1
|
Guo C, Zhang G, Wu C, Lei Y, Wang Y, Yang J. Emerging trends in small molecule inhibitors targeting aldosterone synthase: A new paradigm in cardiovascular disease treatment. Eur J Med Chem 2024; 274:116521. [PMID: 38820853 DOI: 10.1016/j.ejmech.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Aldosterone synthase (CYP11B2) is the rate-limiting enzyme in aldosterone production. In recent years, CYP11B2 has become an appealing target for treating conditions associated with excess aldosterone, such as hypertension, heart failure, and cardiometabolic diseases. Several small-molecule inhibitors of CYP11B2 have demonstrated efficacy in both preclinical studies and clinical trials. Among them, the tetrahydroisoquinoline derivative Baxdrostat has entered clinical trial phases and demonstrated efficacy in treating patients with hypertension. However, the high homology (>93 %) between CYP11B2 and steroid-11β-hydroxylase (CYP11B1), which catalyzes cortisol production, implies that insufficient drug specificity can lead to severe side effects. Developing selective inhibitors for CYP11B2 remains a considerable challenge that requires ongoing attention. This review summarizes recent research progress on small-molecule inhibitors targeting CYP11B2, focusing on structure-activity relationships (SAR) and structural optimization. It discusses strategies for enhancing the specificity and inhibitory activity of inhibitors, while also exploring potential applications and future prospects for CYP11B2 inhibitors, providing a theoretical foundation for developing the new generation of CYP11B2-targeted medications.
Collapse
Affiliation(s)
- Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangbing Zhang
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, General Practice Research Institute, West China Hospital, Sichuan University, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Abstract
The mineralocorticoid aldosterone is an important regulator of blood pressure and electrolyte balance. However, excess aldosterone can be deleterious as a driver of inflammation, vascular remodeling and tissue fibrosis associated with cardiometabolic diseases. Mineralocorticoid receptor antagonists (MRA) and renin-angiotensin-aldosterone system (RAAS) antagonists are current clinical therapies used to antagonize deleterious effects of aldosterone in patients. MRAs compete with aldosterone for binding at its cognate receptor thereby limiting its effect while RAS antagonists reduce aldosterone levels indirectly by blocking the stimulatory effect of angiotensin. Both MRAs and RAS antagonists can result in incomplete inhibition of the harmful effects of excess aldosterone. Aldosterone synthase (AS) inhibitors (ASI) attenuate the production of aldosterone directly and have been proposed as an alternative to MRAs and RAS blockers. Cortisol synthase (CS) is an enzyme closely related to AS and responsible for generating the important glucocorticoid cortisol, required for maintaining critical metabolic and immune responses. The importance of selectivity against CS is shown by early examples of ASIs that were only modestly selective and as such, attenuated cortisol responses when evaluated in patients. Recently, next-generation, highly selective ASIs have been described and are presently being evaluated in the clinic as an alternative to angiotensin and MR antagonists for cardiometabolic disease. Herein we provide a brief review of the challenges associated with discovery of selective ASIs and the transition from the early compounds that paved the way toward the next-generation of highly selective ASIs currently under development.
Collapse
Affiliation(s)
- Steven M Weldon
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States.
| | - Nicholas F Brown
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
3
|
Akram M, Waratchareeyakul W, Haupenthal J, Hartmann RW, Schuster D. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors. Front Chem 2017; 5:104. [PMID: 29312923 PMCID: PMC5742115 DOI: 10.3389/fchem.2017.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8–10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.
