1
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Batra M, Gupta S, Nair AB, Dhanawat M, Sandal S, Morsy MA. Netarsudil: A new ophthalmic drug in the treatment of chronic primary open angle glaucoma and ocular hypertension. Eur J Ophthalmol 2021; 31:2237-2244. [PMID: 33843288 DOI: 10.1177/11206721211008783] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vision impairment remains a major health problem worldwide. Elevated intraocular pressure is a prime risk factor for blindness in the elderly. Netarsudil is a Rho-associated protein kinase (ROCK) inhibitor, which also inhibits norepinephrine transport. This narrative review summarizes the properties and clinical significance of netarsudil, a promising drug in topical glaucoma therapy. METHODS We searched PubMed, Medline and Scopus databases using relevant keywords to retrieve information on the physicochemical properties, formulation, mechanism of action, clinical pharmacokinetics, dose and toxicity of netarsudil. RESULTS Netarsudil showed promising effects in lowering the elevated intraocular pressure by two mechanisms. The US FDA approved netarsudil for clinical use in 2017 under the trademark of Rhopressa® while European Medicines Agency approved Rhokiinsa® in 2019. This drug is available as a 0.02% ophthalmic solution for once-daily topical application. CONCLUSION The discovery of netarsudil is a breakthrough in the therapy of glaucoma with proven efficacy in a wide range of eye pressures and is well tolerated in cases with ocular hypertension and chronic glaucoma.
Collapse
Affiliation(s)
- Mansi Batra
- Department of Clinical Practice, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Anroop B Nair
- College of Clinical Pharmacy, Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Chemistry, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Suraj Sandal
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana (Ambala), Haryana, India
| | - Mohamed Aly Morsy
- College of Clinical Pharmacy, Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
3
|
Sharif NA. Discovery to Launch of Anti-allergy (Emadine; Patanol/Pataday/Pazeo) and Anti-glaucoma (Travatan; Simbrinza) Ocular Drugs, and Generation of Novel Pharmacological Tools Such as AL-8810. ACS Pharmacol Transl Sci 2020; 3:1391-1421. [PMID: 33344909 DOI: 10.1021/acsptsci.0c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The eye and eyesight are exquistly designed and are precious, and yet we often take them for granted. Good vision is critical for our long-term survival and for humanity's enduring progress. Unfortunately, since ocular diseases do not culminate in life-and-death scenarios, awareness of the plight of millions of people suffering from such eye ailments is not publicized as other diseases. However, losing eyesight or falling victim to visual impairment is a frightening outlook for most people. Glaucoma, a collection of chronic optic neuropathies, of which the most prevalent form, primary open-angle glaucoma (POAG), is the second leading cause of irreversible blindness. POAG currently afflicts >70 million people worldwide and is an insidious, progressive, silent thief of sight that is asymptomatic. On the other hand, allergic conjunctivitis (AC), and the associated rhinitis ("hay-fever"), frequently victimizes a huge number of people worldwide, especially during seasonal changes. While not life-threatening, sufferers of AC soon learn the value of drugs to treat their signs and symptoms of AC as they desire rapid relief to overcome the ocular itching/pain, redness, and tearing AC causes. Herein, I will describe the collective efforts of many researchers whose industrious, diligent, and dedicated team work resulted in the discovery, biochemical/pharmacological characterization, development and eventual launch of drugs to treat AC (e.g., olopatadine [Patanol/Pataday/Pazeo] and emedastine [Emedine]), and for treating ocular hypertension and POAG (e.g., travoprost [Travatan ] and Simbrinza). This represents a personal perspective.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmacology & Neuroscience University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
4
|
Arya H, Coumar MS. Design of novel ROCK inhibitors using fragment-based de novo drug design approach. J Mol Model 2020; 26:249. [PMID: 32829478 DOI: 10.1007/s00894-020-04493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/01/2022]
Abstract
Rho-associated coiled-coil protein kinase (ROCK) is playing a vital role in the regulation of key cellular events and also responsible for causing several pathological conditions such as cancer, hypertension, Alzheimer's, cerebral vasospasm, and cardiac stroke. Therefore, it has attracted us to target ROCK protein as a potential therapeutic target for combating various diseases. Consequently, we investigated the active site of ROCK I protein and designed novel leads against the target using the de novo evolution drug design approach. Caffeic acid (an aglycone of acteoside) as a scaffold and fragments from 336 reported ROCK inhibitors were used for the design of novel leads. Multiple copy simultaneous search docking was used to identify the suitable fragments to be linked with the scaffold. Basic medicinal chemistry rules, coupled with structural insights generated by docking, led to the design of 7a, 8a, 9a, and 10a as potential ROCK I inhibitors. The designed leads showed better binding than the approved drug fasudil and also interacted with the key hinge region residue Met156 of ROCK I. Further, molecular dynamics (MD) simulation revealed that the protein-ligand complexes were stable and maintained the hydrogen bond with Met156 throughout the MD run. The promising in silico outcomes suggest that the designed compounds could be suitable anti-cancer leads that need to be synthesized and tested in various cancer cell lines. Graphical abstract.
