1
|
Papasavva A, Pirmettis NN, Shegani A, Papadopoulou E, Kiritsis C, Georgoutsou-Spyridonos M, Mastellos DC, Chiotellis A, Kyprianidou P, Pelecanou M, Papadopoulos M, Pirmettis I. Synthesis and Evaluation of 99mTc(CO) 3 Complexes with Ciprofloxacin Dithiocarbamate for Infection Imaging. Pharmaceutics 2024; 16:1210. [PMID: 39339246 PMCID: PMC11435093 DOI: 10.3390/pharmaceutics16091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The accurate diagnosis of bacterial infections remains a critical challenge in clinical practice. Traditional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) often fail to distinguish bacterial infections from sterile inflammation. Nuclear medicine, such as technetium-99m (99mTc) radiopharmaceuticals, offers a promising alternative due to its ideal characteristics. Methods: This study explores the development of [2 + 1] mixed-ligand 99mTc-labeled ciprofloxacin dithiocarbamate (Cip-DTC) complexes combined with various phosphine ligands, including triphenylphosphine (PPh3), tris(4-methoxyphenyl)phosphine (TMPP), methyl(diphenyl)phosphine (MePPh2), dimethylphenylphosphine (DMPP), and 1,3,5-triaza-7-phosphaadamantane (ADAP). The characterization of 99mTc-complexes was conducted using rhenium analogs as structural models to ensure similar coordination. Results: Stability studies demonstrated the high integrity (97-98%) of the complexes under various conditions, including cysteine and histidine challenges. Lipophilicity studies indicated that complexes with higher logD7.4 values (1.6-2.7) exhibited enhanced tissue penetration and prolonged circulation. Biodistribution studies in Swiss Albino mice with induced infections and aseptic inflammation revealed distinct patterns. Specifically, the complex fac-[99mTc(CO)3(Cip-DTC)(PPh3)] (2') showed high infected/normal muscle ratios (4.62 at 120 min), while the complex fac-[99mTc(CO)3(Cip-DTC)(TMPP)] (3') demonstrated delayed but effective targeting (infected/normal muscle ratio of 3.32 at 120 min). Conclusions: These findings highlight the potential of 99mTc-labeled complexes as effective radiopharmaceuticals for the differential diagnosis of bacterial infections, advancing nuclear medicine diagnostics. Future studies will focus on optimizing molecular weight, lipophilicity, and stability to further enhance the diagnostic specificity and clinical utility of these radiopharmaceuticals.
Collapse
Affiliation(s)
- Afroditi Papasavva
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Nektarios N. Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Antonio Shegani
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Eleni Papadopoulou
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Christos Kiritsis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Maria Georgoutsou-Spyridonos
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Dimitrios C. Mastellos
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Aristeidis Chiotellis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Patricia Kyprianidou
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Maria Pelecanou
- Institute of Biosciences & Applications, NCSR “Demokritos”, 15310 Athens, Greece;
| | - Minas Papadopoulos
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, 15310 Athens, Greece; (A.P.); (N.N.P.); (A.S.); (E.P.); (C.K.); (M.G.-S.); (D.C.M.); (A.C.); (P.K.); (M.P.)