Collapse
Affiliation(s)
- Muhammad Akram
- Institute of Pharmacy - Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Watcharee Waratchareeyakul
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, Thailand
| | - Joerg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Daniela Schuster
- Institute of Pharmacy - Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Papillon JPN, Lou C, Singh AK, Adams CM, Ksander GM, Beil ME, Chen W, Leung-Chu J, Fu F, Gan L, Hu CW, Jeng AY, LaSala D, Liang G, Rigel DF, Russell KS, Vest JA, Watson C. Discovery of N-[5-(6-Chloro-3-cyano-1-methyl-1H-indol-2-yl)-pyridin-3-ylmethyl]-ethanesulfonamide, a Cortisol-Sparing CYP11B2 Inhibitor that Lowers Aldosterone in Human Subjects. J Med Chem 2015; 58:9382-94. [PMID: 26540564 DOI: 10.1021/acs.jmedchem.5b01545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human clinical studies conducted with LCI699 established aldosterone synthase (CYP11B2) inhibition as a promising novel mechanism to lower arterial blood pressure. However, LCI699's low CYP11B1/CYP11B2 selectivity resulted in blunting of adrenocorticotropic hormone-stimulated cortisol secretion. This property of LCI699 prompted its development in Cushing's disease, but limited more extensive clinical studies in hypertensive populations, and provided an impetus for the search for cortisol-sparing CYP11B2 inhibitors. This paper summarizes the discovery, pharmacokinetics, and pharmacodynamic data in preclinical species and human subjects of the selective CYP11B2 inhibitor 8.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael E Beil
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Wei Chen
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Jennifer Leung-Chu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Fumin Fu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | - Chii-Whei Hu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Arco Y Jeng
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Daniel LaSala
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | - Dean F Rigel
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | | | | |
Collapse
|
5
|
Papillon JPN, Adams CM, Hu QY, Lou C, Singh AK, Zhang C, Carvalho J, Rajan S, Amaral A, Beil ME, Fu F, Gangl E, Hu CW, Jeng AY, LaSala D, Liang G, Logman M, Maniara WM, Rigel DF, Smith SA, Ksander GM. Structure–Activity Relationships, Pharmacokinetics, and in Vivo Activity of CYP11B2 and CYP11B1 Inhibitors. J Med Chem 2015; 58:4749-70. [DOI: 10.1021/acs.jmedchem.5b00407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julien P. N. Papillon
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher M. Adams
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qi-Ying Hu
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Changgang Lou
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alok K. Singh
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chun Zhang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose Carvalho
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Srinivan Rajan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Adam Amaral
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael E. Beil
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Fumin Fu
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Eric Gangl
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chii-Whei Hu
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Arco Y. Jeng
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Daniel LaSala
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Logman
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wieslawa M. Maniara
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dean F. Rigel
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Sherri A. Smith
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gary M. Ksander
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Abstract
Hypertension is an established risk factor for stroke, premature coronary artery disease and heart failure. Control of elevated blood pressure has been shown to result in significant reduction of cardiovascular risk. Aldosterone, the final product of the renin-angiotensin-aldosterone system (RAAS), not only causes salt and water reabsorbtion in the kidneys through its effect on the mineralocorticoid hormone receptor (MR), but also an MR-independent effect, not regulated by conventional MR blockade. Although many pharmacological agents target different levels of the RAAS cascade, these generally result in elevated renin concentration and plasma renin activity. This upstream feedback response subsequently results in elevated levels of angiotensin II, a potent vasoconstrictor and stimulus to aldosterone release. This aldosterone breakthrough counteracts the long-term blood pressure-lowering effect of these agents. Therefore the development of a new class of pharmacologic agents that directly inhibit the production of aldosterone may prove clinically useful in reducing aldosterone and thereby controlling elevated blood pressure.
Collapse
Affiliation(s)
- Karl Andersen
- Cardiovascular Research Center, Landspitali the University Hospital of Iceland, IS-101, Reykjavik, Iceland,
| |
Collapse
|
7
|
Hu Q, Yin L, Hartmann RW. Aldosterone Synthase Inhibitors as Promising Treatments for Mineralocorticoid Dependent Cardiovascular and Renal Diseases. J Med Chem 2014; 57:5011-22. [DOI: 10.1021/jm401430e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Stepan AF, Mascitti V, Beaumont K, Kalgutkar AS. Metabolism-guided drug design. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20317k] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
He BJ, Anderson ME. Aldosterone and cardiovascular disease: the heart of the matter. Trends Endocrinol Metab 2013; 24:21-30. [PMID: 23040074 PMCID: PMC3532553 DOI: 10.1016/j.tem.2012.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/01/2012] [Accepted: 09/06/2012] [Indexed: 02/07/2023]
Abstract
Aldosterone contributes to the endocrine basis of heart failure, and studies on cardiac aldosterone signaling have reinforced its value as a therapeutic target. Recent focus has shifted to new roles of aldosterone that appear to depend on coexisting pathologic stimuli, cell type, and disease etiology. This review evaluates recent advances in mechanisms underlying aldosterone-induced cardiac disease and highlights the interplay between aldosterone and Ca(2+)/calmodulin dependent protein kinase II, whose hyperactivity during heart failure contributes to disease progression. Increasing evidence implicates aldosterone in diastolic dysfunction, and there is a need to develop more targeted therapeutics such as aldosterone synthase inhibitors and molecularly specific antioxidants. Despite accumulating knowledge, many questions still persist and will likely dictate areas of future research.
Collapse
Affiliation(s)
- B Julie He
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
10
|
Affiliation(s)
- David J St Jean
- Department of Therapeutic Discovery, Amgen, Inc, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|