Collapse
Affiliation(s)
- Hemant Arya
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
5
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Yang C, Zhang F, Deng GJ, Gong H. Amination of Aromatic Halides and Exploration of the Reactivity Sequence of Aromatic Halides. J Org Chem 2018; 84:181-190. [DOI: 10.1021/acs.joc.8b02588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chu Yang
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 China
| | - Feng Zhang
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Guo-Jun Deng
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 China
| | - Hang Gong
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 China
| |
Collapse
|
8
|
Yao Y, Li R, Liu X, Yang F, Yang Y, Li X, Shi X, Yuan T, Fang L, Du G, Jiao X, Xie P. Discovery of Novel N-Substituted Prolinamido Indazoles as Potent Rho Kinase Inhibitors and Vasorelaxation Agents. Molecules 2017; 22:E1766. [PMID: 29048389 PMCID: PMC6151428 DOI: 10.3390/molecules22101766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023] Open
Abstract
Inhibitors of Rho kinase (ROCK) have potential therapeutic applicability in a wide range of diseases, such as hypertension, stroke, asthma and glaucoma. In a previous article, we described the lead discovery of DL0805, a new ROCK I inhibitor, showing potent inhibitory activity (IC50 6.7 μM). Herein, we present the lead optimization of compound DL0805, resulting in the discovery of 24- and 39-fold more-active analogues 4a (IC50 0.27 μM) and 4b (IC50 0.17 μM), among other active analogues. Moreover, ex-vivo studies demonstrated that 4a and 4b exhibited comparable vasorelaxant activity to the approved drug fasudil in rat aortic rings. The research of a preliminary structure-activity relationship (SAR) indicated that the target compounds containing a β-proline moiety have improved activity against ROCK I relative to analogues bearing an α-proline moiety, and among the series of the derivatives with a β-proline-derived indazole scaffold, the inhibitory activity of the target compounds with a benzyl substituent is superior to those with a benzoyl substituent.
Collapse
Affiliation(s)
- Yangyang Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Renze Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Feilong Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Patil R, Wang H, Sharif NA, Mitra A. Aquaporins: Novel Targets for Age-Related Ocular Disorders. J Ocul Pharmacol Ther 2017. [PMID: 28632458 DOI: 10.1089/jop.2017.0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aquaporins (AQPs), a large family of membrane protein channels that facilitate transport of water and other small solutes, play important roles in physiological functions and human diseases. Up till now, 13 types of AQPs, numbered 0 through 12, have been identified in various mammalian tissues. Homologous genes for AQPs in amphibians, insects, and bacteria highlight the evolutionary conservation and, thus, the importance of these membrane channels. Many members of the AQP family are expressed in the eye. AQP1, which is a water-selective channel, is expressed in the anterior chamber (cornea, ciliary body, trabecular meshwork) and posterior chamber (retina and microvessels in choroid), controlling the fluid homeostasis in the eye. Mice knockout studies have indicated that AQP1 plays an important function in the eye by suggesting its role in aqueous humor dynamics and retina angiogenesis. This review will focus on the role of AQP1 as a novel target for ocular disorders such as glaucoma and age-related macular degeneration, and it will discuss challenges and advances in identifying modulators of AQP1 function that could be useful in clinical applications.
