1
|
Ghosh S, Das D, Mandal RD, Das AR. Harnessing the benzyne insertion consequence to enable π-extended pyrido-acridine and quinazolino-phenanthridine. Org Biomol Chem 2024; 22:5591-5602. [PMID: 38898782 DOI: 10.1039/d4ob00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Distinct protocols have been devised for the preparation of hybrid heterocyclic scaffolds like π-extended pyrido-acridines and quinazolino-phenanthridines duly materialized through Rh(III)- and Pd(II)-mediated catalytic courses commencing from acridine and quinazolimine scaffolds. Interestingly, the parent compounds (acridines and quinazolimines) are actualized from 2-aminobenzonitrile and anthranilic acid, where 2-aminobenzonitrile acts as the 1,4-dipolarophilic species and anthranilic acid as the benzyne precursor. The molecular assembly of acridine suggests the participation of two benzyne units. In addition, the structural motif of the quinazolimine ring features one benzyne unit. Further, indolizine ring containing the enaminonitrile skeleton upon exposure to benzyne forms an indolizine fused quinoline ring, decorated with three benzyne units.
Collapse
Affiliation(s)
- Swarnali Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| | - Dwaipayan Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| | - Rahul Dev Mandal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| | - Asish R Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Nowak P, Sikorski A. Structural diversity of cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde. RSC Adv 2023; 13:20105-20112. [PMID: 37409037 PMCID: PMC10318855 DOI: 10.1039/d3ra02300a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde (1) and 4-hydroxybenzaldehyde (2) were synthesized and structurally characterized. Single-crystal X-ray diffraction measurements show that compound 1 crystallizes in the triclinic P1̄ space group, whereas compound 2 crystallizes in the monoclinic P21/n space group. In the crystals of title compounds, the molecules interact via O-H⋯N and C-H⋯O hydrogen bonds, and C-H⋯π and π-π interactions. DCS/TG measurements indicate that compound 1 melts at a lower temperature than the separate cocrystal coformers, whereas compound 2 melts at a higher temperature than acridine but at a lower temperature than 4-hydroxybenzaldehyde. The FTIR measurements reveal that the band attributed to the stretching vibrations of the hydroxyl group of hydroxybenzaldehyde disappeared, but several bands appeared in the range of 3000-2000 cm-1.
Collapse
Affiliation(s)
- Patryk Nowak
- Faculty of Chemistry, University of Gdansk W. Stwosza 63 80-308 Gdansk Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdansk W. Stwosza 63 80-308 Gdansk Poland
| |
Collapse
|
3
|
Goni LKMO, Jafar Mazumder MA, Tripathy DB, Quraishi MA. Acridine and Its Derivatives: Synthesis, Biological, and Anticorrosion Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7560. [PMID: 36363152 PMCID: PMC9658428 DOI: 10.3390/ma15217560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The phenomenon of corrosion threatens metallic components, human safety, and the economy. Despite being eco-friendly and promising as a corrosion inhibitor, acridine has not been explored to its full potential. In this review, we have discussed multiple biological activities that acridines have been found to show in a bid to prove that they are environmentally benign and much less toxic than many inhibitors. Some synthetic routes to acridines and substituted acridines have also been discussed. Thereafter, a multitude of acridines and substituted acridines as corrosion inhibitors of different metals and alloys in various corrosive media have been highlighted. A short mechanistic insight into how acridine-based compounds function as corrosion inhibitors have also been included. We believe this review will generate an impression that there is still much to learn about previously reported acridines. In the wake of recent surges to find efficient and non-toxic corrosion inhibitors, acridines and their analogs could be an appropriate answer.