| |
Collapse
|
2
|
Mardanshahi A, Vaseghi S, Hosseinimehr SJ, Abedi SM, Molavipordanjani S. 99mTc(CO) 3-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5-HT 7 receptors. Ann Nucl Med 2024; 38:139-153. [PMID: 38032496 DOI: 10.1007/s12149-023-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HT7R is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HT7R; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HT7R imaging agents. METHODS: Compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were radiolabeled with fac-[99mTc(CO)3(H2O)3]+ and 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were obtained with high radiochemical purity (RCP > 94%). The stability of the radiotracers was evaluated in both saline and mouse serum. Specific binding on different cell lines including U-87 MG, MCF-7, SKBR3, and HT-29 was performed. The biodistribution of these radiotracers was evaluated in normal and U-87 MG Xenografted models. Finally, 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were applied for in vivo imaging in U-87 MG Xenografted models. RESULTS Specific binding study indicates that 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can recognize 5-HT7R of U87-MG cell line. The biodistribution study in normal mice indicates that the brain uptake of 99mTc(CO)3-[6] and 99mTc(CO)3-[7] is the highest at 30 min post-injection (0.8 ± 0.25 and 0.64 ± 0.18%ID/g, respectively). The data of the biodistribution study in the U87-MG xenograft model revealed that these radiotracers could accumulate in the tumor site, and the highest tumor uptake was observed at 60 min post-injection (3.38 ± 0.65 and 3.27 ± 0.5%ID/g, respectively). The injection of pimozide can block the tumor's radiotracer uptake, indicating the binding of these radiotracers to the 5-HT7R. The imaging study in the xenograft model also confirms the biodistribution data. The acquired images clearly show the tumor site, and the tumor-to-muscle ratio for 99mTc(CO)3-[6] and 99mTc(CO)3-[7] at 60 min was 3.33 and 3.88, respectively. CONCLUSIONS: 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can visualize tumor in the U87-MG xenograft model due to their affinity toward 5-HT7R.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Naqvi SAR. 99m Tc-labeled antibiotics for infection diagnosis: Mechanism, action, and progress. Chem Biol Drug Des 2021; 99:56-74. [PMID: 34265177 DOI: 10.1111/cbdd.13923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023]
Abstract
Discovery of penicillin marked a turning point in the history of infection therapy which also led to the emergence of bacterial resistance. It is now 100 years to fight with ever-muted variants of pathogens by developing more and more antibiotics. Since 1987 to todate, no successful class of antibiotic was introduced; this three decade period is known as "the discovery void" period. While, the clinically approved antibiotics are gradually dying in front of bacterial resistance due to which bacterial infections are appearing leading cause of death and disability. Nuclear medicine imaging technique is the strongest modality to diagnose and follow-up of deep-seated and complicated infections. However, the selection of radiolabeled antimicrobial agents plays critical role in gaining sensitivity and specificity of the imaging results. This review comprises of two main sections; first section explains antibiotic targets, and second section explains the imaging efficacy of 99m Tc-labeled antimicrobial agents against bacterial infection along with the emphasis on progress and update of 99m Tc-labeled antibiotics as infection imaging probes. The review, in conclusion, could be an acceleration for radiopharmaceutical chemists for designing and developing 99m Tc-labeled antimicrobial agents to improve infection imaging quality.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Sanchis-Perucho A, Orts-Arroyo M, Camús-Hernández J, Rojas-Dotti C, Escrivà E, Lloret F, Martínez-Lillo J. Hexahalorhenate( iv) salts of protonated ciprofloxacin: antibiotic-based single-ion magnets. CrystEngComm 2021. [DOI: 10.1039/d1ce01337h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the crystal lattice of two novel ReIV compounds, the paramagnetic [ReCl6]2− and [ReBr6]2− anions are well separated from each other through two protonated forms of the antibiotic ciprofloxacin. These compounds behave as single-ion magnets (SIMs).
Collapse
Affiliation(s)
- Adrián Sanchis-Perucho
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Marta Orts-Arroyo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Javier Camús-Hernández
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Carlos Rojas-Dotti
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Emilio Escrivà
- Departament de Química Inorgànica, Facultat de Química, Universitat de València, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - José Martínez-Lillo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| |
Collapse
|
6
|
Fang S, Jiang Y, Gan Q, Ruan Q, Xiao D, Zhang J. Design, Preparation, and Evaluation of a Novel 99mTcN Complex of Ciprofloxacin Xanthate as a Potential Bacterial Infection Imaging Agent. Molecules 2020; 25:molecules25245837. [PMID: 33322004 PMCID: PMC7762968 DOI: 10.3390/molecules25245837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
In order to seek novel technetium-99m bacterial infection imaging agents, a ciprofloxacin xanthate (CPF2XT) was synthesized and radiolabeled with [99mTcN]2+ core to obtain the 99mTcN-CPF2XT complex, which exhibited high radiochemical purity, hydrophilicity, and good stability in vitro. The bacteria binding assay indicated that 99mTcN-CPF2XT had specificity to bacteria. A study of biodistribution in mice showed that 99mTcN-CPF2XT had a higher uptake in bacterial infection tissues than in turpentine-induced abscesses, indicating that it could distinguish bacterial infection from sterile inflammation. Compared to 99mTcN-CPFXDTC, the abscess/blood and abscess/muscle ratios of 99mTcN-CPF2XT were higher and the uptakes of 99mTcN-CPF2XT in the liver and lung were obviously decreased. The results suggested that 99mTcN-CPF2XT would be a potential bacterial infection imaging agent.
