1
|
Du M, Wang X, Zhang J, Liu P, Li CT. Rh(II)/Pd(0) Dual Catalysis: Interception of Ammonium Ylide with Allyl Palladium to Construct 2,2-Disubstituted Tetrahydroquinoline Derivatives. J Org Chem 2023. [PMID: 37300500 DOI: 10.1021/acs.joc.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New synthetic methods to construct 2,2-disubstituted tetrahydroquinoline derivatives are of significant value in pharmaceutical chemistry. Herein, a Rh(II)/Pd(0) dual-catalyzed diazo α-aminoallylation reaction has been developed between allylpalladium(II) and ammonium ylides derived from the Rh2(OAc)4-mediated intramolecular N-H bond insertion reaction of diazo compounds, affording various 2,2-disubstituted tetrahydroquinoline derivatives in good yields up to 93% with high chemoselectivities under mild reaction conditions. A substrate scope investigation reveals broad ester substituent tolerance, and control experiments provide the basis for a proposed reaction mechanism.
Collapse
Affiliation(s)
- Mingxi Du
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Xueying Wang
- Analysis and Testing Centre, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Jie Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Chun-Tian Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| |
Collapse
|
2
|
Wang KK, Jing J, Zhou WW, Wang C, Ye JW, Zhou R, Wang TT, Wang ZY, Chen R. Divergent Synthesis of Highly Substituted Tetrahydroquinolines and Cyclopentenes via Lewis Base Catalyzed Switchable [4 + 2] and [3 + 2] Annulations of MBH-Carbonates with Activated Olefins. J Org Chem 2023; 88:5982-5996. [PMID: 37079849 DOI: 10.1021/acs.joc.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A highly selective and divergent synthesis which enabled access to various complex compounds is highly attractive in organic synthesis and medicinal chemistry. Herein, we developed an effective method for divergent synthesis of highly substituted tetrahydroquinolines via Lewis base catalyzed switchable annulations of Morita-Baylis-Hillman carbonates with activated olefins. The reaction displayed switchable [4 + 2] or [3 + 2] annulations via catalyst or substrate control, providing a diverse range of architectures which contained highly substituted tetrahydroquinolines or cyclopentenes with three contiguous stereocenters bearing a quaternary carbon center in high yields with excellent diastereoselectivities and regioselectivities. Furthermore, synthetic utility of this strategy was further highlighted by gram-scale experiments and simple transformations of the products.
Collapse
Affiliation(s)
- Kai-Kai Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Jun Jing
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Wen-Wen Zhou
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Can Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Jun-Wei Ye
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Ran Zhou
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Ting-Ting Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Zhan-Yong Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| |
Collapse
|
3
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
4
|
Scior T, Verhoff M, Gutierrez-Aztatzi I, Ammon HPT, Laufer S, Werz O. Interference of boswellic acids with the ligand binding domain of the glucocorticoid receptor. J Chem Inf Model 2014; 54:978-86. [PMID: 24512031 DOI: 10.1021/ci400666a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Boswellic acids (BAs) possess anti-inflammatory properties in various biological models with similar features to those of glucocorticoids (GCs), such as suppression of the release of pro-inflammatory cytokines. Hence, the molecular mechanism of BAs responsible for their anti-inflammatory features might be attributable to interference with the human glucocorticoid receptor (GR). Due to obvious structural similarities with GCs, we conducted pharmacophore studies as well as molecular docking simulations of BAs as putative ligands at the ligand binding site (LBS) of the GR in distinct functional states. In order to verify receptor binding and functional activation of the GR by BAs, radiometric binding assays as well as GR response element-dependent luciferase reporter assay were performed with dexamethasone (DEX) as a functional positive control. With respect to the observed position of GCs in GR crystal complexes in the active antagonist state, BAs docked in a flipped orientation with estimated binding constants reflecting nanomolar affinities. For validation, DEX and other steroids were successfully redocked into their crystal poses in similar ranges as reported in the literature. In line with the pharmacophore and docking models, the BAs were strong GR binders (radiometric binding assay), albeit none of the BAs activated the GR in the reporter gene assay, when compared to the GC agonist DEX. The flipped scaffolds of all BAs dislodge the known C-11 function from its receiving amino acid (Asn564), which may explain the silencing effects of receptor-bound BAs in the reporter gene assay. Together, our results constitute a compelling example of rigid keys acting in an adaptable lock qualifying as a reversed induced fit mechanism, thereby extending the hitherto published knowledge about molecular target interactions of BAs.
