1
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
2
|
Fabijanić I, Kurutos A, Tomašić Paić A, Tadić V, Kamounah FS, Horvat L, Brozovic A, Crnolatac I, Radić Stojković M. Selenium-Substituted Monomethine Cyanine Dyes as Selective G-Quadruplex Spectroscopic Probes with Theranostic Potential. Biomolecules 2023; 13:biom13010128. [PMID: 36671513 PMCID: PMC9856044 DOI: 10.3390/biom13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the impact of different substituents (methyl vs. sulfopropyl vs. thiopropyl/thioethyl) on the nitrogen atom of the benzothiazolyl chromophore on various nucleic acid structures. The monomethine cyanine dyes with methyl substituents showed a 100-fold selectivity for G-quadruplex versus duplex DNA. Study results indicate that cyanines bind with G-quadruplex via end π-π stacking interactions and possible additional interactions with nucleobases/phosphate backbone of grooves or loop bases. Cyanine with thioethyl substituent distinguishes duplex DNA and RNA and G-quadruplex structures by distinctly varying ICD signals. Furthermore, cell viability assay reveals the submicromolar activity of cyanines with methyl substituents against all tested human cancer cell lines. Confocal microscopy analysis shows preferential accumulation of cyanines with sulfopropyl and thioethyl substituents in mitochondria and indicates localization of cyanines with methyl in nucleus, particularly nucleolus. This confirms the potential of examined cyanines as theranostic agents, possessing both fluorescent properties and cell viability inhibitory effect.
Collapse
Affiliation(s)
- Ivana Fabijanić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Ana Tomašić Paić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Fadhil S. Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Lucija Horvat
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-14571220; Fax: +385-14680195
| |
Collapse
|
3
|
Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh 453552 , India
| | - Nidhi Goel
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
4
|
Ribaudo G, Ongaro A, Oselladore E, Memo M, Gianoncelli A. Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. J Med Chem 2021; 64:13174-13190. [PMID: 34510895 PMCID: PMC8474113 DOI: 10.1021/acs.jmedchem.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Guanine-rich sequences
forming G-quadruplexes (GQs) are present
in several genomes, ranging from viral to human. Given their peculiar
localization, the induction of GQ formation or GQ stabilization with
small molecules represents a strategy for interfering with crucial
biological functions. Investigating the recognition event at the molecular
level, with the aim of fully understanding the triggered pharmacological
effects, is challenging. Native electrospray ionization mass spectrometry
(ESI-MS) is being optimized to study these noncovalent assemblies.
Quantitative parameters retrieved from ESI-MS studies, such as binding
affinity, the equilibrium binding constant, and sequence selectivity,
will be overviewed. Computational experiments supporting the ESI-MS
investigation and boosting its efficiency in the search for GQ ligands
will also be discussed with practical examples. The combination of
ESI-MS and in silico techniques in a hybrid high-throughput-screening
workflow represents a valuable tool for the medicinal chemist, providing
data on the quantitative and structural aspects of ligand–GQ
interactions.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
5
|
Nimbarte VD, Wirmer‐Bartoschek J, Gande SL, Alshamleh I, Seibert M, Nasiri HR, Schnütgen F, Serve H, Schwalbe H. Synthesis and in Vitro Evaluation of Novel 5-Nitroindole Derivatives as c-Myc G-Quadruplex Binders with Anticancer Activity. ChemMedChem 2021; 16:1667-1679. [PMID: 33508167 PMCID: PMC8252724 DOI: 10.1002/cmdc.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Lead-optimization strategies for compounds targeting c-Myc G-quadruplex (G4) DNA are being pursued to develop anticancer drugs. Here, we investigate the structure-activity- relationship (SAR) of a newly synthesized series of molecules based on the pyrrolidine-substituted 5-nitro indole scaffold to target G4 DNA. Our synthesized series allows modulation of flexible elements with a structurally preserved scaffold. Biological and biophysical analyses illustrate that substituted 5-nitroindole scaffolds bind to the c-Myc promoter G-quadruplex. These compounds downregulate c-Myc expression and induce cell-cycle arrest in the sub-G1/G1 phase in cancer cells. They further increase the concentration of intracellular reactive oxygen species. NMR spectra show that three of the newly synthesized compounds interact with the terminal G-quartets (5'- and 3'-ends) in a 2 : 1 stoichiometry.
