1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Fanta CC, Tlusty KJ, Pauley SE, Johnson AL, Benjamin GA, Yseth TK, Bunde MM, Pierce PT, Wang S, Vitiello PF, Mays JR. Synthesis and Evaluation of Functionalized Aryl and Biaryl Isothiocyanates Against Human MCF-7 Cells. ChemMedChem 2022; 17:e202200250. [PMID: 35588002 DOI: 10.1002/cmdc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.
Collapse
Affiliation(s)
- Claire C Fanta
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Sarah E Pauley
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | | | - Taylor K Yseth
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Paul T Pierce
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Shirley Wang
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Peter F Vitiello
- The University of Oklahoma Health Sciences Center, Pediatrics; Physiology; Biochemistry & Molecular Biology, UNITED STATES
| | - Jared R Mays
- Augustana University, Chemistry & Biochemistry, 2001 S. Summit Ave., 57197, Sioux Falls, UNITED STATES
| |
Collapse
|
3
|
Yang YL, Li S, Zhang FG, Ma JA. N-Iodosuccinimide-Promoted [3 + 2] Annulation Reaction of Aryldiazonium Salts with Guanidines To Construct Aminotetrazoles. Org Lett 2021; 23:8894-8898. [PMID: 34748357 DOI: 10.1021/acs.orglett.1c03395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A N-iodosuccinimide (NIS)-promoted [3 + 2] annulation reaction of aryldiazonium salts with guanidines has been developed for the construction of previously elusive 2-aryl-5-amino-2H-tetrazoles. This transformation takes advantage of readily available starting materials, proceeds under metal-free, mild, and robust conditions, and holds broad functional group compatibility. The utility of this protocol is further manifested via coupling, annulation, deamination, and denitrogenation derivatizations.
Collapse
Affiliation(s)
- Yi-Lin Yang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| |
Collapse
|
4
|
Calzaferri F, Narros-Fernández P, de Pascual R, de Diego AMG, Nicke A, Egea J, García AG, de Los Ríos C. Synthesis and Pharmacological Evaluation of Novel Non-nucleotide Purine Derivatives as P2X7 Antagonists for the Treatment of Neuroinflammation. J Med Chem 2021; 64:2272-2290. [PMID: 33560845 DOI: 10.1021/acs.jmedchem.0c02145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1β release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizations.
Collapse
Affiliation(s)
- Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Paloma Narros-Fernández
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Ricardo de Pascual
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Antonio M G de Diego
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Javier Egea
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Antonio G García
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| |
Collapse
|
5
|
Dukanya, Swaroop TR, Rangappa KS, Basappa. Cyclocondensation of Sodium Azide with Methyl N(N),N'-di(tri)substituted Carbamimidothioate : A New Dimension for the Synthesis of 1,5-disubstituted Tetrazoles and Their Cytotoxicity against Human Breast Cancer Cells. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201020204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthesis of 1,5-disubstituted tetrazoles by the cyclization of sodium azide with
N(N),N'-di(tri)substituted carbamimidothioate is reported. Tetrazoles are obtained in good to
excellent yield in the absence of a catalyst. All the compounds were characterized by NMR
and HRMS analysis. Single crystal X-ray diffraction data of 1-(4-chlorophenyl)-4-(5-phenyl-
1H-tetrazol-1-yl)piperazine 5g is also provided. Further, these disubstituted tetrazoles were
tested against the proliferation of human breast cancer cells (MCF-7), which identified 5e as a
lead compound. Finally, we have shown in silico that these compounds may interact with the
ligand binding domain of estrogen receptor α (ERα), that expresses at high amount in MCF-7
cells.