Collapse
|
7
|
Oliveira JWDF, Rocha HAO, de Medeiros WMTQ, Silva MS. Application of Dithiocarbamates as Potential New Antitrypanosomatids-Drugs: Approach Chemistry, Functional and Biological. Molecules 2019; 24:E2806. [PMID: 31374887 PMCID: PMC6695843 DOI: 10.3390/molecules24152806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Dithiocarbamates represent a class of compounds that were evaluated in different biomedical applications because of their chemical versatility. For this reason, several pharmacological activities have already been attributed to these compounds, such as antiparasitic, antiviral, antifungal activities, among others. Therefore, compounds that are based on dithiocarbamates have been evaluated in different in vivo and in vitro models as potential new antimicrobials. Thus, the purpose of this review is to present the possibilities of using dithiocarbamate compounds as potential new antitrypanosomatids-drugs, which could be used for the pharmacological control of Chagas disease, leishmaniasis, and African trypanosomiasis.
Collapse
Affiliation(s)
- Johny Wysllas de Freitas Oliveira
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Wendy Marina Toscano Queiroz de Medeiros
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Marcelo Sousa Silva
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1800-166 Lisbon, Portugal.
| |
Collapse
|
8
|
Naqvi SAR, Roohi S, Sabir H, Shahzad SA, Aziz A, Rasheed R. Susceptibility of 99mTc-Ciprofloxacin for Common Infection Causing Bacterial Strains Isolated from Clinical Samples: an In Vitro and In Vivo Study. Appl Biochem Biotechnol 2018; 188:424-435. [PMID: 30515632 DOI: 10.1007/s12010-018-2915-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022]
Abstract
99mTc-ciprofloxacin scintigraphy is useful in the detection of gram-positive and gram-negative bacterial infections and also for differentiating the infection from aseptic inflammation. However, due to growing bacterial resistance to antibiotics, the 99mTc-ciprofloxacin no longer can be effective in broad-spectrum infection imaging as it is gradually losing specificity. In this study, we are presenting our findings regarding the in vitro and in vivo susceptibility of 99mTc-ciprofloxacin for multi-drug-resistant Staphylococcus aurous, Escherichia coli, and Pseudomonas aeruginosa bacterial strains which were isolated from clinical samples. The results of radiosynthesis of 99mTc-ciprofloxacin showed more the 95% radiochemical purity and less than 5% radioactive impurities. In vitro 99mTc-ciprofloxacin susceptibility test showed that E. coli offered more resistant to 99mTc-ciprofloxacin as compared to S. aurous and P. aeruginosa. In vivo study using bacterial infection induced rabbit model also revealed lowest uptake by E. coli lesion. The T/NT values were obtained 1.96 ± 0.15 in the case of E. coli; 2.81 ± 0.51 in the case of S. aurous; and 2.32 ± 0.66 in the case of P. aeruginosa at 4 h post-injection. The SPECT infection imaging of S. aurous, E. coli, and P. aeruginosa bacterial infection induced rabbit models also indicated the clear accumulation in S. aurous and P. aeruginosa lesions while negligible uptake by E. coli lesion further verify the in vitro and in vivo susceptibility profile. On the bases of the results obtained, the 99mTc-ciprofloxacin showed selective and poor broad spectrum SPECT infection imaging.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, New Campus, Faisalabad, 38000, Pakistan.