Collapse
Affiliation(s)
- Vijaykumar D. Nimbarte
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Julia Wirmer‐Bartoschek
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Marcel Seibert
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Hamid Reza Nasiri
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Frank Schnütgen
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Hubert Serve
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Department of Medicine 2Hematology/OncologyUniversity Hospital FrankfurtGoethe UniversityTheodor-Stern-Kai 760596Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Straße 760438Frankfurt am MainGermany
- German Cancer Research Center and German Cancer ConsortiumIm Neuenheimer Feld 28069120HeidelbergGermany
- Frankfurt Cancer Institute (FCI)Theodor-Stern-Kai 760596Frankfurt am MainGermany
| |
Collapse
|
6
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Biological activity of quinazoline analogues and molecular modeling of their interactions with G-quadruplexes. Biochim Biophys Acta Gen Subj 2020; 1865:129773. [PMID: 33132199 DOI: 10.1016/j.bbagen.2020.129773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Quinazolines 1 to 6, with an aromatic or aryl-vinyl substituent in position 2 are selected with the aim to compare their structures and biological activity. The selection includes a natural alkaloid, schizocommunin, and the synthetic 2-(2'-quinolyl)-3H-quinazolin-4-one, known to interact with guanine-quadruplex dependent enzymes, respectively telomerase and topoisomerase. METHODS Breast cancer cells of the MDA cell line have been used to study the bioactivity of the tested compounds by the method of Comet Assay and FACS analyses. We model observed effects assuming stacking interactions of studied heterocycles with a naked skeleton of G-quadruplex, consisting of guanine quartet layers and potassium ions. Interaction energies are computed using a dispersion corrected density functional theory method, and an electron-correlated molecular orbital theory method. RESULTS Selected compounds do not remarkably delay nor change the dynamics of cellular progression through the cell cycle phases, while changing significantly cell morphology. Our computational models quantify structural effects on heterocyclic G4-complex stabilization energies, which directly correlate with observed biological activity. CONCLUSION Our computational model of G-quadruplexes is an acceptable tool for the study of interaction energies of G-quadruplexes and heterocyclic ligands, predicting, and allowing design of novel structures. GENERAL SIGNIFICANCE Genotoxicity of quinazolin-4-one analogues on human breast cancer cells is not related to molecular metabolism but rather to their interference with G-quadruplex regulatory mechanisms. Computed stabilization energies of heterocyclic ligand complexes of G-quadruplexes might be useful in the prediction of novel telomerase / helicase, topoisomerase and NA polymerase dependent drugs.
Collapse
|
8
|
Zhao J, Zhai Q. Recent advances in the development of ligands specifically targeting telomeric multimeric G-quadruplexes. Bioorg Chem 2020; 103:104229. [DOI: 10.1016/j.bioorg.2020.104229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|
9
|
Villa-Pulgarin JA, Salamanca CH, Oñate-Garzón J, Varela-M RE. Antitumor Activity In Vitro Provided by N-Alkyl-Nitroimidazole Compounds. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Cancer is one of the most common diseases in the world, with over 18 million new cases estimated in 2018. Many of the drugs used for cancer can have significant adverse effects and variable effectiveness. Nitroimidazoles are prodrugs that usually have shown antimicrobial activity specifically antiparasitic. However, its antitumor activity in vitro has barely been explored.
Objective:
The aim of this study is to determine the influence of the length of the substituted N-alkyl chain in the imidazole ring on the antitumor activity in vitro.
