1
|
Jiang X, Huang B, Rumrill S, Pople D, Zalloum WA, Kang D, Zhao F, Ji X, Gao Z, Hu L, Wang Z, Xie M, De Clercq E, Ruiz FX, Arnold E, Pannecouque C, Liu X, Zhan P. Discovery of diarylpyrimidine derivatives bearing piperazine sulfonyl as potent HIV-1 nonnucleoside reverse transcriptase inhibitors. Commun Chem 2023; 6:83. [PMID: 37120482 PMCID: PMC10148624 DOI: 10.1038/s42004-023-00888-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023] Open
Abstract
HIV-1 reverse transcriptase is one of the most attractive targets for the treatment of AIDS. However, the rapid emergence of drug-resistant strains and unsatisfactory drug-like properties seriously limit the clinical application of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Here we show that a series of piperazine sulfonyl-bearing diarylpyrimidine-based NNRTIs were designed to improve the potency against wild-type and NNRTI-resistant strains by enhancing backbone-binding interactions. Among them, compound 18b1 demonstrates single-digit nanomolar potency against the wild-type and five mutant HIV-1 strains, which is significantly better than the approved drug etravirine. The co-crystal structure analysis and molecular dynamics simulation studies were conducted to explain the broad-spectrum inhibitory activity of 18b1 against reverse transcriptase variants. Besides, compound 18b1 demonstrates improved water solubility, cytochrome P450 liability, and other pharmacokinetic properties compared to the currently approved diarylpyrimidine (DAPY) NNRTIs. Therefore, we consider compound 18b1 a potential lead compound worthy of further study.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Shawn Rumrill
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - David Pople
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882, Amman, 11821, Jordan
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Francesc X Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China.
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan, 250012, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, 250012, Shandong, PR China.
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
2
|
Song LF, Merz KM. Evolution of Alchemical Free Energy Methods in Drug Discovery. J Chem Inf Model 2020; 60:5308-5318. [DOI: 10.1021/acs.jcim.0c00547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Frank Song
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Dodda LS, Tirado-Rives J, Jorgensen WL. Unbinding Dynamics of Non-Nucleoside Inhibitors from HIV-1 Reverse Transcriptase. J Phys Chem B 2019; 123:1741-1748. [PMID: 30571126 DOI: 10.1021/acs.jpcb.8b10341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs), which bind to an allosteric site 10-15 Å from the polymerase active site, play a central role in anti-HIV chemotherapy. Though NNRTIs have been known for 30 years, the pathways by which they bind and unbind from HIV-RT have not been characterized. In crystal structures for complexes, three channels are found to extend from the NNRTI binding site to the exterior of the protein, while added mystery comes from the fact that the binding site is collapsed in the unliganded protein. To address this issue, metadynamics simulations have been performed to elucidate the unbinding of four NNRTIs from HIV-RT. A general and transferable collective variable defined by the distance between the center-of-mass (COM) of the binding pocket and COM of the ligand is used to follow the dynamics while minimizing the bias. The metadynamics also allows computation of the barriers to unbinding, which are compared with the observed potencies of the compounds in an antiviral assay.
Collapse
Affiliation(s)
- Leela S Dodda
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Julian Tirado-Rives
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - William L Jorgensen
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
4
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
5
|
Jorgensen WL. Computer-aided discovery of anti-HIV agents. Bioorg Med Chem 2016; 24:4768-4778. [PMID: 27485603 PMCID: PMC5114837 DOI: 10.1016/j.bmc.2016.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
A review is provided on efforts in our laboratory over the last decade to discover anti-HIV agents. The work has focused on computer-aided design and synthesis of non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) with collaborative efforts on biological assaying and protein crystallography. Numerous design issues were successfully addressed including the need for potency against a wide range of viral variants, good aqueous solubility, and avoidance of electrophilic substructures. Computational methods including docking, de novo design, and free-energy perturbation (FEP) calculations made essential contributions. The result is novel NNRTIs with picomolar and low-nanomolar activities against wild-type HIV-1 and key variants that also show much improved solubility and lower cytotoxicity than recently approved drugs in the class.