| | - Samina Roohi
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilor, Islamabad, Pakistan
| | - Hassina Sabir
- Department of Chemistry, Government College University, New Campus, Faisalabad, 38000, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Aysha Aziz
- Department of Chemistry, Government College University, New Campus, Faisalabad, 38000, Pakistan
| | - Rashid Rasheed
- Department of Chemistry, Government College University, New Campus, Faisalabad, 38000, Pakistan
| |
Collapse
|
9
|
Duan X, Ruan Q, Gan Q, Song X, Fang S, Zhang X, Zhang J. Radiosynthesis and evaluation of novel 99mTc(CO)3-labelled thymidine dithiocarbamate derivatives for tumor imaging with SPECT. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Naqvi SAR, Roohi S, Iqbal A, Sherazi TA, Zahoor AF, Imran M. Ciprofloxacin: from infection therapy to molecular imaging. Mol Biol Rep 2018; 45:1457-1468. [PMID: 29974398 DOI: 10.1007/s11033-018-4220-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Diagnosis of deep-seated bacterial infection remains a serious medical challenge. The situation is becoming more severe with the increasing prevalence of bacteria that are resistant to multiple antibiotic classes. Early efforts to develop imaging agents for infection, such as technetium-99m (99mTc) labeled leukocytes, were encouraging, but they failed to differentiate between bacterial infection and sterile inflammation. Other diagnostic techniques, such as ultrasonography, magnetic resonance imaging, and computed tomography, also fail to distinguish between bacterial infection and sterile inflammation. In an attempt to bypass these problems, the potent, broad-spectrum antibiotic ciprofloxacin was labeled with 99mTc to image bacterial infection. Initial results were encouraging, but excitement declined when controversial results were reported. Subsequent radiolabeling of ciprofloxacin with 99mTc using tricarbonyl and nitrido core, fluorine and rhenium couldn't produce robust infection imaging agent and remained in discussion. The issue of developing a robust probe can be approached by reviewing the broad-spectrum activity of ciprofloxacin, labeling strategies, potential for imaging infection, and structure-activity (specificity) relationships. In this review we discuss ways to accelerate efforts to improve the specificity of ciprofloxacin-based imaging.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Samina Roohi
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore-Islamabad, Pakistan
| | - Anam Iqbal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian, 116024, China
| |
Collapse
|
11
|
Duan X, Gan Q, Song X, Fang S, Zhang X, Ruan Q, Zhang J. Synthesis and biological evaluation of novel 99m
Tc-oxo and 99m
Tc-tricarbonyl complexes with C3′-functionalized thymidine dithiocarbamate for tumor imaging. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaojiang Duan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Qianqian Gan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Xiaoqing Song
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Si'an Fang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Xuran Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
- Department of Isotopes; China Institute of Atomic Energy; P. O. Box 2108 Beijing 102413 China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| |
Collapse
|
12
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
13
|
Dimastromatteo J, Charles EJ, Laubach VE. Molecular imaging of pulmonary diseases. Respir Res 2018; 19:17. [PMID: 29368614 PMCID: PMC5784614 DOI: 10.1186/s12931-018-0716-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
Imaging holds an important role in the diagnosis of lung diseases. Along with clinical tests, noninvasive imaging techniques provide complementary and valuable information that enables a complete differential diagnosis. Various novel molecular imaging tools are currently under investigation aimed toward achieving a better understanding of lung disease physiopathology as well as early detection and accurate diagnosis leading to targeted treatment. Recent research on molecular imaging methods that may permit differentiation of the cellular and molecular components of pulmonary disease and monitoring of immune activation are detailed in this review. The application of molecular imaging to lung disease is currently in its early stage, especially compared to other organs or tissues, but future studies will undoubtedly reveal useful pulmonary imaging probes and imaging modalities.