Methods:
Four nitroimidazoles were obtained by chemical synthesis varying the length of the substituted N-alkyl chain from methyl to butyl. The antitumor activity of N-alkyl-nitroimidazoles was evaluated by MTT assay employing two tumor cell lines (MDA-MB231 and A549).
Results:
In this study, it was reported that N-alkyl nitroimidazoles exhibited an LC50 as low as 16.7 µM in breast tumor cells MDA-MB231 while in normal Vero kidney cells, the LC50 was around 30 µM. It was also reported that the length of the substituted N-Alkyl chain in the imidazole ring affects the antitumoral activity in A549 lung cells.
Conclusion:
Increasing the length of the substituted N-Alkyl chain in the imidazole ring decreased the antitumor activity against only A549 cancer cells. N-alkyl nitroimidazoles exhibited considerable selectivity towards tumor cell lines.
Collapse
|
10
|
Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent Progress of Targeted G-Quadruplex-Preferred Ligands Toward Cancer Therapy. Molecules 2019; 24:E429. [PMID: 30682877 PMCID: PMC6384606 DOI: 10.3390/molecules24030429] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
A G-quadruplex (G4) is a well-known nucleic acid secondary structure comprising guanine-rich sequences, and has profound implications for various pharmacological and biological events, including cancers. Therefore, ligands interacting with G4s have attracted great attention as potential anticancer therapies or in molecular probe applications. To date, a large variety of DNA/RNA G4 ligands have been developed by a number of laboratories. As protein-targeting drugs face similar situations, G-quadruplex-interacting drugs displayed low selectivity to the targeted G-quadruplex structure. This low selectivity could cause unexpected effects that are usually reasons to halt the drug development process. In this review, we address the recent research on synthetic G4 DNA-interacting ligands that allow targeting of selected G4s as an approach toward the discovery of highly effective anticancer drugs.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Shunsuke Obata
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
- Institute for Integrated Cell-Material Science (WPI-iCeMS) Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Carabet LA, Rennie PS, Cherkasov A. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci 2018; 20:E120. [PMID: 30597997 PMCID: PMC6337544 DOI: 10.3390/ijms20010120] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Myc (avian myelocytomatosis viral oncogene homolog) represents one of the most sought after drug targets in cancer. Myc transcription factor is an essential regulator of cell growth, but in most cancers it is overexpressed and associated with treatment-resistance and lethal outcomes. Over 40 years of research and drug development efforts did not yield a clinically useful Myc inhibitor. Drugging the "undruggable" is problematic, as Myc inactivation may negatively impact its physiological functions. Moreover, Myc is a disordered protein that lacks effective binding pockets on its surface. It is well established that the Myc function is dependent on dimerization with its obligate partner, Max (Myc associated factor X), which together form a functional DNA-binding domain to activate genomic targets. Herein, we provide an overview of the knowledge accumulated to date on Myc regulation and function, its critical role in cancer, and summarize various strategies that are employed to tackle Myc-driven malignant transformation. We focus on important structure-function relationships of Myc with its interactome, elaborating structural determinants of Myc-Max dimer formation and DNA recognition exploited for therapeutic inhibition. Chronological development of small-molecule Myc-Max prototype inhibitors and corresponding binding sites are comprehensively reviewed and particular emphasis is placed on modern computational drug design methods. On the outlook, technological advancements may soon provide the so long-awaited Myc-Max clinical candidate.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
12
|
Monsen RC, Trent JO. G-quadruplex virtual drug screening: A review. Biochimie 2018; 152:134-148. [PMID: 29966734 PMCID: PMC6134840 DOI: 10.1016/j.biochi.2018.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Over the past two decades biologists and bioinformaticians have unearthed substantial evidence supporting a role for G-quadruplexes as important mediators of biological processes. This includes telomere damage signaling, transcriptional activity, and splicing. Both their structural heterogeneity and their abundance in oncogene promoters makes them ideal targets for drug discovery. Currently, there are hundreds of deposited DNA and RNA quadruplex atomic structures which have allowed researchers to begin using in silico drug screening approaches to develop novel stabilizing ligands. Here we provide a review of the past decade of G-quadruplex virtual drug discovery approaches and campaigns. With this we introduce relevant virtual screening platforms followed by a discussion of best practices to assist future G4 VS campaigns.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40206, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40206, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40206, USA; Department of Medicine, University of Louisville, Louisville, KY, 40206, USA.