Collapse
Affiliation(s)
- William L Jorgensen
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States.
| |
Collapse
|
6
|
Santos LH, Ferreira RS, Caffarena ER. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Mem Inst Oswaldo Cruz 2016; 110:847-64. [PMID: 26560977 PMCID: PMC4660614 DOI: 10.1590/0074-02760150239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency
virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts
against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors
(NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the
highly active antiretroviral therapy in combination with other anti-HIV drugs.
However, the rapid emergence of drug-resistant viral strains has limited the
successful rate of the anti-HIV agents. Computational methods are a significant part
of the drug design process and indispensable to study drug resistance. In this
review, recent advances in computer-aided drug design for the rational design of new
compounds against HIV-1 RT using methods such as molecular docking, molecular
dynamics, free energy calculations, quantitative structure-activity relationships,
pharmacophore modelling and absorption, distribution, metabolism, excretion and
toxicity prediction are discussed. Successful applications of these methodologies are
also highlighted.
Collapse
Affiliation(s)
| | - Rafaela Salgado Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
7
|
Chen W, Zhan P, Daelemans D, Yang J, Huang B, De Clercq E, Pannecouque C, Liu X. Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. Eur J Med Chem 2016; 121:352-363. [PMID: 27267005 DOI: 10.1016/j.ejmech.2016.05.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
Abstract
Based on the crystallographic studies of diarylpyrimidines (DAPYs), we embarked on incorporating the hydrophilic piperidyl or morpholinyl group into the known DAPY derivatives bearing the pyridine moiety as a core structure, with the double aim to exploit additional interactions with the HIV-1 NNRTI binding pocket (NNIBP), as well as to improve the compound solubility. The antiviral evaluation result show that the most potent compounds I-8b2, I-8b3, I-8b4 and I-8c3 exhibited anti-HIV-1 (IIIB) strain activity ranging from 7.4 nM to 9.4 nM (SI = 168-1283), superior to FDA-approved drugs of nevirapine (NVP), lamivudine (3TC) and delavirdine (DLV), and comparable to etravirine (ETV), zidovudine (AZT) and efavirenz (EFV). Additionally, compounds I-8c2 and I-8c3 showed moderate activity against NNRTI resistant strains baring mutations K103N and Y181C with EC50 values of 6.2 μM and 6.8 μM, respectively. Preliminary structure-activity relationships (SARs), reverse transcriptase inhibition efficacy and molecular modeling of selected compounds are also presented. These outcomes support our design hypothesis and demonstrate that the piperidyl group modified pyridine-typed DAPY derivatives are highly potent NNRTIs with improved water solubility.
Collapse
Affiliation(s)
- Wenmin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Jiapei Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
8
|
Frączek T, Paneth A, Kamiński R, Krakowiak A, Paneth P. Searching for novel scaffold of triazole non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Enzyme Inhib Med Chem 2015; 31:481-9. [PMID: 25942362 DOI: 10.3109/14756366.2015.1039531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azoles are a promising class of the new generation of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). From thousands of reported compounds, many possess the same basic structure of an aryl substituted azole ring linked by a thioglycolamide chain with another aromatic ring. In order to find novel extensions for this basic scaffold, we explored the 5-position substitution pattern of triazole NNRTIs using molecular docking followed by the synthesis of selected compounds. We found that heterocyclic substituents in the 5-position of the triazole ring are detrimental to the inhibitory activity of compounds with four-membered thioglycolamide linker and this substitution seems to be viable only for compounds with shorter two-membered linker. Promising compound, N-(4-carboxy-2-chlorophenyl)-2-((4-benzyl-5-methyl-4H-1,2,4-triazol-3-yl)sulfanyl)acetamide, with potent inhibitory activity and acceptable aqueous solubility has been identified in this study that could serve as lead scaffold for the development of novel water-soluble salts of triazole NNRTIs.