Collapse
Affiliation(s)
- Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Eric J. Charles
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA 22908 USA
| | - Victor E. Laubach
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA 22908 USA
| |
Collapse
|
14
|
Khan AU, Khan MR, Shah SQ. 99mTc-prulifloxacin in artificially infected animals. Nuklearmedizin 2017; 50:134-40. [DOI: 10.3413/nukmed-0334-10-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
SummaryAim: The radiosynthesis of 99mTc-Prulifloxacin (99mTc-PRN) was assessed in terms of stability, binding with Staphylococcus aureus (S. aureus), biodistribution in rats (RT) and scintigraphic profile in rabbits (RB). Animals, material, methods: 99mTc-PRN was synthesized by mixing 25 μg of stannous fluoride (SnF2) with 18.5 MB of sodium pertechnetate. Thereafter, 0.5 mg of the prufloxacin (PRN) was added to the reaction mixture and the pH was set at 5.1 with 0.01 mol/l HCl. The reaction mixture was incubated at room temperature. The same process was repeated by increasing the concentration of the stannous fluoride from 25 to 250 μg, sodium pertechnetate from 18,5 to 185 MBq and the PRN from 0.5 to 5 mg. The radiochemical stability of the 99mTc-PRN was investigated in higher concentration of the cystein. In-vitro binding investigation was performed using living and heat killed S. aureus to verify specificity of the 99mTc-PRN. Biodistribution was evaluated in artificially infected rats and scintigraphic precision in rabbits at different interval. Results: The 99mTc-RPN prepared by mixing 2 mg of PRN, 74 MBq sodium pertechnetate, 100 μg stannous fluoride at pH 5.4, appeared to be more than 90% stable with a maximum radiochemical yield of 98.15 ± 0.25% at 30 min. The 99mTc-PRN showed higher stability in serum and satisfactory in-vitro binding to living as compared to heat killed S. aureus. 14.25 ± 0.15% of the injected dose was accumulated in the infected muscle of the model RT. Infected to normal muscle ratio was 5.12 and inflamed to normal muscle was 1.2. The biodistribution was validated by the scintigraphic localization of infection in rabbits. Conclusion: This investigation of 99mTc-PRN confirmed its momentous radiochemical immovability in saline, serum, preferential in-vitro binding to living bacteria, higher uptake in the infected muscle of model RT and precise localization in the infected muscle of model RB.
Collapse
|
15
|
Abstract
Diagnosis of deep-seated bacterial infection is difficult, as neither standard anatomical imaging nor radiolabeled, autologous leukocytes distinguish sterile inflammation from infection. Two recent imaging efforts are receiving attention: (1) radioactive derivatives of sorbitol show good specificity with Gram-negative bacterial infections, and (2) success in combining anatomical and functional imaging for cancer diagnosis has rekindled interest in 99mTc-fluoroquinolone-based imaging. With the latter, computed tomography (CT) would be combined with single-photon-emission-computed tomography (SPECT) to detect 99mTc-fluoroquinolone-bacterial interactions. The present minireview provides a framework for advancing fluoroquinolone-based imaging by identifying gaps in our understanding of the process. One issue is the reliance of 99mTc labeling on the reduction of sodium pertechnetate, which can lead to colloid formation and loss of specificity. Specificity problems may be reduced by altering the quinolone structure (for example, switching from ciprofloxacin to sitafloxacin). Another issue is the uncharacterized nature of 99mTc-ciprofloxacin binding to, or sequestration in, bacteria: specific interactions with DNA gyrase, an intracellular fluoroquinolone target, are unlikely. Labeling with 68Ga rather than 99mTc enables detection by positron emission tomography, but with similar biological uncertainties. Replacing the C6-F of the fluoroquinolone with 18F provides an alternative to pertechnetate and gallium that may lead to imaging based on drug interactions with gyrase. Gyrase-based imaging requires knowledge of fluoroquinolone action, which we update. We conclude that quinolone-based probes show promise for the diagnosis of infection, but improvements in specificity and sensitivity are needed. These improvements include the optimization of the quinolone structure; such chemistry efforts can be accelerated by refining microbiological assays.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad-38000, Pakistan