Collapse
Affiliation(s)
- Rajkumar Patil
- 1 Singapore Eye Research Institute , Singapore, Singapore
- 2 Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School , Singapore, Singapore
| | - Haishan Wang
- 3 Institute of Molecular and Cell Biology , A*STAR, Singapore, Singapore
| | | | - Alok Mitra
- 5 School of Biological Sciences, University of Auckland , Auckland, New Zealand
| |
Collapse
|
10
|
Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting Schlemm's Canal in the Medical Therapy of Glaucoma: Current and Future Considerations. Adv Ther 2017; 34:1049-1069. [PMID: 28349508 PMCID: PMC5427152 DOI: 10.1007/s12325-017-0513-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/23/2022]
Abstract
Schlemm’s canal (SC) is a unique, complex vascular structure responsible for maintaining fluid homeostasis within the anterior segment of the eye by draining the excess of aqueous humour. In glaucoma, a heterogeneous group of eye disorders afflicting approximately 60 million individuals worldwide, the normal outflow of aqueous humour into SC is progressively hindered, leading to a gradual increase in outflow resistance, which gradually results in elevated intraocular pressure (IOP). By and large available antiglaucoma therapies do not target the site of the pathology (SC), but rather aim to decrease IOP by other mechanisms, either reducing aqueous production or by diverting aqueous flow through the unconventional outflow system. The present review first outlines our current understanding on the functional anatomy of SC. It then summarizes existing research on SC cell properties; first in the context of their role in glaucoma development/progression and then as a target of novel and emerging antiglaucoma therapies. Evidence from ongoing research efforts to develop effective antiglaucoma therapies targeting SC suggests that this could become a promising site of future therapeutic interventions.
Collapse
|
11
|
Donegan RK, Lieberman RL. Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. J Med Chem 2016; 59:788-809. [PMID: 26356532 PMCID: PMC5547565 DOI: 10.1021/acs.jmedchem.5b00828] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glaucoma, a heterogeneous ocular disorder affecting ∼60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
12
|
Garcia J, Sorrentino J, Diller EJ, Chapman D, Woydziak ZR. A General Method for Nucleophilic Aromatic Substitution of Aryl Fluorides and Chlorides with Dimethylamine using Hydroxide-Assisted Decomposition of N,N-Dimethylforamide. SYNTHETIC COMMUN 2016; 46:475-481. [PMID: 27688484 DOI: 10.1080/00397911.2016.1147051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A practical and convenient procedure for the nucleophilic aromatic substitution of aryl fluorides and chlorides with dimethylamine was developed using a hydroxide assisted, thermal decomposition of N,N-dimethylforamide. These conditions are tolerant of nitro, nitrile, aldehyde, ketone, and amide groups but will undergo acyl substitution to form amides for methyl esters and acyl chlorides. Isolated yields of the products range from 44 - 98%, with the majority being greater than 70% for seventeen examples.
Collapse
Affiliation(s)
- Juana Garcia
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Jacob Sorrentino
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Emily J Diller
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Daniel Chapman
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Zachary R Woydziak
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| |
Collapse
|
13
|
Green J, Cao J, Bandarage UK, Gao H, Court J, Marhefka C, Jacobs M, Taslimi P, Newsome D, Nakayama T, Shah S, Rodems S. Design, Synthesis, and Structure–Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors. J Med Chem 2015; 58:5028-37. [DOI: 10.1021/acs.jmedchem.5b00424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy Green
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Jingrong Cao
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Upul K. Bandarage
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Huai Gao
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - John Court
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Craig Marhefka
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Marc Jacobs
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Paul Taslimi
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - David Newsome
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Tomoko Nakayama
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Sundeep Shah
- Vertex Pharmaceuticals,
Inc., 11010 Torreyana Road, San Diego, California 92121, United States
| | - Steve Rodems
- Vertex Pharmaceuticals,
Inc., 11010 Torreyana Road, San Diego, California 92121, United States
| |
Collapse
|
14
|