| |
Collapse
|
13
|
|
14
|
Hu MH, Wang YQ, Yu ZY, Hu LN, Ou TM, Chen SB, Huang ZS, Tan JH. Discovery of a New Four-Leaf Clover-Like Ligand as a Potent c-MYC Transcription Inhibitor Specifically Targeting the Promoter G-Quadruplex. J Med Chem 2018; 61:2447-2459. [PMID: 29474069 DOI: 10.1021/acs.jmedchem.7b01697] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Downregulating transcription of the oncogene c-MYC is a feasible strategy for cancer therapy. Stabilization of the G-quadruplex structure present in the c-MYC promoter can suppress c-MYC transcription. Thus, far, several ligands targeting this structure have been developed. However, most have shown no selectivity for the c-MYC G-quadruplex over other G-quadruplexes, leading to uncertain side effects. In this study, through structural modification of aryl-substituted imidazole/carbazole conjugates, a brand-new, four-leaf clover-like ligand called IZCZ-3 was found to preferentially bind and stabilize the c-MYC G-quadruplex. Further intracellular studies indicated that IZCZ-3 provoked cell cycle arrest and apoptosis and thus inhibited cell growth, primarily by blocking c-MYC transcription through specific targeting of the promoter G-quadruplex structure. Notably, IZCZ-3 effectively suppressed tumor growth in a mouse xenograft model. Accordingly, this work provides an encouraging example of a selective small molecule that can target one particular G-quadruplex structure, and the selective ligand might serve as an excellent anticancer agent.
Collapse
Affiliation(s)
- Ming-Hao Hu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China.,School of Pharmaceutical Sciences , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Yu-Qing Wang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ze-Yi Yu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Lu-Ni Hu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| |
Collapse
|
15
|
Che T, Wang YQ, Huang ZL, Tan JH, Huang ZS, Chen SB. Natural Alkaloids and Heterocycles as G-Quadruplex Ligands and Potential Anticancer Agents. Molecules 2018; 23:molecules23020493. [PMID: 29473874 PMCID: PMC6017894 DOI: 10.3390/molecules23020493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/04/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
G-quadruplexes are four-stranded nucleic acid secondary structures that are formed in guanine-rich sequences. G-quadruplexes are widely distributed in functional regions of the human genome and transcriptome, such as human telomeres, oncogene promoter regions, replication initiation sites, and untranslated regions. Many G-quadruplex-forming sequences are found to be associated with cancer, and thus, these non-canonical nucleic acid structures are considered to be attractive molecular targets for cancer therapeutics with novel mechanisms of action. In this mini review, we summarize recent advances made by our lab in the study of G-quadruplex-targeted natural alkaloids and their derivatives toward the development of potential anticancer agents.
Collapse
Affiliation(s)
- Tong Che
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yu-Qing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhou-Li Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Hu MH, Chen SB, Wang B, Ou TM, Gu LQ, Tan JH, Huang ZS. Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole. Nucleic Acids Res 2017; 45:1606-1618. [PMID: 27923993 PMCID: PMC5389520 DOI: 10.1093/nar/gkw1195] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022] Open
Abstract
IZNP-1 Multiple G-quadruplex units in the 3΄-terminal overhang of human telomeric DNA can associate and form multimeric structures. The specific targeting of such distinctive higher-order G-quadruplexes might be a promising strategy for developing selective anticancer agents with fewer side effects. However, thus far, only a few molecules were found to selectively bind to telomeric multimeric G-quadruplexes, and their effects on cancer cells were unknown. In this study, a new triaryl-substituted imidazole derivative called was synthesized and found to specifically bind to and strongly stabilize telomeric multimeric G-quadruplexes through intercalating into the pocket between the two quadruplex units. The pocket size might affect the binding behavior of . Further cellular studies indicated that could provoke cell cycle arrest, apoptosis and senescence in Siha cancer cells, mainly because of telomeric DNA damage and telomere dysfunction induced by the interactions of with telomeric G-quadruplexes. Notably, had no effect on the transcriptional levels of several common oncogenes that have the potential to form monomeric G-quadruplex structures in their promoter regions. Such behavior differed from that of traditional telomeric G-quadruplex ligands. Accordingly, this work provides new insights for the development of selective anticancer drugs targeting telomeric multimeric G-quadruplexes.