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, Newark NJ USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Science, Newark, NJ USA
| |
Collapse
|
16
|
Bala R, Behal J, Kaur V, Jain SK, Rani R, Manhas RK, Prakash V. Sonochemical synthesis, characterization, antimicrobial activity and textile dyeing behavior of nano-sized cobalt(III) complexes. ULTRASONICS SONOCHEMISTRY 2017; 35:294-303. [PMID: 27756522 DOI: 10.1016/j.ultsonch.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Using ultrasonic irradiations, nano-sized cobalt(III) coordination complexes, [Co(NH3)6]Cl3·2H2O (A), [Co(en)3]Cl3·3H2O (B) (en-ethylenediamine) and [Co(dien)2]Cl3·3.5H2O (C) (dien-diethylenetriamine) were synthesized. These complexes were characterized by spectroscopic studies like IR, UV/Visible and NMR. Morphology of these complexes was determined by SEM and particle size with the help of TEM & Zeta-sizer. The comparative thermal stability along with phase difference between nano structures and their respective bulk complexes has been studied by thermal gravimetric analysis (TGA) and X-ray powder diffraction (XRD) study respectively. The dyeing behavior of nano-sized Co(III) complexes and their respective bulks has also been studied (using both exhaust and pad dyeing methods) on cotton and wool fabrics and results shown rationalized dyeing behavior. All these complexes were further tested for antimicrobial activity (against B. subtilis, E. coli, K. pneumoniae, F. oxysporum and A. alternate) and it was observed that nano sized complexes enhanced the activity further.
Collapse
Affiliation(s)
- Ritu Bala
- Department of Chemistry, UGC Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Jagriti Behal
- Department of Chemistry, UGC Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Varinder Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Riveka Rani
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vinit Prakash
- Department of Chemistry, Maharishi Markandeshwar University, Mullana, Ambala 133207, Haryana, India
| |
Collapse
|
17
|
Auletta S, Galli F, Lauri C, Martinelli D, Santino I, Signore A. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging 2016; 4:229-252. [PMID: 27512687 PMCID: PMC4960278 DOI: 10.1007/s40336-016-0185-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Bacterial infections are still one of the main causes of patient morbidity and mortality worldwide. Nowadays, many imaging techniques, like computed tomography or magnetic resonance imaging, are used to identify inflammatory processes, but, although they recognize anatomical modifications, they cannot easily distinguish bacterial infective foci from non bacterial infections. In nuclear medicine, many efforts have been made to develop specific radiopharmaceuticals to discriminate infection from sterile inflammation. Several compounds (antimicrobial peptides, leukocytes, cytokines, antibiotics…) have been radiolabelled and tested in vitro and in vivo, but none proved to be highly specific for bacteria. Indeed factors, including the number and strain of bacteria, the infection site, and the host condition may affect the specificity of tested radiopharmaceuticals. Ciprofloxacin has been proposed and intensively studied because of its easy radiolabelling method, broad spectrum, and low cost, but at the same time it presents some problems such as low stability or the risk of antibiotic resistance. Therefore, in the present review studies with ciprofloxacin and other radiolabelled antibiotics as possible substitutes of ciprofloxacin are reported. Among them we can distinguish different classes, such as cephalosporins, fluoroquinolones, inhibitors of nucleic acid synthesis, inhibitors of bacterial cell wall synthesis and inhibitors of protein synthesis; then also others, like siderophores or maltodextrin-based probes, have been discussed as bacterial infection imaging agents. A systematic analysis was performed to report the main characteristics and differences of each antibiotic to provide an overview about the state of the art of imaging infection with radiolabelled antibiotics.