Collapse
Affiliation(s)
- Lipiar K. M. O. Goni
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad A. Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Divya B. Tripathy
- School of Basic and Applied Sciences, Galgotias University, Greater Noida 210310, India
| | - Mumtaz A. Quraishi
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Design and exploration of caffeine-based Brönsted acidic ionic liquid (CaffBAIL) for the synthesis of DHPMs, xanthenediones, and acridinediones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Acridine-2,4-Dinitrophenyl Hydrazone Conjugated Silver Nanoparticles as an Efficient Sensor for Quantification of Mercury in Tap Water. J CHEM-NY 2022. [DOI: 10.1155/2022/6823140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excretion of heavy metals especially mercury (Hg2+) from the industries into the environment becomes a major global problem. In this context, mercury is a highly dangerous metal which poses serious impact on human health. In the present study, acridine- (ACR-) based silver nanoparticles (ACR-AgNPs) were prepared and employed as a nanosensor for effective detection and quantification of Hg2+ in tap water. Conjugation between ACR-based coating agent and silver was examined by UV-visible and FT-IR spectroscopy, while morphology and particle size were determined through atomic force microscopy (AFM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Furthermore, sensing behavior of nanosensor for metal ions was evaluated by mixing different metals such as Mn2+, Ni2+, Ba2+, Mg2+, Cr3+, Pb2+, Pd2+, Al3+, Sn2+, Fe2+, Co2+, Cu2+, Fe3+, Cd2+, and Hg2+with ACR-AgNPs. Among all the added metal ions, only Hg2+resulted in significant quenching in the absorption intensity of ACR-AgNPs. The limit of detection of the ACR-AgNP-based nanosensor was found to be 1.65 μM in a wide pH range (1-14). The proposed mercury sensor worked efficiently in the presence of other interfering agents such as other metal ions. Therefore, the synthesized ACR-AgNPs have proved to be an efficient and robust nanosensor for quantitative detection of Hg2+ in real sample analysis such as tap water. The proposed method does not require expensive instrumentation and trained manpower.
Collapse
|
6
|
Mirocki A, Lopresti M, Palin L, Conterosito E, Sikorski A, Milanesio M. Exploring the molecular landscape of multicomponent crystals formed by naproxen drug and acridines. CrystEngComm 2022. [DOI: 10.1039/d2ce00890d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three cocrystals were obtained by naproxen and acridines, optimizing the yield to more than 99% with LAG. The two structures by solution show a host-guest structure, while that by LAG a layered one, with no interconversion between parent structures.
Collapse
Affiliation(s)
- Artur Mirocki
- Faculty of Chemistry of the University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Mattia Lopresti
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Luca Palin
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
- Nova Res s.r.l., Via D. Bello 3, 28100 Novara, Italy
| | - Eleonora Conterosito
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Artur Sikorski
- Faculty of Chemistry of the University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marco Milanesio
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
7
|
Almeida FS, Sousa GLS, Rocha JC, Ribeiro FF, de Oliveira MR, de Lima Grisi TCS, Araújo DAM, de C Nobre MS, Castro RN, Amaral IPG, Keesen TSL, de Moura RO. In vitro anti-Leishmania activity and molecular docking of spiro-acridine compounds as potential multitarget agents against Leishmania infantum. Bioorg Med Chem Lett 2021; 49:128289. [PMID: 34311084 DOI: 10.1016/j.bmcl.2021.128289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is an infectious disease with several limitations regarding treatment schemes. This work reports the anti-Leishmania activity of spiroacridine compounds against the promastigote (IC50 = 1.1 to 6.0 µg / mL) and amastigote forms of the best compounds (EC50 = 4.9 and 0.9 µg / mL) inLeishmania (L.) infantumand proposes an in-silico study with possible selective therapeutic targets for L. infantum. The substituted dimethyl-amine compound (AMTAC 11) showed the best leishmanicidal activity in vitro, and was found to interact with TryRandLdTopoI. comparisons with standard inhibitors were performed, and its main interactions were elucidated. Based on the biological assessment and the structure-activity relationship study, the spiroacridine compounds appear to be promisinganti-leishmaniachemotherapeutic agents to be explored.
Collapse
Affiliation(s)
- Fernanda S Almeida
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil; Laboratório de Imunologia das Doenças Infeciosas, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Gleyton L S Sousa
- Programa de Doutorado em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Juliana C Rocha
- Laboratório de Imunologia das Doenças Infeciosas, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Frederico F Ribeiro
- Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil
| | - Márcia Rosa de Oliveira
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Paraíba CEP 58059-900, Brazil
| | | | - Demetrius A M Araújo
- Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil
| | - Michelangela S de C Nobre
- Programa de Doutorado em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Rosane N Castro
- Programa de Doutorado em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Ian P G Amaral
- Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil
| | - Tatjana S L Keesen
- Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil; Laboratório de Imunologia das Doenças Infeciosas, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Ricardo Olímpio de Moura
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Campina Grande, PB 58429-500, Brazil.
