammation. We show that Leukadherin‐1 pretreatment reduces secretion of interferon (IFN)‐γ, tumour necrosis factor (TNF) and macrophage inflammatory protein (MIP)‐1β by monokine‐stimulated NK cells. It was associated with a reduction in phosphorylated signal transducer and activator of transcription (pSTAT)‐5 following interleukin (IL)‐12 + IL‐15 stimulation (P < 0·02) and increased IL‐10 secretion following IL‐12 + IL‐18 stimulation (P < 0·001). Leukadherin‐1 pretreatment also reduces secretion of IL‐1β, IL‐6 and TNF by Toll‐like receptor (TLR)‐2 and TLR‐7/8‐stimulated monocytes (P < 0·01 for all). The R77H variant did not affect NK cell response to Leukadherin‐1 using ex‐vivo cells from homozygous donors; nor did the variant influence CR3 expression by these cell types, in contrast to a recent report. These data extend our understanding of CR3 biology by demonstrating that activation potently modifies innate immune inflammatory signalling, including a previously undocumented role in NK cell function. We discuss the potential relevance of this to the pathogenesis of SLE. Leukadherin‐1 appears to mediate its anti‐inflammatory effect irrespective of the SLE‐risk genotype of CR3, providing further evidence to support its evaluation of Leukadherin‐1 as a potential therapeutic for autoimmune disease.
Collapse
Affiliation(s)
- A L Roberts
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK
| | - B G Fürnrohr
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK.,Division of Biological Chemistry, Innrain 80/IV, Medical University Innsbruck, Innsbruck, Austria
| | - T J Vyse
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK
| | - B Rhodes
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK.,Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
11
|
Jagarapu J, Kelchtermans J, Rong M, Chen S, Hehre D, Hummler S, Faridi MH, Gupta V, Wu S. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats. Am J Respir Cell Mol Biol 2016; 53:793-801. [PMID: 25909334 DOI: 10.1165/rcmb.2014-0422oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants.
Collapse
Affiliation(s)
- Jawahar Jagarapu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Jelte Kelchtermans
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Min Rong
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Shaoyi Chen
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Dorothy Hehre
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Stefanie Hummler
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Mohd Hafeez Faridi
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Vineet Gupta
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shu Wu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
12
|
Liu G, Hu Y, Xiao J, Li X, Li Y, Tan H, Zhao Y, Cheng D, Shi H. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation. Sci Rep 2016; 6:20900. [PMID: 26877097 PMCID: PMC4753504 DOI: 10.1038/srep20900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/12/2016] [Indexed: 01/04/2023] Open
Abstract
It remains challenging to predict the risk of rupture for a specific atherosclerotic plaque timely, a thrombotic trigger tightly linked to inflammation. CD11b, is a biomarker abundant on inflammatory cells, not restricted to monocytes/macrophages. In this study, we fabricated a probe named as 99mTc-MAG3-anti-CD11b for detecting inflamed atherosclerotic plaques with single photon emission computed tomography/computed tomography (SPECT/CT). The ApoE-knockout (ApoE−/−) mice were selected to establish animal models, with C57BL/6J mice used for control. A higher CD11b+-cell recruitment with higher CD11b expression and more serious whole-body inflammatory status were identified in ApoE−/− mice. The probe showed high in vitro affinity and specificity to the Raw-264.7 macrophages, as well as inflammatory cells infiltrated in atherosclerotic plaques, either in ex vivo fluorescent imaging or in in vivo micro-SPECT/CT imaging, which were confirmed by ex vivo planar gamma imaging, Oil-Red-O staining and CD11b-immunohistochemistry staining. A significant positive relationship was identified between the radioactivity intensity on SPECT/CT images and the CD11b expression in plaques. In summary, this study demonstrates the feasibility of anti-CD11b antibody mediated noninvasive SPECT/CT imaging of inflammatory leukocytes in murine atherosclerotic plaques. This imaging strategy can identify inflammation-rich plaques at risk for rupture and evaluate the effectiveness of inflammation-targeted therapies in atheroma.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiao Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yanli Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yanzhao Zhao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
13
|
Celik E, Faridi MH, Kumar V, Deep S, Moy VT, Gupta V. Agonist leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys J 2014; 105:2517-27. [PMID: 24314082 DOI: 10.1016/j.bpj.2013.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 01/13/2023] Open
Abstract
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn(2+) additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1(-/-) neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn(2+)-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn(2+) induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.