Collapse
Affiliation(s)
- S. Auletta
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - F. Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - C. Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - D. Martinelli
- Microbiology Unit, Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - I. Santino
- Microbiology Unit, Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| |
Collapse
|
18
|
Bocan TM, Panchal RG, Bavari S. Applications of in vivo imaging in the evaluation of the pathophysiology of viral and bacterial infections and in development of countermeasures to BSL3/4 pathogens. Mol Imaging Biol 2015; 17:4-17. [PMID: 25008802 PMCID: PMC4544652 DOI: 10.1007/s11307-014-0759-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While preclinical and clinical imaging have been applied to drug discovery/development and characterization of disease pathology, few examples exist where imaging has been used to evaluate infectious agents or countermeasures to biosafety level (BSL)3/4 threat agents. Viruses engineered with reporter constructs, i.e., enzymes and receptors, which are amenable to detection by positron emission tomography (PET), single photon emission tomography (SPECT), or magnetic resonance imaging (MRI) have been used to evaluate the biodistribution of viruses containing specific therapeutic or gene transfer payloads. Bioluminescence and nuclear approaches involving engineered reporters, direct labeling of bacteria with radiotracers, or tracking bacteria through their constitutively expressed thymidine kinase have been utilized to characterize viral and bacterial pathogens post-infection. Most PET, SPECT, CT, or MRI approaches have focused on evaluating host responses to the pathogens such as inflammation, brain neurochemistry, and structural changes and on assessing the biodistribution of radiolabeled drugs. Imaging has the potential when applied preclinically to the development of countermeasures against BSL3/4 threat agents to address the following: (1) presence, biodistribution, and time course of infection in the presence or absence of drug; (2) binding of the therapeutic to the target; and (3) expression of a pharmacologic effect either related to drug mechanism, efficacy, or safety. Preclinical imaging could potentially provide real-time dynamic tools to characterize the pathogen and animal model and for developing countermeasures under the U.S. FDA Animal Rule provision with high confidence of success and clinical benefit.
Collapse
Affiliation(s)
- Thomas M Bocan
- Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Ft. Detrick, MD, 21702, USA,
| | | | | |
Collapse
|
19
|
Shah SQ, Khan MR. Synthesis of (99m)TcN-clinafloxacin Dithiocarbamate Complex and Comparative Radiobiological Evaluation in Staphylococcus aureus Infected Mice. World J Nucl Med 2014; 13:154-8. [PMID: 25538485 PMCID: PMC4262872 DOI: 10.4103/1450-1147.144813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clinafloxacin dithiocarbamate (CNND) preparation and radiolabeling through [99mTc ≡ N]2+ core with the gamma (γ) emitter (99mTc) was assessed. The potentiality of the 99mTcV ≡ N-CNND complex was investigated as perspective a Staphylococcus aureus (S.a.) in vivo infection radiotracer in terms of radiochemical stability in normal saline (n.s.), human serum (h.s.), binding efficacy with live and heat killed S.a. and biodistribution in female nude mice model (FNMD). More than 90% stability was observed in n.s. for 4 h with the highest yield of 98.70 ± 0.26% at 30 min after reconstitution. In h.s., the 99mTcV ≡ N-CNND complex was found stable up to 16 h with 15.35% side products. Maximum in vitro binding (68.75 ± 0.80%, 90 min) with S.a. was observed after 90 min of incubation. In FNMD, (infected with live strain) approximately six-fold higher uptakes was noted in the infected to inflamed and normal muscles. The higher stability in n.s., h.s., higher S.a. (live) up take with specific and targeted in vivo distribution confirmed potentiality of the 99mTcV ≡ N-CNND complex as perspective S.a.in vivo infection radiotracer.