| |
Collapse
|
8
|
Vardevanyan PO, Antonyan AP, Parsadanyan MA, Shahinyan MA, Petrosyan NH. Study of interaction of methylene blue with DNA and albumin. J Biomol Struct Dyn 2021; 40:7779-7785. [PMID: 33729082 DOI: 10.1080/07391102.2021.1902397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interaction of thiazine dye methylene blue (MB) with Calf thymus DNA and human blood serum albumin (HSA) has been studied. MB was revealed to stabilize the native structure of DNA and HSA, since the melting temperature of the complexes is shifted to higher values in relation to that of both macromolecules in pure state. It was also revealed that the absorption and fluorescence spectra of the MB-DNA complexes change significantly, while those of MB-albumin complexes do not change noticeably. Analysis of the obtained data allows to conclude that MB binds to DNA by two modes, including intercalation and electrostatic mechanisms. In the case of HSA, the main binding mode of MB, conditioning the stabilization of the protein native structure, is the electrostatic mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Poghos O Vardevanyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Ara P Antonyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Marine A Parsadanyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Mariam A Shahinyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Nara H Petrosyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
9
|
Allah OAAA, Kaur M, Akkurt M, Mohamed SK, Jasinski JP, Elgarhy SMI. Crystal structure and Hirshfeld surface analysis of ethyl 2-[9-(2-hy-droxy-phen-yl)-3,3,6,6-tetra-methyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodeca-hydro-acridin-10-yl]acetate. Acta Crystallogr E Crystallogr Commun 2021; 77:247-250. [PMID: 33953945 PMCID: PMC8061104 DOI: 10.1107/s2056989021001341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/10/2022]
Abstract
In the title compound, C27H33NO5, a 3,3,6,6-tetra-methyl-tetra-hydro-acridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N atom and an o-hy-droxy-phenyl ring on the central methine C atom of the di-hydro-pyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 80.45 (7)° and this conformation is stabilized by an intra-molecular O-H⋯O hydrogen bond between the hy-droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. The ester C=O oxygen atom is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal -CH3 unit of the ethyl side chain is disordered over two sets of sites in a 0.725 (5): 0.275 (5) ratio. In the crystal, C-H⋯O hydrogen bonds combine to link the mol-ecules into a three-dimensional network. van der Waals H⋯H contacts contribute the most to the Hirshfeld surface (66.9%) followed by O⋯H/H⋯O (22.1%) contacts associated with weak hydrogen bonds.
Collapse
Affiliation(s)
| | - Manpreet Kaur
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Shaaban K. Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Jerry P. Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - Sahar M. I. Elgarhy
- Faculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
10
|
Madar JM, Samundeeswari S, Holiyachi M, Naik NS, Pawar V, Gudimani P, Shastri LA, Kumbar VM, Sunagar VA. Solvent-Free Synthesis, Characterization, and In Vitro Biological Activity Study of Xanthenediones and Acridinediones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
An Efficient One-Pot Four-Component Synthesis of 9-Aryl-Hexahydroacridine-1,8-Dione Derivatives in the Presence of a Molecular Sieves Supported Iron Catalyst. Catal Letters 2019. [DOI: 10.1007/s10562-019-02845-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
13
|
Chávez-Riveros A, Hernández-Vázquez E, Nieto-Camacho A, Ramírez-Apan T, Miranda LD. Synthesis of diphenylamine macrocycles and their anti-inflammatory effects. Org Biomol Chem 2019; 17:1423-1435. [DOI: 10.1039/c8ob03121e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A collection of fourteen diphenylamine macrocyclic derivatives containing a peptide chain with different substituents was synthesized using a protocol of two Ugi four component reactions (Ugi-4CR) and a Buchwald–Hartwig macrocyclization.
Collapse
Affiliation(s)
| | | | - Antonio Nieto-Camacho
- Universidad Nacional Autónoma de México
- Instituto de Química
- Ciudad Universitaria
- Mexico
| | - Teresa Ramírez-Apan
- Universidad Nacional Autónoma de México
- Instituto de Química
- Ciudad Universitaria
- Mexico
| | - Luis D. Miranda
- Universidad Nacional Autónoma de México
- Instituto de Química
- Ciudad Universitaria
- Mexico
| |
Collapse
|
14
|
Gouveia RG, Ribeiro AG, Segundo MÂSP, de Oliveira JF, de Lima MDCA, de Lima Souza TRC, de Almeida SMV, de Moura RO. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel Spiroacridine derivatives. Bioorg Med Chem 2018; 26:5911-5921. [DOI: 10.1016/j.bmc.2018.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
|
15
|
de M. Silva M, Macedo TS, Teixeira HMP, Moreira DRM, Soares MB, da C. Pereira AL, de L. Serafim V, Mendonça-Júnior FJ, do Carmo A. de Lima M, de Moura RO, da Silva-Júnior EF, de Araújo-Júnior JX, de A. Dantas MD, de O. O. Nascimento E, Maciel TMS, de Aquino TM, Figueiredo IM, Santos JC. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:165-175. [DOI: 10.1016/j.jphotobiol.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
|
16
|
Kukowska M. Amino acid or peptide conjugates of acridine/acridone and quinoline/quinolone-containing drugs. A critical examination of their clinical effectiveness within a twenty-year timeframe in antitumor chemotherapy and treatment of infectious diseases. Eur J Pharm Sci 2017; 109:587-615. [PMID: 28842352 DOI: 10.1016/j.ejps.2017.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 01/10/2023]
Abstract
Acridines/acridones, quinolines/quinolones (chromophores) and their derivatives constitute extremely important family of compounds in current medicine. Great significance of the compounds is connected with antimicrobial and antitumor activities. Combining these features together in one drug seems to be long-term benefit, especially in oncology therapy. The attractiveness of the chromophore drugs is still enhanced by elimination their toxicity and improvement not only selectivity, specificity but also bioavailability. The best results are reached by conjugation to natural peptides. This paper highlights significant advance in the study of amino acid or peptide chromophore conjugates that provide highly encouraging data for novel drug development. The structures and clinical significance of amino acid or peptide chromophore conjugates are widely discussed.