Collapse
Affiliation(s)
- Ming-Hao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov Today 2017; 22:1165-1186. [PMID: 28506718 DOI: 10.1016/j.drudis.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/20/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
Recently, therapeutic implications of BCL-2 quadruplex invigorated the field of clinical oncology. This Keynote review discusses how a BCL-2 quadruplex-selective approach circumvents the limitations of existing therapeutics; and which improvisations might ameliorate the recent trends of quadruplex-based treatment.
Collapse
|
18
|
Kaserer T, Rigo R, Schuster P, Alcaro S, Sissi C, Schuster D. Optimized Virtual Screening Workflow for the Identification of Novel G-Quadruplex Ligands. J Chem Inf Model 2016; 56:484-500. [PMID: 26841201 DOI: 10.1021/acs.jcim.5b00658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G-quadruplexes, alternative DNA secondary structures present in telomeres, emerge as promising targets for the treatment of cancer, because they prevent telomere elongation and accordingly cell proliferation. Within this study, theoretically validated pharmacophore- and shape-based models as well as a theoretically validated docking protocol were generated and applied in parallel for virtual screening and the identification of novel G-quadruplex ligands. Top-ranked hits retrieved with all methods independently and in addition in a consensus approach were selected for biological testing. Of the 32 tested virtual hits seven selectively stabilized G-quadruplexes over duplex DNA in the fluorescence melting assay. For the five most active compounds, chemically closely related analogues were collected and subjected to in vitro analysis. Thereby, seven further novel G-quadruplex ligands could be identified. These molecules do not only represent novel scaffolds, but some of them are in addition even more potent G-quadruplex stabilizers than the established reference compound berberine. This study proposes an optimized in silico workflow for the identification of novel G-quadruplex stabilizers, which can also be applied in future studies. In addition, structurally novel and promising lead candidates with strong and selective G-quadruplex stabilizing properties are reported.
Collapse
Affiliation(s)
- Teresa Kaserer
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, 35131 Padova, Italy
| | - Philipp Schuster
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro , Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, 35131 Padova, Italy
| | - Daniela Schuster
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Hu MH, Chen SB, Guo RJ, Ou TM, Huang ZS, Tan JH. Development of a highly sensitive fluorescent light-up probe for G-quadruplexes. Analyst 2016; 140:4616-25. [PMID: 26027520 DOI: 10.1039/c5an00761e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G-quadruplexes are higher-order nucleic acid structures that have attracted extensive attention because of their biological significance and potential applications in supramolecular chemistry. An ever-increasing interest in G-quadruplexes has promoted the development of selective and sensitive fluorescent probes as research tools for these structures. However, most current studies primarily focus on the improved selectivity of probes for G-quadruplexes. Their detection limits or ways to improve their detection limits are rarely described. In this study, a new set of di-substituted triarylimidazole fluorescent probes were designed and synthesized, with the aim of upgrading the detection limit of a lead triarylimidazole IZCM-1 for G-quadruplexes. Among these compounds, IZCM-7 was the most promising candidate. The limit of detection (LOD) value of IZCM-7 for the G-quadruplex was up to 3 nM in solution and up to 5 ng in a gel matrix. These values were significantly improved in comparison with those of IZCM-1. Further biophysical studies revealed that the fluorescence quantum yield and binding affinity of IZCM-7 for G-quadruplexes were markedly increased, and these two factors might be responsible for the significantly improved detection limit of IZCM-7. In addition, the sensitive and selective fluorescence performance of IZCM-7 for G-quadruplexes remained the same even in the presence of large amounts of non-G-quadruplex competitors, suggesting its promising application prospect.