Collapse
Affiliation(s)
- Syed Qaiser Shah
- Center for Nuclear and Molecular Studies, Institute of Chemical Sciences, University of Peshawar, KPK, Pakistan
| | - Mohammad Rafiullah Khan
- Phyotopharmaceutical and Neutraceuticals Research Laboratory, University of Peshawar, Peshawar, KPK, Pakistan
| |
Collapse
|
20
|
Design and synthesis of novel miconazole-based ciprofloxacin hybrids as potential antimicrobial agents. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Motaleb MA, El-Tawoosy M, Mohamed SB, Borei IH, Ghanem HM, Massoud AA. 99m Tc-labeled teicoplanin and its biological evaluation in experimental animals for detection of bacterial infection. RADIOCHEMISTRY 2014. [DOI: 10.1134/s1066362214050154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Lecina J, Cortés P, Llagostera M, Piera C, Suades J. New rhenium complexes with ciprofloxacin as useful models for understanding the properties of [99mTc]-ciprofloxacin radiopharmaceutical. Bioorg Med Chem 2014; 22:3262-9. [DOI: 10.1016/j.bmc.2014.04.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 11/15/2022]
|
23
|
Shi WQ, Zhao YL, Chai ZF. Nuclear and radiochemistry in China: present status and future perspectives. RADIOCHIM ACTA 2014. [DOI: 10.1524/ract.2012.1955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Nuclear and radiochemistry is one of the frontier areas of chemistry with high impact on national security, energy supply, scientific advances, social and economic development. Nuclear and radiochemistry in China is now experiencing a renaissance, which is being strongly motivated by China’s huge demand for nuclear energy. With this in review, the progress in nuclear and radiochemistry of China is selectively addressed. Some hot topics have been summarized and the main research results achieved by Chinese scientists in this field are highlighted, with emphasis on the basic nuclear chemistry, actinide and trans-actinide chemistry, chemistry of spent nuclear fuel reprocessing, radioanalytical chemistry, environmental radiochemistry and radiopharmaceutical chemistry, etc. Some measures about how to promote the radiochemical education and research in China are suggested, and future perspectives are briefly outlined as well.
Collapse
Affiliation(s)
- W.-Q. Shi
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y.-L. Zhao
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Z.-F. Chai
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Berry DJ, Torres Martin de Rosales R, Charoenphun P, Blower PJ. Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini Rev Med Chem 2013; 12:1174-83. [PMID: 22931590 DOI: 10.2174/138955712802762112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/22/2022]
Abstract
Over the past 30 years dithiocarbamate ligands have found application in radiopharmaceutical metal-ligand complexes to image a range of disease states. The vast majority of research and applications, and the widest range of complex structures, have involved radionuclides of technetium and rhenium. Considering the extent of coordination chemistry of dithiocarbamate ligands described elsewhere in this issue, the extent of radiopharmaceutical application with metallic radionuclides is surprisingly narrow. Here we summarise the types of radiopharmaceutical complexes studied and the uses, and potential uses, to which they have been put in nuclear medicine.
Collapse
Affiliation(s)
- David J Berry
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas Hospital, London SE1 7EH, UK
| | | | | | | |
Collapse
|
25
|
Chattopadhyay S, Ghosh M, Sett S, Das MK, Chandra S, De K, Mishra M, Sinha S, Ranjan Sarkar B, Ganguly S. Preparation and evaluation of 99mTc-cefuroxime, a potential infection specific imaging agent: A reliable thin layer chromatographic system to delineate impurities from the 99mTc-antibiotic. Appl Radiat Isot 2012; 70:2384-7. [DOI: 10.1016/j.apradiso.2012.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 05/16/2012] [Accepted: 06/07/2012] [Indexed: 12/01/2022]
|
26
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
27
|
Dapueto R, Castelli R, Fernández M, Chabalgoity JA, Moreno M, Gambini JP, Cabral P, Porcal W. Biological evaluation of glucose and deoxyglucose derivatives radiolabeled with [99mTc(CO)3(H2O)3]+ core as potential melanoma imaging agents. Bioorg Med Chem Lett 2011; 21:7102-6. [DOI: 10.1016/j.bmcl.2011.09.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
|
28
|
Motaleb MA, El-Kolaly MT, Ibrahim AB, Abd El-Bary A. Study on the preparation and biological evaluation of 99mTc–gatifloxacin and 99mTc–cefepime complexes. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1058-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|