Cholkar K, Trinh HM, Pal D, Mitra AK. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov 2015; 10:293-313. [PMID: 25575654 DOI: 10.1517/17460441.2015.1000857] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glaucoma is a neurodegenerative disease with heterogeneous causes that result in retinal ganglionic cell (RGC) death. The discovery of ocular antihypertensives has shifted glaucoma therapy, largely, from surgery to medical intervention. Indeed, several intraocular pressure (IOP)-lowering drugs, with different mechanisms of action and RGC protective property, have been developed. AREAS COVERED In this review, the authors discuss the main new class of kinase inhibitors used as glaucoma treatments, which lower IOP by enhancing drainage and/or lowering production of aqueous humor. The authors include novel inhibitors under preclinical evaluation and investigation for their anti-glaucoma treatment. Additionally, the authors look at treatments that are in clinics now and which may be available in the near future. EXPERT OPINION Treatment of glaucoma remains challenging because the exact cause is yet to be delineated. Neuroprotection to the optic nerve head is undisputable. The novel Rho-associated kinase inhibitors have the capacity to lower IOP and provide optic nerve and RGC protection. In particular, the S-isomer of roscovitine has the capacity to lower IOP and provide neuroprotection. Combinations of selected drugs, which can provide maximal and sustained IOP-lowering effects as well as neuroprotection, are paramount to the prevention of glaucoma progression. In the near future, microRNA intervention may be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Kishore Cholkar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences , 5258 Health Science Building, 2464 Charlotte Street, Kansas City, MO 64108-2718 , USA +1 816 235 1615 ; +1 816 235 5779 ;
| | | | | | | |
Collapse
|
15
|
Effect of 0.04% AR-13324, a ROCK, and Norepinephrine Transporter Inhibitor, on Aqueous Humor Dynamics in Normotensive Monkey Eyes. J Glaucoma 2015; 24:51-4. [DOI: 10.1097/ijg.0b013e3182952213] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Sharif NA, Li L, Katoli P, Xu S, Veltman J, Li B, Scott D, Wax M, Gallar J, Acosta C, Belmonte C. Preclinical pharmacology, ocular tolerability and ocular hypotensive efficacy of a novel non-peptide bradykinin mimetic small molecule. Exp Eye Res 2014; 128:170-80. [PMID: 25307520 DOI: 10.1016/j.exer.2014.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023]
Abstract
We sought to characterize the ocular pharmacology, tolerability and intraocular pressure (IOP)-lowering efficacy of FR-190997, a non-peptidic bradykinin (BK) B2-receptor agonist. FR-190997 possessed a relatively high receptor binding affinity (Ki = 27 nM) and a high in vitro potency (EC50 = 18.3 ± 4.4 nM) for inositol-1-phosphate generation via human cloned B2-receptors expressed in host cells with mimimal activity at B1-receptors. It also mobilized intracellular Ca2+ in isolated human trabecular meshwork (h-TM), ciliary muscle (h-CM), and in immortalized non-pigmented ciliary epithelial (h-iNPE) cells (EC50s = 167-384 nM; Emax = 32-86% of BK-induced response). HOE-140, a selective B2-receptor antagonist, potently blocked the latter effects of FR-190997 (e.g., IC50 = 7.3 ± 0.6 nM in h-CM cells). FR-190997 also stimulated the release of prostaglandins (PGs) from h-TM and h-CM cells (EC50s = 60-84 nM; Emax = 29-44% relative to max. BK-induced effects). FR-190997 (0.3-300 μg t.o.) did not activate cat corneal polymodal nociceptors and did not cause ocular discomfort in Dutch-Belted rabbits, but it was not well tolerated in New Zealand albino rabbits and Hartley guinea pigs. A single topical ocular (t.o.) dose of 1% FR-190997 in Dutch-Belted rabbits and mixed breed cats did not lower IOP. However, FR-190997 efficaciously lowered IOP of conscious ocular hypertensive cynomolgus monkey eyes (e.g., 34.5 ± 7.5% decrease; 6 h post-dose of 30 μg t.o.; n = 8). Thus, FR-190997 is an unexampled efficacious ocular hypotensive B2-receptor non-peptide BK agonist that activates multiple signaling pathways to cause IOP reduction.
Collapse
Affiliation(s)
- Najam A Sharif
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA.
| | - Linya Li
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Parvaneh Katoli
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Shouxi Xu
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - James Veltman
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Byron Li
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Daniel Scott
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Martin Wax
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Juana Gallar
- Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain
| | - Carmen Acosta
- Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain
| | - Carlos Belmonte
- Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain
| |
Collapse
|
17
|
Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro 2014; 6:6/4/1759091414538134. [PMID: 25289646 PMCID: PMC4189421 DOI: 10.1177/1759091414538134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin
degradation results in loss of axonal function and eventual axonal degeneration.
Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to
remyelination of denuded axons occurs regularly in early stages of MS but halts as
the pathology transitions into progressive MS. Pharmacological potentiation of
endogenous OPC maturation and remyelination is now recognized as a promising
therapeutic approach for MS. In this study, we analyzed the effects of modulating the
Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective
inhibitors of ROCK, on the transformation of OPCs into mature, myelinating
oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent
and human origin, that ROCK inhibition in OPCs results in a significant generation of
branches and cell processes in early differentiation stages, followed by accelerated
production of myelin protein as an indication of advanced maturation. Furthermore,
inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons
and remyelination in rat cerebellar tissue explants previously demyelinated with
lysolecithin. Our findings indicate that by direct inhibition of this signaling
molecule, the OPC differentiation program is activated resulting in morphological and
functional cell maturation, myelin formation, and regeneration. Altogether, we show
evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the
induction of remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Carlos E Pedraza
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Albertina Pereira
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Michelle Seng
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Chui-Se Tham
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Michael Webb
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| |
Collapse
|
18
|
Chen HH, Namil A, Severns B, Ward J, Kelly C, Drace C, McLaughlin MA, Yacoub S, Li B, Patil R, Sharif N, Hellberg MR, Rusinko A, Pang IH, Combrink KD. In vivo optimization of 2,3-diaminopyrazine Rho Kinase inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett 2014; 24:1875-9. [DOI: 10.1016/j.bmcl.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
19
|
Abstract
Affecting 60 million patients, glaucoma is the second leading cause of blindness worldwide. Despite the availability of multiple medical and surgical treatments with effective intraocular pressure lowering, many patients still progress to become visually handicapped from glaucoma due to therapeutic failure. There is therefore a great need for novel therapies to improve the standard of care, and Rho kinase (ROCK) inhibitors represent a promising new class of drugs for treatment of glaucoma. ROCK inhibitors act by increasing facility of fluid outflow from the eye, thereby reducing intraocular pressure. ROCK inhibitors also have a vasodilatory effect on conjunctival vessels, which can lead to eye redness, a less than desirable cosmetic side effect for patients that would use this medication. Although there is promising data to support the clinical potential of this class of drug, the occurrence of conjunctival hyperemia remains a potential deterrent for use by patients. Studies are underway to assess alternative dosing strategies, delivery methods and prodrug formulations that may circumvent this unwanted side effect. This review provides an up-to-date account of the basic scientific data, as well as nonclinical and clinical studies to support use of ROCK inhibitors for treatment of glaucoma.
Collapse
Affiliation(s)
| | | | - Barbara Wirostko
- University of Utah, Moran Eye Center, Salt Lake City, UT 84132, USA
| |
Collapse
|
20
|
Pan P, Shen M, Yu H, Li Y, Li D, Hou T. Advances in the development of Rho-associated protein kinase (ROCK) inhibitors. Drug Discov Today 2013; 18:1323-33. [DOI: 10.1016/j.drudis.2013.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/24/2013] [Accepted: 09/13/2013] [Indexed: 01/11/2023]
|
21
|
Guan R, Xu X, Chen M, Hu H, Ge H, Wen S, Zhou S, Pi R. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur J Med Chem 2013; 70:613-22. [PMID: 24211637 DOI: 10.1016/j.ejmech.2013.10.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
RhoA/Rho-kinase pathway plays a pivotal role in numerous fundamental cellular functions including contraction, motility, proliferation, differentiation and apoptosis. The pathway is also involved in the development of many diseases such as vasospasm, pulmonary hypertension, cancer and central nervous systems (CNS) disorders. The inhibitors of Rho kinase have been extensively studied since the Rho/Rho-kinase pathway was verified as a target for a number of diseases. Herein, we reviewed the advances in the studies of the roles of Rho/Rho-kinase in diseases and the development of Rho-kinase inhibitors in recent five years.