Collapse
Affiliation(s)
- Ming-Hao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | | | | | | | | | | |
Collapse
|
20
|
Interaction of metallacrown complexes with G-quadruplex DNA. J Inorg Biochem 2016; 155:105-14. [DOI: 10.1016/j.jinorgbio.2015.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
|
21
|
Castillo-González D, Mergny JL, De Rache A, Pérez-Machado G, Cabrera-Pérez MA, Nicolotti O, Introcaso A, Mangiatordi GF, Guédin A, Bourdoncle A, Garrigues T, Pallardó F, Cordeiro MNDS, Paz-y-Miño C, Tejera E, Borges F, Cruz-Monteagudo M. Harmonization of QSAR Best Practices and Molecular Docking Provides an Efficient Virtual Screening Tool for Discovering New G-Quadruplex Ligands. J Chem Inf Model 2015; 55:2094-110. [DOI: 10.1021/acs.jcim.5b00415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daimel Castillo-González
- ARNA Laboratory, IECB, University of Bordeaux, F-33600 Pessac, France
- ARNA Laboratory,
INSERM, U869, F-33000 Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, IECB, University of Bordeaux, F-33600 Pessac, France
- ARNA Laboratory,
INSERM, U869, F-33000 Bordeaux, France
| | - Aurore De Rache
- ARNA Laboratory, IECB, University of Bordeaux, F-33600 Pessac, France
- ARNA Laboratory,
INSERM, U869, F-33000 Bordeaux, France
| | - Gisselle Pérez-Machado
- Molecular Simulation and
Drug Design Group, Centro de Bioactivos Químicos (CBQ), Central University of Las Villas, Santa Clara, Villa Clara 54830, Cuba
- Department of Physiology,
Faculty of Medicine, University of Valencia, Valencia 46010, Valencia, Spain
- Department
of Pharmacy and Pharmaceutical Technology, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Miguel Angel Cabrera-Pérez
- Molecular Simulation and
Drug Design Group, Centro de Bioactivos Químicos (CBQ), Central University of Las Villas, Santa Clara, Villa Clara 54830, Cuba
- Department
of Pharmacy and Pharmaceutical Technology, University of Valencia, Burjassot 46100, Valencia, Spain
- Department of Engineering, Area of Pharmacy and Pharmaceutical
Technology, Miguel Hernández University, 03550 Sant Joan d’Alacant, Alicante, Alicante, Spain
| | - Orazio Nicolotti
- Dipartimento
di Farmacia-Scienze, Università degli Studi di Bari “Aldo Moro″, Via Orabona 4, 70125 Bari, Bari, Italy
| | - Antonellina Introcaso
- Dipartimento
di Farmacia-Scienze, Università degli Studi di Bari “Aldo Moro″, Via Orabona 4, 70125 Bari, Bari, Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento
di Farmacia-Scienze, Università degli Studi di Bari “Aldo Moro″, Via Orabona 4, 70125 Bari, Bari, Italy
| | - Aurore Guédin
- ARNA Laboratory, IECB, University of Bordeaux, F-33600 Pessac, France
- ARNA Laboratory,
INSERM, U869, F-33000 Bordeaux, France
| | - Anne Bourdoncle
- ARNA Laboratory, IECB, University of Bordeaux, F-33600 Pessac, France
- ARNA Laboratory,
INSERM, U869, F-33000 Bordeaux, France
| | - Teresa Garrigues
- Department
of Pharmacy and Pharmaceutical Technology, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Federico Pallardó
- Department of Physiology,
Faculty of Medicine, University of Valencia, Valencia 46010, Valencia, Spain
| | | | - Cesar Paz-y-Miño
- Instituto de Investigaciones
Biomédicas (IIB), Universidad de Las Américas, 170513 Quito, Pichincha, Ecuador
| | - Eduardo Tejera
- Instituto de Investigaciones
Biomédicas (IIB), Universidad de Las Américas, 170513 Quito, Pichincha, Ecuador
| | | | - Maykel Cruz-Monteagudo
- Instituto de Investigaciones
Biomédicas (IIB), Universidad de Las Américas, 170513 Quito, Pichincha, Ecuador
| |
Collapse
|
22
|
Hou JQ, Chen SB, Zan LP, Ou TM, Tan JH, Luyt LG, Huang ZS. Identification of a selective G-quadruplex DNA binder using a multistep virtual screening approach. Chem Commun (Camb) 2015; 51:198-201. [DOI: 10.1039/c4cc06951j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A selective G-quadruplex binder was identified using a multistep virtual screening approach by simultaneously taking into account G-quadruplex and duplex DNA.