Collapse
Affiliation(s)
- Monika Kukowska
- Chair & Department of Chemical Technology of Drugs, Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
17
|
Chagas MBO, Cordeiro NCC, Marques KMR, Rocha Pitta MG, Rêgo MJBM, Lima MCA, Pitta MGR, Pitta IR. New thiazacridine agents: Synthesis, physical and chemical characterization, and in vitro anticancer evaluation. Hum Exp Toxicol 2016; 36:1059-1070. [DOI: 10.1177/0960327116680274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of new thiazacridine agents were synthesized and evaluated as antitumor agents, in terms of not only their cytotoxicity but also their selectivity. The cytotoxicity assay confirmed that all compounds showed cytotoxic activity and selectivity. The new compound, 3-acridin-9-ylmethyl-5-(5-bromo-1 H-indol-3-ylmethylene)-thiazolidine-2,4-dione (LPSF/AA29 – 7a), proved to be the most promising compound as it presents lower half-maximal inhibitory concentration (IC50) values (ranging from 0.25 to 68.03 µM) depending on cell lineage. In HepG2 cells, the lowest IC50 value was exhibited by 3-acridin-9-ylmethyl-5-(4-piperidin-1-yl-benzylidene)-thiazolidine-2,4-dione (LPSF/AA36 – 7b; 46.95 µM). None of the synthesized compounds showed cytotoxic activity against normal cells (IC50 > 100 µM). The mechanism of death induction and cell cycle effects was also evaluated. Flow cytometric analysis revealed that the compounds LPSF/AA29 – 7a and LPSF/AA36 – 7b significantly increased the percentage of apoptotic cells and induced G2/M arrest in the cell cycle progression. Therefore, these new thiazacridine derivatives constitute promising antitumor agents whose cytotoxicity and selectivity properties indicate they have potential to contribute to or serve as a basis for the development of new cancer drugs in the future.
Collapse
Affiliation(s)
- MBO Chagas
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - NCC Cordeiro
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - KMR Marques
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MG Rocha Pitta
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MJBM Rêgo
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MCA Lima
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MGR Pitta
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - IR Pitta
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
18
|
Costa M, Dias TA, Brito A, Proença F. Biological importance of structurally diversified chromenes. Eur J Med Chem 2016; 123:487-507. [PMID: 27494166 DOI: 10.1016/j.ejmech.2016.07.057] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 06/21/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022]
Abstract
Compounds incorporating the chromene scaffold are largely present in natural products and display a wide variety of biological activities. Their low toxicity combined to the broad pharmacological properties have inspired medicinal chemists in the search for new therapeutic agents. This review covers the literature between 1993 and on the biological activity of 2H- and 4H-chromenes, both from natural and synthetic origin. Includes a section that identifies a selection of chromene-based natural products, followed by recent literature on bioactive natural chromenes and the corresponding source, covering plants and fruits. Synthetic chromenes are equally important and a separate section addresses the use of these derivatives as new leads for drug discovery. Different biological targets were identified, namely those associated with anticancer, antimicrobial, anti-inflammatory, antithrombotic and antipsychotic activities.