Collapse
Affiliation(s)
- Ronggui Guan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Walsh K, Sneddon HF, Moody CJ. Amination of heteroaryl chlorides: palladium catalysis or SN Ar in green solvents? CHEMSUSCHEM 2013; 6:1455-60. [PMID: 23794470 PMCID: PMC3792620 DOI: 10.1002/cssc.201300239] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/26/2013] [Indexed: 06/02/2023]
Abstract
The reaction of heteroaryl chlorides in the pyrimidine, pyrazine and quinazoline series with amines in water in the presence of KF results in a facile SN Ar reaction and N-arylation. The reaction is less satisfactory with pyridines unless an additional electron-withdrawing group is present. The results showed that the transition-metal-free SN Ar reaction not only compares favourably to palladium-catalysed coupling reactions but also operates under environmentally acceptable ("green") conditions in terms of the base and solvent.
Collapse
Affiliation(s)
- Katie Walsh
- School of Chemistry, University of NottinghamUniversity Park, Nottingham NG7 2RD (UK), Fax: (+44) 115 951 3564
| | - Helen F Sneddon
- Green Chemistry Performance Unit, GlaxoSmithKline R…D Ltd, Medicines Research CentreStevenage, Hertfordshire SG1 2NY (UK)
| | - Christopher J Moody
- School of Chemistry, University of NottinghamUniversity Park, Nottingham NG7 2RD (UK), Fax: (+44) 115 951 3564
| |
Collapse
|
23
|
Scales S, Johnson S, Hu Q, Do QQ, Richardson P, Wang F, Braganza J, Ren S, Wan Y, Zheng B, Faizi D, McAlpine I. Studies on the Regioselective Nucleophilic Aromatic Substitution (SNAr) Reaction of 2-Substituted 3,5-Dichloropyrazines. Org Lett 2013; 15:2156-9. [DOI: 10.1021/ol4006695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie Scales
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Sarah Johnson
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Qiyue Hu
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Quyen-Quyen Do
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Paul Richardson
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Fen Wang
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - John Braganza
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Shijian Ren
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Yadong Wan
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Baojiang Zheng
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Darius Faizi
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| | - Indrawan McAlpine
- La Jolla Laboratories, Pfizer, Inc., 10770 Science Center Drive, San Diego, California 92121, United States, and WuXi App Tec Co., Shanghai, China
| |
Collapse
|
24
|
Pireddu R, Forinash KD, Sun NN, Martin MP, Sung SS, Alexander B, Zhu JY, Guida WC, Schönbrunn E, Sebti SM, Lawrence NJ. Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2). MEDCHEMCOMM 2012; 3:699-709. [PMID: 23275831 PMCID: PMC3531244 DOI: 10.1039/c2md00320a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1.
Collapse
Affiliation(s)
- Roberta Pireddu
- The Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li F, Xie J, Shan H, Sun C, Chen L. General and efficient method for direct N-monomethylation of aromatic primary amines with methanol. RSC Adv 2012. [DOI: 10.1039/c2ra21487c] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
26
|
Wenglowsky S, Ahrendt KA, Buckmelter AJ, Feng B, Gloor SL, Gradl S, Grina J, Hansen JD, Laird ER, Lunghofer P, Mathieu S, Moreno D, Newhouse B, Ren L, Risom T, Rudolph J, Seo J, Sturgis HL, Voegtli WC, Wen Z. Pyrazolopyridine inhibitors of B-RafV600E. Part 2: structure-activity relationships. Bioorg Med Chem Lett 2011; 21:5533-7. [PMID: 21802293 DOI: 10.1016/j.bmcl.2011.06.097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Structure-activity relationships around a novel series of B-Raf(V600E) inhibitors are reported. The enzymatic and cellular potencies of inhibitors derived from two related hinge-binding groups were compared and3-methoxypyrazolopyridine proved to be superior. The 3-alkoxy group of lead B-Raf(V600E) inhibitor 1 was extended and minimally affected potency. The propyl sulfonamide tail of compound 1, which occupies the small lipophilic pocket formed by an outward shift of the αC-helix, was expanded to a series of arylsulfonamides. X-ray crystallography revealed that this lipophilic pocket unexpectedly enlarges to accommodate the bulkier aryl group.
Collapse
Affiliation(s)
- Steve Wenglowsky
- ArrayBioPharma, 3200 Walnut Street, Boulder, CO 80301, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|