Collapse
Affiliation(s)
- Jin-Qiang Hou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
- London Regional Cancer Program
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Li-Peng Zan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Leonard G. Luyt
- London Regional Cancer Program
- Ontario N6A 4L6
- Canada
- Depts. Oncology, Chemistry, Medical Imaging
- The University of Western Ontario
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
23
|
In silico identification of novel ligands for G-quadruplex in the c-MYC promoter. J Comput Aided Mol Des 2014; 29:339-48. [PMID: 25527072 DOI: 10.1007/s10822-014-9826-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
G-quadruplex DNA formed in NHEIII1 region of oncogene promoter inhibits transcription of the genes. In this study, virtual screening combining pharmacophore-based search and structure-based docking screening was conducted to discover ligands binding to G-quadruplex in promoter region of c-MYC. Several hit ligands showed the selective PCR-arresting effects for oligonucleotide containing c-MYC G-quadruplex forming sequence. Among them, three hits selectively inhibited cell proliferation and decreased c-MYC mRNA level in Ramos cells, where NHEIII1 is included in translocated c-MYC gene for overexpression. Promoter assay using two kinds of constructs with wild-type and mutant sequences showed that interaction of these ligands with the G-quadruplex resulted in turning-off of the reporter gene. In conclusion, combined virtual screening methods were successfully used for discovery of selective c-MYC promoter G-quadruplex binders with anticancer activity.
Collapse
|
24
|
Chen SB, Wu WB, Hu MH, Ou TM, Gu LQ, Tan JH, Huang ZS. Discovery of a new fluorescent light-up probe specific to parallel G-quadruplexes. Chem Commun (Camb) 2014; 50:12173-6. [DOI: 10.1039/c4cc05394j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive probe was developed for the detection of parallel G-quadruplexes without affecting their topology or thermal stability.
Collapse
Affiliation(s)
- Shuo-Bin Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Wei-Bin Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Ming-Hao Hu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, China
| |
Collapse
|
25
|
Kar RK, Suryadevara P, Jana J, Bhunia A, Chatterjee S. Novel G-quadruplex stabilizing agents: in-silico approach and dynamics. J Biomol Struct Dyn 2013; 31:1497-518. [DOI: 10.1080/07391102.2012.742246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Alcaro S, Musetti C, Distinto S, Casatti M, Zagotto G, Artese A, Parrotta L, Moraca F, Costa G, Ortuso F, Maccioni E, Sissi C. Identification and characterization of new DNA G-quadruplex binders selected by a combination of ligand and structure-based virtual screening approaches. J Med Chem 2013; 56:843-55. [PMID: 23294188 DOI: 10.1021/jm3013486] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nowadays, it has been demonstrated that DNA G-quadruplex arrangements are involved in cellular aging and cancer, thus boosting the discovery of selective binders for these DNA secondary structures. By taking advantage of available structural and biological information on these structures, we performed a high throughput in silico screening of commercially available molecules databases by merging ligand- and structure-based approaches by means of docking experiments. Compounds selected by the virtual screening procedure were then tested for their ability to interact with the human telomeric G-quadruplex folding by circular dichroism, fluorescence spectroscopy, and photodynamic techniques. Interestingly, our screening succeeded in retrieving a new promising scaffold for G-quadruplex binders characterized by a psoralen moiety.