Collapse
Affiliation(s)
- Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tatiana A Dias
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Alexandra Brito
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Fernanda Proença
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal.
| |
Collapse
|
19
|
Munawar R, Mushtaq N, Arif S, Ahmed A, Akhtar S, Ansari S, Meer S, Saify ZS, Arif M. Synthesis of 9-Aminoacridine Derivatives as Anti-Alzheimer Agents. Am J Alzheimers Dis Other Demen 2016; 31:263-9. [PMID: 26385945 PMCID: PMC10852649 DOI: 10.1177/1533317515603115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
In the present study, some 9-aminoacridine derivatives have been synthesized by condensation of 9-aminoacridine with substituted phenacyl, benzoyl, and benzyl halides (RM1-RM6). Compounds were investigated for acetylcholinesterase and butyrylcholinesterase inhibition potential, considering these enzymes playing a key role in Alzheimer's disease. All derivatives showed better inhibition of enzymes than the standard galantamine, whereas except RM4, all exhibit better results than tacrine, a well-known acridine derivative used for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Rabya Munawar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Sadia Arif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Ahsaan Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Sumaira Ansari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Sadia Meer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Zafar S Saify
- HEJ Research Institute of Chemical Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Muhammad Arif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| |
Collapse
|
20
|
Jagadishbabu N, Shivashankar K. One pot synthesis of acridine analogues from 1,2-diols as key reagents. RSC Adv 2015. [DOI: 10.1039/c5ra19595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lead tetraacetate is an efficient reagent for the one pot synthesis of acridines from a variety of 1,2-diols, dimedone and ammonium acetate.
Collapse
Affiliation(s)
| | - Kalegowda Shivashankar
- P.G. Department of Chemistry
- Central College Campus
- Bangalore University
- Bangalore-560 001
- India
| |
Collapse
|
21
|
|
22
|
Sharma S, Singh H, Singh H, Mohinder Singh Bedi P. Chemotherapeutic Potential of Acridine Analogs: An Ample Review. HETEROCYCLES 2015. [DOI: 10.3987/rev-15-826] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Abd-El-Maksoud MA, Maigali SS, Soliman FM. Chemistry of Phosphonium Ylides. Part 39: Facile Synthesis of Aziridine, Pyridine, Pyrolotriazole Chromenones and Azaphosphinin Chromenones as Antitumor Agents. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2–I as a new heterogeneous catalyst and their anticancer activity. Bioorg Med Chem Lett 2014; 24:3907-13. [DOI: 10.1016/j.bmcl.2014.06.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
|
25
|
Synthesis and structural characterization of a cocrystal salt containing acriflavine and 3,5-dinitrobenzoic acid. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Chemistry of phosphorus ylides 31: Reaction of azidocoumarin with active phosphonium ylides, synthesis and antitumour activities of chromenones. J CHEM SCI 2014. [DOI: 10.1007/s12039-013-0496-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Puttaraju KB, Shivashankar K, Chandra, Mahendra M, Rasal VP, Venkata Vivek PN, Rai K, Chanu MB. Microwave assisted synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones. Eur J Med Chem 2013; 69:316-22. [PMID: 24056147 DOI: 10.1016/j.ejmech.2013.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
The present article describes the synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-one (2a-h) under microwave irradiation. The product was obtained in excellent yield (74-94%) in a shorter reaction time (2 min). These molecules (2a, b) further reacted with various substituted 4-bromomethylcoumarins (3a-f) to yield a new series of coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones (4a-h). The structure of all the synthesized compounds were confirmed by spectral studies and screened for their in vitro antibacterial activity against three Gram-positive bacteria viz., Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and three Gram-negative bacteria viz., Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and antifungal activity against Candida albicans, Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium oxysporum, Penicillium chrysogenum and anticancer activity against Dalton's Ascitic Lymphoma (DAL) cell line. In general, all the compounds possessed better antifungal properties than antibacterial properties. The coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-one (4g) (R = i-Pr, R₁ = 6-Cl) was found to be the most potent cytotoxic compound (88%) against Dalton's Ascitic Lymphoma cell line at the concentration of 100 μg/mL.
Collapse
Affiliation(s)
- Kallimeledoddi B Puttaraju
- P.G. Department of Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abbas SE, Abdel Gawad NM, George RF, Akar YA. Synthesis, antitumor and antibacterial activities of some novel tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. Eur J Med Chem 2013; 65:195-204. [DOI: 10.1016/j.ejmech.2013.04.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/21/2013] [Accepted: 04/26/2013] [Indexed: 01/31/2023]
|
29
|
Trzybiński D, Sikorski A. Solvent-bridged frameworks of hydrogen bonds in crystals of 9-aminoacridinium halides. CrystEngComm 2013. [DOI: 10.1039/c3ce41027g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Maigali SS, Abd-El-Maksoud MA, Soliman FM. Chemistry of Phosphorus Ylides. Part 33. Synthesis and Antitumor Activities of Some New Chromenone Derivatives. Arch Pharm (Weinheim) 2011; 344:442-50. [DOI: 10.1002/ardp.201000341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/23/2010] [Accepted: 01/11/2011] [Indexed: 11/07/2022]
|
31
|
|