Collapse
Affiliation(s)
- Tomasz Frączek
- a Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz , Poland
| | - Agata Paneth
- a Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz , Poland .,b Department of Organic Chemistry , Faculty of Pharmacy, Medical University , Lublin , Poland , and
| | - Rafał Kamiński
- a Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz , Poland
| | - Agnieszka Krakowiak
- a Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz , Poland .,c Department of Bioorganic Chemistry , Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Lodz , Poland
| | - Piotr Paneth
- a Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz , Poland
| |
Collapse
|
9
|
Tintori C, Fallacara AL, Radi M, Zamperini C, Dreassi E, Crespan E, Maga G, Schenone S, Musumeci F, Brullo C, Richters A, Gasparrini F, Angelucci A, Festuccia C, Delle Monache S, Rauh D, Botta M. Combining X-ray Crystallography and Molecular Modeling toward the Optimization of Pyrazolo[3,4-d]pyrimidines as Potent c-Src Inhibitors Active in Vivo against Neuroblastoma. J Med Chem 2014; 58:347-61. [DOI: 10.1021/jm5013159] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cristina Tintori
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Lucia Fallacara
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro 2, 53100 Siena, Italy
- Dipartimento
di Chimica e Tecnologie Farmaceutiche, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marco Radi
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro 2, 53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro 2, 53100 Siena, Italy
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Silvia Schenone
- Dipartimento
di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Francesca Musumeci
- Dipartimento
di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento
di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - André Richters
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Francesca Gasparrini
- Dipartimento
di Medicina Molecolare, Sapienza Università di Roma, Piazzale Aldo
Moro 5, 00185 Roma, Italy
| | - Adriano Angelucci
- Dipartimento
di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Claudio Festuccia
- Dipartimento
di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Simona Delle Monache
- Dipartimento
di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Daniel Rauh
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Maurizio Botta
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
10
|
Molecular dynamics and Monte Carlo simulations for protein-ligand binding and inhibitor design. Biochim Biophys Acta Gen Subj 2014; 1850:966-971. [PMID: 25196360 DOI: 10.1016/j.bbagen.2014.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Non-nucleoside inhibitors of HIV reverse transcriptase are an important component of treatment against HIV infection. Novel inhibitors are sought that increase potency against variants that contain the Tyr181Cys mutation. METHODS Molecular dynamics based free energy perturbation simulations have been run to study factors that contribute to protein-ligand binding, and the results are compared with those from previous Monte Carlo based simulations and activity data. RESULTS Predictions of protein-ligand binding modes are very consistent for the two simulation methods; the accord is attributed to the use of an enhanced sampling protocol. The Tyr181Cys binding pocket supports large, hydrophobic substituents, which is in good agreement with experiment. CONCLUSIONS Although some discrepancies exist between the results of the two simulation methods and experiment, free energy perturbation simulations can be used to rapidly test small molecules for gains in binding affinity. GENERAL SIGNIFICANCE Free energy perturbation methods show promise in providing fast, reliable and accurate data that can be used to complement experiment in lead optimization projects. This article is part of a Special Issue entitled "Recent developments of molecular dynamics".
Collapse
|
11
|
Cole DJ, Tirado-Rives J, Jorgensen WL. Enhanced Monte Carlo Sampling through Replica Exchange with Solute Tempering. J Chem Theory Comput 2014; 10:565-571. [PMID: 24803853 PMCID: PMC3985685 DOI: 10.1021/ct400989x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Indexed: 11/30/2022]
Abstract
![]()
With
a view to improving the consistency of free energy perturbation calculations
in Monte Carlo simulations of protein–ligand complexes, we
have implemented the replica exchange with solute tempering (REST)
method in the MCPRO software. By augmenting the standard
REST approach with regular attempted jumps in selected dihedral angles,
our combined method facilitates sampling of ligand binding modes that
are separated by high free energy barriers and ensures that computed
free energy changes are considerably less dependent on the starting
conditions and the chosen mutation pathway than those calculated with
standard Monte Carlo sampling. We have applied the enhanced sampling
method to the calculation of the activities of seven non-nucleoside
inhibitors of HIV-1 reverse transcriptase, and its Tyr181Cys variant,
and have shown that a range of binding orientations is possible depending
on the nature of the ligand and the presence of mutations at the binding
site.