Collapse
Affiliation(s)
- Emrah Celik
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Aplastic anemia (AA) is an immune-mediated and life-threatening form of acquired bone marrow failure (BMF), characterized by development and expansion of self-reactive T cells. These T cells cause continuous destruction of hematopoietic stem cells (HSCs), progenitors, and mature blood cells, leading to severe and if left untreated fatal marrow hypoplasia and pancytopenia. Standard treatment options for patients with AA include: (1) immunosuppressive therapy (IST) with anti-thymocyte globulin and cyclosporine A which targets self-reactive T cells, or (2) matched sibling or unrelated BM transplant (BMT). The IST treatment is often not effective due to poor response to therapy or disease relapse after IST. Also, BMT is not an option for many patients due to their age, comorbidities, and the lack of histocompatible donor. This necessitates development and testing of novel approaches to reduce severity of AA and to efficiently treat patients with refractory and relapsed AA. Immune-mediated AA was reproduced in animals, including mouse lymphocyte infusion models, which are used to study further etiology and pathophysiology of AA and test new drugs and approaches in treating and managing AA. In these mouse models the immune correlates and pathologic features of AA are strikingly similar to features of severe human AA. In this article we (a) briefly review standard and developing approaches for treating AA and (b) describe development and testing of novel treatment approach with a potential to safely reduce BM hypoplasia and significantly decrease the loss of HSCs in mouse lymphocyte infusion model of AA.
Collapse
|
15
|
Kruss S, Erpenbeck L, Amschler K, Mundinger TA, Boehm H, Helms HJ, Friede T, Andrews RK, Schön MP, Spatz JP. Adhesion maturation of neutrophils on nanoscopically presented platelet glycoprotein Ibα. ACS NANO 2013; 7:9984-96. [PMID: 24093566 PMCID: PMC4122703 DOI: 10.1021/nn403923h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neutrophilic granulocytes play a fundamental role in cardiovascular disease. They interact with platelet aggregates via the integrin Mac-1 and the platelet receptor glycoprotein Ibα (GPIbα). In vivo, GPIbα presentation is highly variable under different physiological and pathophysiological conditions. Here, we quantitatively determined the conditions for neutrophil adhesion in a biomimetic in vitro system, which allowed precise adjustment of the spacings between human GPIbα presented on the nanoscale from 60 to 200 nm. Unlike most conventional nanopatterning approaches, this method provided control over the local receptor density (spacing) rather than just the global receptor density. Under physiological flow conditions, neutrophils required a minimum spacing of GPIbα molecules to successfully adhere. In contrast, under low-flow conditions, neutrophils adhered on all tested spacings with subtle but nonlinear differences in cell response, including spreading area, spreading kinetics, adhesion maturation, and mobility. Surprisingly, Mac-1-dependent neutrophil adhesion was very robust to GPIbα density variations up to 1 order of magnitude. This complex response map indicates that neutrophil adhesion under flow and adhesion maturation are differentially regulated by GPIbα density. Our study reveals how Mac-1/GPIbα interactions govern cell adhesion and how neutrophils process the number of available surface receptors on the nanoscale. In the future, such in vitro studies can be useful to determine optimum therapeutic ranges for targeting this interaction.
Collapse
Affiliation(s)
- Sebastian Kruss
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 40 Robert-Koch-Straße, Göttingen 37075, Germany
| | - Katharina Amschler
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 40 Robert-Koch-Straße, Göttingen 37075, Germany
| | - Tabea A. Mundinger
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Hans-Joachim Helms
- Department of Medical Statistics, University Medical Center Göttingen, 32 Humboldtallee, Göttingen 37073, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, 32 Humboldtallee, Göttingen 37073, Germany
| | - Robert K. Andrews
- Australian Center for Blood Diseases, Monash University, 89 Commercial Road, Melbourne 3004, Australia
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 40 Robert-Koch-Straße, Göttingen 37075, Germany
- Address correspondence to ,
| | - Joachim P. Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
- Address correspondence to ,
| |
Collapse
|
16
|
Faridi MH, Altintas MM, Gomez C, Duque JC, Vazquez-Padron RI, Gupta V. Small molecule agonists of integrin CD11b/CD18 do not induce global conformational changes and are significantly better than activating antibodies in reducing vascular injury. Biochim Biophys Acta Gen Subj 2013; 1830:3696-710. [PMID: 23454649 DOI: 10.1016/j.bbagen.2013.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND CD11b/CD18 is a key adhesion receptor that mediates leukocyte adhesion, migration and immune functions. We recently identified novel compounds, leukadherins, that allosterically enhance CD11b/CD18-dependent cell adhesion and reduce inflammation in vivo, suggesting integrin activation to be a novel mechanism of action for the development of anti-inflammatory therapeutics. Since a number of well-characterized anti-CD11b/CD18 activating antibodies are currently available, we wondered if such biological agonists could also become therapeutic leads following this mechanism of action. METHODS We compared the two types of agonists using in vitro cell adhesion and wound-healing assays and using animal model systems. We also studied effects of the two types of agonists on outside-in signaling in treated cells. RESULTS Both types of agonists similarly enhanced integrin-mediated cell adhesion and decreased cell migration. However, unlike leukadherins, the activating antibodies produced significant CD11b/CD18 macro clustering and induced phosphorylation of key proteins involved in outside-in signaling. Studies using conformation reporter antibodies showed that leukadherins did not induce global conformational changes in CD11b/CD18 explaining the reason behind their lack of ligand-mimetic outside-in signaling. In vivo, leukadherins reduced vascular injury in a dose-dependent fashion, but, surprisingly, the anti-CD11b activating antibody ED7 was ineffective. CONCLUSIONS Our results suggest that small molecule allosteric agonists of CD11b/CD18 have clear advantages over the biologic activating antibodies and provide a mechanistic basis for the difference. GENERAL SIGNIFICANCE CD11b/CD18 activation represents a novel strategy for reducing inflammatory injury. Our study establishes small molecule leukadherins as preferred agonists over activating antibodies for future development as novel anti-inflammatory therapeutics.