Collapse
Affiliation(s)
- Stefano Alcaro
- Dipartimento di Scienze della Salute, Università di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zambre VP, Giridhar R, Yadav MR. Pharmacophore modeling and 3D-QSAR (CoMSIA) studies for structural requirements of some triazine derivatives as G-quadruplex binders for telomerase inhibition. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0447-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zhou X, Huang H, Chen Y, Tan J, Song Y, Zou J, Tian X, Hua Y, Ju J. Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. JOURNAL OF NATURAL PRODUCTS 2012; 75:2251-2255. [PMID: 23215246 DOI: 10.1021/np300554f] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new sequential tristhiazole-thiazoline-containing cyclic peptide, marthiapeptide A (1), was isolated from a 60 L scale culture of the deep South China Sea-derived strain Marinactinospora thermotolerans SCSIO 00652. The planar structure and absolute configuration of 1 were elucidated by application of spectroscopic techniques, as well as by single-crystal X-ray diffraction and chiral-phase HPLC analysis of the acid hydrolysates. Marthiapeptide A (1) exhibited antibacterial activity against a panel of Gram-positive bacteria, with MIC values ranging from 2.0 to 8.0 μg/mL, and displayed strong cytotoxic activity against a panel of human cancer cell lines with IC(50) values ranging from 0.38 to 0.52 μM.
Collapse
Affiliation(s)
- Xiao Zhou
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fun HK, Loh WS, Viveka S, Dinesha, Nagaraja GK. 2-(4-Methoxyphenyl)-2-oxoethanaminium chloride. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o2987. [PMID: 23125762 PMCID: PMC3470349 DOI: 10.1107/s1600536812039645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/18/2012] [Indexed: 11/10/2022]
Abstract
In the cation of the title compound, C9H12NO2+·Cl−, the dihedral angle between the 2-oxoethanaminium N—C—C(=O)– plane [maximum deviation = 0.0148 (12) Å] and the benzene ring is 7.98 (8)°. The methoxy group is approximately in-plane with the benzene ring, with a C—O—C—C torsion angle of −2.91 (18)°. In the crystal, the cations and chloride anions are connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a layer parallel to the bc plane. A C—H⋯π interaction further links the layers.
Collapse
|
31
|
In silico screening of quadruplex-binding ligands. Methods 2012; 57:106-14. [DOI: 10.1016/j.ymeth.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 12/18/2022] Open
|
32
|
May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H. Rapid Development and Scale-Up of a 1H-4-Substituted Imidazole Intermediate Enabled by Chemistry in Continuous Plug Flow Reactors. Org Process Res Dev 2012. [DOI: 10.1021/op200351g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott A. May
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Martin D. Johnson
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Timothy M. Braden
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Joel R. Calvin
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Brian D. Haeberle
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Amy R. Jines
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Richard D. Miller
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Edward F. Plocharczyk
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Gregory A. Rener
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Rachel N. Richey
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Christopher R. Schmid
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Radhe K. Vaid
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Hannah Yu
- Chemical Product Research and Development, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| |
Collapse
|
33
|
Castor KJ, Mancini J, Fakhoury J, Weill N, Kieltyka R, Englebienne P, Avakyan N, Mittermaier A, Autexier C, Moitessier N, Sleiman HF. Platinum(II) Phenanthroimidazoles for Targeting Telomeric G-Quadruplexes. ChemMedChem 2011; 7:85-94. [DOI: 10.1002/cmdc.201100453] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Indexed: 11/10/2022]
|