Collapse
Affiliation(s)
- Daniel J Cole
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
12
|
La Pietra V, La Regina G, Coluccia A, Famiglini V, Pelliccia S, Plotkin B, Eldar-Finkelman H, Brancale A, Ballatore C, Crowe A, Brunden KR, Marinelli L, Novellino E, Silvestri R. Design, synthesis, and biological evaluation of 1-phenylpyrazolo[3,4-e]pyrrolo[3,4-g]indolizine-4,6(1H,5H)-diones as new glycogen synthase kinase-3β inhibitors. J Med Chem 2013; 56:10066-78. [PMID: 24295046 DOI: 10.1021/jm401466v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compound 5 was selected from our in-house library as a suitable starting point for the rational design of new GSK-3β inhibitors. MC/FEP calculations of 5 led to the identification of a structural class of new GSK-3β inhibitors. Compound 18 inhibited GSK-3β with an IC50 of 0.24 μM and inhibited tau phosphorylation in a cell-based assay. It proved to be a selective inhibitor of GSK-3 against a panel of 17 kinases and showed >10-fold selectivity against CDK2. Calculated physicochemical properties and Volsurf predictions suggested that compound 18 has the potential to diffuse passively across the blood-brain barrier.
Collapse
Affiliation(s)
- Valeria La Pietra
- Dipartimento di Farmacia, Università di Napoli Federico II , Via Domenico Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bollini M, Frey KM, Cisneros JA, Spasov KA, Das K, Bauman JD, Arnold E, Anderson KS, Jorgensen WL. Extension into the entrance channel of HIV-1 reverse transcriptase--crystallography and enhanced solubility. Bioorg Med Chem Lett 2013; 23:5209-12. [PMID: 23899617 PMCID: PMC3761378 DOI: 10.1016/j.bmcl.2013.06.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 01/15/2023]
Abstract
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that feature extension into the entrance channel near Glu138. Complexes of the parent anilinylpyrimidine 1 and the morpholinoethoxy analog 2j with HIV-RT have received crystallographic characterization confirming the designs. Measurement of aqueous solubilities of 2j, 2k, the parent triazene 2a, and other NNRTIs demonstrate profound benefits for addition of the morpholinyl substituent.
Collapse
Affiliation(s)
- Mariela Bollini
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Radi M, Tintori C, Musumeci F, Brullo C, Zamperini C, Dreassi E, Fallacara AL, Vignaroli G, Crespan E, Zanoli S, Laurenzana I, Filippi I, Maga G, Schenone S, Angelucci A, Botta M. Design, Synthesis, and Biological Evaluation of Pyrazolo[3,4-d]pyrimidines Active in Vivo on the Bcr-Abl T315I Mutant. J Med Chem 2013; 56:5382-94. [DOI: 10.1021/jm400233w] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marco Radi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle
Scienze 27/A, 43124 Parma, Italy
| | - Cristina Tintori
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Musumeci
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Claudio Zamperini
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Giulia Vignaroli
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia,
Italy
| | - Samantha Zanoli
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia,
Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical
and Translational
Research, IRCCS-Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Irene Filippi
- Dipartimento di Medicina Molecolare
e dello Sviluppo, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia,
Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche
Applicate e Biotecnologiche, Università dell’Aquila Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Sbarro Institute for Cancer
Research and Molecular Medicine, Center for Biotechnology, College
of Science and Technology, Temple University, BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia,
Pennsylvania 19122, United States
| |
Collapse
|
15
|
Abstract
INTRODUCTION The oxadiazoles represent a class of five-membered heterocyclic compounds which are of considerable interest in different areas of medicinal chemistry and drug discovery. Oxadiazoles can exist in different regioisomeric forms and employ in various agents with a broad range of biological activities. This review covers the work reported on various biological activities of oxadiazole derivatives from 2010 to 2012. AREAS COVERED Oxadiazole derivatives attract great attention due to their different kinds of pharmaceutical activities including antiviral, antimicrobial, anticancer, anticonvulsant, antidiabetic and anti-inflammatory activity. This paper provides a general review of oxadiazole derivatives published in international journals and patented between 2010 and 2012. EXPERT OPINION Oxadiazoles have been used frequently in drug-like molecules as bioisosteres for ester and amide functionalities and displayed numerous prominent pharmacological effects. The broad pharmacological profile of oxadiazole derivatives has attracted the attention of many researchers to explore this scaffold to its multiple potential against several activities. Therefore, oxadiazole motif is likely to be present in other therapeutic molecules in the future.