Collapse
|
17
|
Reed JH, Jain M, Lee K, Kandimalla ER, Faridi MH, Buyon JP, Gupta V, Clancy RM. Complement receptor 3 influences toll-like receptor 7/8-dependent inflammation: implications for autoimmune diseases characterized by antibody reactivity to ribonucleoproteins. J Biol Chem 2013; 288:9077-83. [PMID: 23386618 DOI: 10.1074/jbc.m112.403303] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR) signaling is an important component in the inflammatory response generated in diseases characterized by autoantibody reactivity to proteins such as SSA/Ro in complex with endogenous nucleic acids. Complement receptor 3 (CR3), a genetic variant of which has been identified as a risk factor in systemic lupus erythematosus, has been shown to induce tolerogenic responses in dendritic cells and suppress TLR4 responses in a murine sepsis model. Accordingly, this study addressed the hypothesis that activation of CR3, influenced by genotype of CD11b, negatively regulates TLR7/8-dependent effector function. Allosteric activation of CD11b via pretreatment with the small molecule, leukadhedrin 1 (LA1), significantly attenuated TLR7/8-induced (hY3 RNA, R848) secretion of TNFα in THP-1 cells and human macrophages isolated from donors homozygous for the ancestral common ITGAM allele at rs1143679. This inhibition was accompanied by profound degradation of the adaptor protein MyD88, an effect not observed with direct inhibition of TLR ligation by an antagonist oligonucleotide. In contrast, the addition of LA1 after incubation with the TLR agonists did not result in MyD88 degradation and subsequent attenuation of TNFα secretion. In TLR7/8-stimulated macrophages isolated from donors heterozygous for the CD11b variant, pretreatment with LA1 did not down-regulate TNFα release. These novel findings support a negative cross-talk between CR3 and TLR pathways likely to be induced by antibodies reactive with ribonucleoproteins and point to the development of CR3-specific agonists as potential therapeutics for diseases such as neonatal lupus.
Collapse
Affiliation(s)
- Joanne H Reed
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The calcineurin B subunit induces TNF-related apoptosis-inducing ligand (TRAIL) expression via CD11b–NF-κB pathway in RAW264.7 macrophages. Biochem Biophys Res Commun 2012; 417:777-83. [DOI: 10.1016/j.bbrc.2011.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 11/19/2022]
|
19
|
Maiguel D, Faridi MH, Wei C, Kuwano Y, Balla KM, Hernandez D, Barth CJ, Lugo G, Donnelly M, Nayer A, Moita LF, Schürer S, Traver D, Ruiz P, Vazquez-Padron RI, Ley K, Reiser J, Gupta V. Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. Sci Signal 2011; 4:ra57. [PMID: 21900205 DOI: 10.1126/scisignal.2001811] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integrin CD11b/CD18 (also known as Mac-1), which is a heterodimer of the α(M) (CD11b) and β(2) (CD18) subunits, is critical for leukocyte adhesion and migration and for immune functions. Blocking integrin-mediated leukocyte adhesion, although beneficial in experimental models, has had limited success in treating inflammatory diseases in humans. Here, we used an alternative strategy of inhibiting leukocyte recruitment by activating CD11b/CD18 with small-molecule agonists, which we term leukadherins. These compounds increased the extent of CD11b/CD18-dependent cell adhesion of transfected cells and of primary human and mouse neutrophils, which resulted in decreased chemotaxis and transendothelial migration. Leukadherins also decreased leukocyte recruitment and reduced arterial narrowing after injury in rats. Moreover, compared to a known integrin antagonist, leukadherins better preserved kidney function in a mouse model of experimental nephritis. Leukadherins inhibited leukocyte recruitment by increasing leukocyte adhesion to the inflamed endothelium, which was reversed with a blocking antibody. Thus, we propose that pharmacological activation of CD11b/CD18 offers an alternative therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Dony Maiguel
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|