Collapse
Affiliation(s)
- Thomas Scior
- Department of Pharmacy, Benemérita Universidad Autónoma de Puebla , C.P. 72570 Puebla México
| | | | | | | | | | | |
Collapse
|
5
|
Kuzmich D, Bentzien J, Betageri R, DiSalvo D, Fadra-Khan T, Harcken C, Kukulka A, Nabozny G, Nelson R, Pack E, Souza D, Thomson D. Function-regulating pharmacophores in a sulfonamide class of glucocorticoid receptor agonists. Bioorg Med Chem Lett 2013; 23:6640-4. [DOI: 10.1016/j.bmcl.2013.10.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/16/2022]
|
6
|
Substituted phenyl as a steroid A-ring mimetic: Providing agonist activity to a class of arylsulfonamide nonsteroidal glucocorticoid ligands. Bioorg Med Chem Lett 2013; 23:6645-9. [DOI: 10.1016/j.bmcl.2013.10.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 01/24/2023]
|
7
|
RAZAVI HOSSEIN, HARCKEN CHRISTIAN. Non-steroidal Dissociated Glucocorticoid Receptor Agonists. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthetic glucocorticoids, such as dexamethasone and prednisolone, are amongst the most commonly used drugs due to their potent and efficacious anti-inflammatory and immunosuppressive properties. However, their long-term and/or high-dose administration is limited by a number of deleterious side-effects, including glucocorticoid-induced diabetes and osteoporosis. Glucocorticoids exert their effects through binding to the glucocorticoid receptor. Since the discovery of multiple differentiated down-stream functions of the glucocorticoid-bound receptor, such as gene transrepression and transactivation, researchers in academia and industry have been on a quest to discover novel glucocorticoids that achieve functional selectivity, hence dissociating the desired anti-inflammatory from the undesired side-effects. This review describes the current state of discovery and development of non-steroidal glucocorticoid receptor agonists. Several small-molecule drug candidates have advanced into clinical trials, and have shown promising early biomarker data, as well as beneficial effects in topical applications. However, a clinically efficacious and systemically available glucocorticoid with significantly reduced side-effects as compared to current steroidal drugs, the “Holy Grail” in immunology, is still elusive.
Collapse
Affiliation(s)
- HOSSEIN RAZAVI
- Department of Medicinal Chemistry Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877 USA
| | - CHRISTIAN HARCKEN
- Department of Research Networking & Strategic Planning Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877 USA
| |
Collapse
|
8
|
Betageri R, Gilmore T, Kuzmich D, Kirrane TM, Bentzien J, Wiedenmayer D, Bekkali Y, Regan J, Berry A, Latli B, Kukulka AJ, Fadra TN, Nelson RM, Goldrick S, Zuvela-Jelaska L, Souza D, Pelletier J, Dinallo R, Panzenbeck M, Torcellini C, Lee H, Pack E, Harcken C, Nabozny G, Thomson DS. Non-steroidal dissociated glucocorticoid agonists: indoles as A-ring mimetics and function-regulating pharmacophores. Bioorg Med Chem Lett 2011; 21:6842-51. [PMID: 21963986 DOI: 10.1016/j.bmcl.2011.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 11/30/2022]
Abstract
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.
Collapse
Affiliation(s)
- Raj Betageri
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nonsteroidal 2,3-dihydroquinoline glucocorticoid receptor agonists with reduced PEPCK activation. Bioorg Med Chem Lett 2011; 21:1654-7. [DOI: 10.1016/j.bmcl.2011.01.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/24/2011] [Indexed: 11/23/2022]
|
10
|
Discovery of orally available tetrahydroquinoline-based glucocorticoid receptor agonists. Bioorg Med Chem Lett 2011; 21:1697-700. [DOI: 10.1016/j.bmcl.2011.01.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/21/2022]
|
11
|
Tetrahydroquinolin-3-yl carbamate glucocorticoid receptor agonists with reduced PEPCK activation. Bioorg Med Chem Lett 2011; 21:1658-62. [DOI: 10.1016/j.bmcl.2011.01.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/24/2011] [Indexed: 01/22/2023]
|