Collapse
Affiliation(s)
- Afshin Zarghi
- Shahid Beheshti University of Medical Sciences, School of Pharmacy, Department of Medicinal Chemistry, P.O. Box: 14155-6153, Tehran, Iran.
| | | |
Collapse
|
16
|
Bollini M, Gallardo-Macias R, Spasov KA, Tirado-Rives J, Anderson KS, Jorgensen WL. Optimization of benzyloxazoles as non-nucleoside inhibitors of HIV-1 reverse transcriptase to enhance Y181C potency. Bioorg Med Chem Lett 2013; 23:1110-3. [PMID: 23298809 PMCID: PMC3561933 DOI: 10.1016/j.bmcl.2012.11.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved activity towards Tyr181Cys containing variants was pursued with the assistance of free energy perturbation (FEP) calculations. Optimization of the 4-R substituent in 1 led to ethyl and isopropyl analogs 1e and 1f with 1-7 nM potency towards both the wild-type virus and a Tyr181C variant.
Collapse
Affiliation(s)
- Mariela Bollini
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
17
|
Venkatraj M, Ariën KK, Heeres J, Joossens J, Messagie J, Michiels J, Van der Veken P, Vanham G, Lewi PJ, Augustyns K. Synthesis, evaluation and structure–activity relationships of triazine dimers as novel antiviral agents. Bioorg Med Chem Lett 2012; 22:7174-8. [DOI: 10.1016/j.bmcl.2012.09.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023]
|
18
|
Acevedo O, Ambrose Z, Flaherty PT, Aamer H, Jain P, Sambasivarao SV. Identification of HIV inhibitors guided by free energy perturbation calculations. Curr Pharm Des 2012; 18:1199-216. [PMID: 22316150 DOI: 10.2174/138161212799436421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/06/2011] [Indexed: 01/14/2023]
Abstract
Free energy perturbation (FEP) theory coupled to molecular dynamics (MD) or Monte Carlo (MC) statistical mechanics offers a theoretically precise method for determining the free energy differences of related biological inhibitors. Traditionally requiring extensive computational resources and expertise, it is only recently that its impact is being felt in drug discovery. A review of computer-aided anti-HIV efforts employing FEP calculations is provided here that describes early and recent successes in the design of human immunodeficiency virus type 1 (HIV-1) protease and non-nucleoside reverse transcriptase inhibitors. In addition, our ongoing work developing and optimizing leads for small molecule inhibitors of cyclophilin A (CypA) is highlighted as an update on the current capabilities of the field. CypA has been shown to aid HIV-1 replication by catalyzing the cis/trans isomerization of a conserved Gly-Pro motif in the Nterminal domain of HIV-1 capsid (CA) protein. In the absence of a functional CypA, e.g., by the addition of an inhibitor such as cyclosporine A (CsA), HIV-1 has reduced infectivity. Our simulations of acylurea-based and 1-indanylketone-based CypA inhibitors have determined that their nanomolar and micromolar binding affinities, respectively, are tied to their ability to stabilize Arg55 and Asn102. A structurally novel 1-(2,6-dichlorobenzamido) indole core was proposed to maximize these interactions. FEP-guided optimization, experimental synthesis, and biological testing of lead compounds for toxicity and inhibition of wild-type HIV-1 and CA mutants have demonstrated a dose-dependent inhibition of HIV-1 infection in two cell lines. While the inhibition is modest compared to CsA, the results are encouraging.
Collapse
Affiliation(s)
- Orlando Acevedo
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Leung CS, Leung SSF, Tirado-Rives J, Jorgensen WL. Methyl effects on protein-ligand binding. J Med Chem 2012; 55:4489-500. [PMID: 22500930 DOI: 10.1021/jm3003697] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of addition of a methyl group to a lead compound on biological activity are examined. A literature analysis of >2000 cases reveals that an activity boost of a factor of 10 or more is found with an 8% frequency, and a 100-fold boost is a 1 in 200 event. Four cases in the latter category are analyzed in depth to elucidate any unusual aspects of the protein-ligand binding, distribution of water molecules, and changes in conformational energetics. The analyses include Monte Carlo/free-energy perturbation (MC/FEP) calculations for methyl replacements in inhibitor series for p38α MAP kinase, ACK1, PTP1B, and thrombin. Methyl substitutions ortho to an aryl ring can be particularly effective at improving activity by inducing a propitious conformational change. The greatest improvements in activity arise from coupling the conformational gain with the burial of the methyl group in a hydrophobic region of the protein.
Collapse
Affiliation(s)
- Cheryl S Leung
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
20
|
Ekkati AR, Bollini M, Domaoal RA, Spasov KA, Anderson KS, Jorgensen WL. Discovery of dimeric inhibitors by extension into the entrance channel of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2012; 22:1565-8. [PMID: 22269110 PMCID: PMC3278212 DOI: 10.1016/j.bmcl.2011.12.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 12/01/2022]
Abstract
Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase is being pursued with computational guidance. Extension of azine-containing inhibitors into the entrance channel between Lys103 and Glu138 has led to the discovery of potent and structurally novel derivatives including dimeric inhibitors in an NNRTI-linker-NNRTI motif.
Collapse
Affiliation(s)
- Anil R Ekkati
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
21
|
Rauws TRM, Maes BUW. Transition metal-catalyzed N-arylations of amidines and guanidines. Chem Soc Rev 2012; 41:2463-97. [DOI: 10.1039/c1cs15236j] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Bollini M, Domaoal RA, Thakur VV, Gallardo-Macias R, Spasov KA, Anderson KS, Jorgensen WL. Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. J Med Chem 2011; 54:8582-91. [PMID: 22081993 DOI: 10.1021/jm201134m] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A 5-μM docking hit has been optimized to an extraordinarily potent (55 pM) non-nucleoside inhibitor of HIV reverse transcriptase. Use of free energy perturbation (FEP) calculations to predict relative free energies of binding aided the optimizations by identifying optimal substitution patterns for phenyl rings and a linker. The most potent resultant catechol diethers feature terminal uracil and cyanovinylphenyl groups. A halogen bond with Pro95 likely contributes to the extreme potency of compound 42. In addition, several examples are provided illustrating failures of attempted grafting of a substructure from a very active compound onto a seemingly related scaffold to improve its activity.
Collapse
Affiliation(s)
- Mariela Bollini
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Jorgensen WL, Bollini M, Thakur VV, Domaoal RA, Spasov KA, Anderson KS. Efficient discovery of potent anti-HIV agents targeting the Tyr181Cys variant of HIV reverse transcriptase. J Am Chem Soc 2011; 133:15686-96. [PMID: 21853995 PMCID: PMC3183387 DOI: 10.1021/ja2058583] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) that interfere with the replication of human immunodeficiency virus (HIV) are being pursued with guidance from molecular modeling including free-energy perturbation (FEP) calculations for protein-inhibitor binding affinities. The previously reported pyrimidinylphenylamine 1 and its chloro analogue 2 are potent anti-HIV agents; they inhibit replication of wild-type HIV-1 in infected human T-cells with EC(50) values of 2 and 10 nM, respectively. However, they show no activity against viral strains containing the Tyr181Cys (Y181C) mutation in HIV-RT. Modeling indicates that the problem is likely associated with extensive interaction between the dimethylallyloxy substituent and Tyr181. As an alternative, a phenoxy group is computed to be oriented in a manner diminishing the contact with Tyr181. However, this replacement leads to a roughly 1000-fold loss of activity for 3 (2.5 μM). The present report details the efficient, computationally driven evolution of 3 to novel NNRTIs with sub-10 nM potency toward both wild-type HIV-1 and Y181C-containing variants. The critical contributors were FEP substituent scans for the phenoxy and pyrimidine rings and recognition of potential benefits of addition of a cyanovinyl group to the phenoxy ring.
Collapse
|
24
|
Venkatraj M, Ariën KK, Heeres J, Dirié B, Joossens J, Van Goethem S, Van der Veken P, Michiels J, Vande Velde CM, Vanham G, Lewi PJ, Augustyns K. Novel diarylpyridinones, diarylpyridazinones and diarylphthalazinones as potential HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). Bioorg Med Chem 2011; 19:5924-34. [DOI: 10.1016/j.bmc.2011.08.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/19/2011] [Accepted: 08/28/2011] [Indexed: 11/25/2022]
|
25
|
Bode ML, Gravestock D, Moleele SS, van der Westhuyzen CW, Pelly SC, Steenkamp PA, Hoppe HC, Khan T, Nkabinde LA. Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 2011; 19:4227-37. [PMID: 21700466 DOI: 10.1016/j.bmc.2011.05.062] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022]
Abstract
During random screening of a small in-house library of compounds, certain substituted imidazo[1,2-a]pyridines were found to be weak allosteric inhibitors of HIV-1 reverse transcriptase (RT). A library of these compounds was prepared using the Groebke reaction and a subset of compounds prepared from 2-chlorobenzaldehyde, cyclohexyl isocyanide and a 6-substituted 2-aminopyridine showed good inhibitory activity in enzymatic (RT) and HIV anti-infectivity MAGI whole cell assays. The compound showing the best anti-HIV-1 IIIB whole cell activity (MAGI IC(50)=0.18 μM, IC(90)=1.06 μM), along with a good selectivity index (>800), was 2-(2-chlorophenyl)-3-(cyclohexylamino)imidazo[1,2-a]pyridine-5-carbonitrile 38.
Collapse
Affiliation(s)
- Moira L Bode
- CSIR Biosciences, Private Bag X2, Modderfontein, Johannesburg 1645, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev 2011; 33 Suppl 1:E1-72. [PMID: 21523792 DOI: 10.1002/med.20241] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) nowadays represent very potent and most promising anti-AIDS agents that specifically target the HIV-1 reverse transcriptase (RT). However, the effectiveness of NNRTI drugs can be hampered by rapid emergence of drug-resistant viruses and severe side effects upon long-term use. Therefore, there is an urgent need to develop novel, highly potent NNRTIs with broad spectrum antiviral activity and improved pharmacokinetic properties, and more efficient strategies that facilitate and shorten the drug discovery process would be extremely beneficial. Fortunately, the structural diversity of NNRTIs provided a wide space for novel lead discovery, and the pharmacophore similarity of NNRTIs gave valuable hints for lead discovery and optimization. More importantly, with the continued efforts in the development of computational tools and increased crystallographic information on RT/NNRTI complexes, structure-based approaches using a combination of traditional medicinal chemistry, structural biology, and computational chemistry are being used increasingly in the design of NNRTIs. First, this review covers two decades of research and development for various NNRTI families based on their chemical scaffolds, and then describes the structural similarity of NNRTIs. We have attempted to assemble a comprehensive overview of the general approaches in NNRTI lead discovery and optimization reported in the literature during the last decade. The successful applications of medicinal chemistry strategies, crystallography, and computational tools for designing novel NNRTIs are highlighted. Future directions for research are also outlined.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 2011; 21:150-60. [PMID: 21349700 DOI: 10.1016/j.sbi.2011.01.011] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 11/23/2022]
Abstract
Improved rational drug design methods are needed to lower the cost and increase the success rate of drug discovery and development. Alchemical binding free energy calculations, one potential tool for rational design, have progressed rapidly over the past decade, but still fall short of providing robust tools for pharmaceutical engineering. Recent studies, especially on model receptor systems, have clarified many of the challenges that must be overcome for robust predictions of binding affinity to be useful in rational design. In this review, inspired by a recent joint academic/industry meeting organized by the authors, we discuss these challenges and suggest a number of promising approaches for overcoming them.
Collapse
|
28
|
Luccarelli J, Michel J, Tirado-Rives J, Jorgensen WL. Effects of Water Placement on Predictions of Binding Affinities for p38α MAP Kinase Inhibitors. J Chem Theory Comput 2010; 6:3850-3856. [PMID: 21278915 DOI: 10.1021/ct100504h] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monte Carlo free energy perturbation (MC/FEP) calculations have been applied to compute the relative binding affinities of 17 congeneric pyridazo-pyrimidinone inhibitors of the protein p38α MAP kinase. Overall correlation with experiment was found to be modest when the complexes were hydrated using a traditional procedure with a stored solvent box. Significant improvements in accuracy were obtained when the MC/FEP calculations were repeated using initial solvent distributions optimized by the water placement algorithm JAWS. The results underscore the importance of accurate placement of water molecules in a ligand binding site for the reliable prediction of relative free energies of binding.
Collapse
Affiliation(s)
- James Luccarelli
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | | | | | | |
Collapse
|
29
|
Alexandrova AN. Promiscuous DNA alkyladenine glycosylase dramatically favors a bound lesion over undamaged adenine. Biophys Chem 2010; 152:118-27. [DOI: 10.1016/j.bpc.2010.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
|