Collapse
Affiliation(s)
- Dukanya
- DOS in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru - 570 006, Karnataka, India
| | | | | | - Basappa
- DOS in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru - 570 006, Karnataka, India
| |
Collapse
|
6
|
Development of (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers as a new class of selective antitubercular agents. Eur J Med Chem 2019; 186:111882. [PMID: 31753514 DOI: 10.1016/j.ejmech.2019.111882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023]
Abstract
A series of halogenated (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers (1a-9a, 1b-9b) were synthesized from their corresponding thiourea analogues (1-9). The synthesis pathway was confirmed by an X-ray crystallographic studies of 1a, 1b and 5a. Title derivatives were tested for their in vitro antitubercular activity against standard, "wild-type" and atypical mycobacteria. The highest therapeutic potential was attributed to isomeric N-(bromophenyl)tetrazoles 8a and 9a. Their growth-inhibitory effect against multidrug-resistant Mycobacterium tuberculosis Spec. 210 was 8-16-fold stronger than that of the first-line tuberculostatics. Other new tetrazole-derived compounds were also more or equally effective towards that pathogen comparing to the established pharmaceuticals. Among non-tuberculous strains, Mycobacterium scrofulaceum was the most susceptible to the presence of the majority of tetrazole derivatives. The synergistic interaction was found between 9a and streptomycin, as well as the additivity of both 8a and 9a in pairs with isoniazid, rifampicin and ethambutol. None of the studied compounds displayed antibacterial or cytotoxic properties against normal and cancer cell lines, which indicated their highly selective antimycobacterial effects.
Collapse
|
7
|
Pathare RS, Ansari AJ, Verma S, Maurya A, Maurya AK, Agnihotri VK, Sharon A, Pardasani RT, Sawant DM. Sequential Pd(0)/Fe(III) Catalyzed Azide–Isocyanide Coupling/Cyclization Reaction: One-Pot Synthesis of Aminotetrazoles. J Org Chem 2018; 83:9530-9537. [DOI: 10.1021/acs.joc.8b01261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ramdas S. Pathare
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer-305817, Rajasthan, India
| | - Arshad J. Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer-305817, Rajasthan, India
| | - Sarika Verma
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Anand Maurya
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer-305817, Rajasthan, India
| | - Antim K. Maurya
- Natural Product Chemistry and Process Development division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176061, India
| | - Vijai K. Agnihotri
- Natural Product Chemistry and Process Development division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176061, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Ram T. Pardasani
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer-305817, Rajasthan, India
| | - Devesh M. Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer-305817, Rajasthan, India
| |
Collapse
|
8
|
Gonzaga DTG, Ferreira LBG, Moreira Maramaldo Costa TE, von Ranke NL, Anastácio Furtado Pacheco P, Sposito Simões AP, Arruda JC, Dantas LP, de Freitas HR, de Melo Reis RA, Penido C, Bello ML, Castro HC, Rodrigues CR, Ferreira VF, Faria RX, da Silva FDC. 1-Aryl-1 H - and 2-aryl-2 H -1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo. Eur J Med Chem 2017; 139:698-717. [DOI: 10.1016/j.ejmech.2017.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
|
9
|
Bielenica A, Szulczyk D, Olejarz W, Madeddu S, Giliberti G, Materek IB, Koziol AE, Struga M. 1H-Tetrazol-5-amine and 1,3-thiazolidin-4-one derivatives containing 3-(trifluoromethyl)phenyl scaffold: Synthesis, cytotoxic and anti-HIV studies. Biomed Pharmacother 2017; 94:804-812. [PMID: 28802233 DOI: 10.1016/j.biopha.2017.07.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
On the basis of recently reported biologically active 3-(trifluoromethyl)phenylthioureas, a series of diaryl derivatives incorporating 1H-tetrazol-5-yl (1a-11a, 1a'-11a') and 1,3-thiazolidin-4-one (1b-11b) scaffolds were synthesized. The synthesis pathway was confirmed by an X-ray crystallographic studies of 3a', 6a, 8a, 6b and 8b. The cytotoxicity against MT-4 cells and anti-HIV properties of new derivatives were evaluated. As compared to initial thiourea connections, the cyclisation reduced the cytotoxicity of compounds by 2-15 times. The most promising N-(4-nitrophenyl)-1H-tetrazol-5-amine 7a was found to be more active than the origin thiourea. Its cytotoxicity was evaluated on A549, HTB-140 and HaCaT cell lines using MTT assay. The compound shows significant influence on cancer, but not on normal cells. Obtained results can provide some constructive data for further designing of novel family of potentially bioactive analogs.
Collapse
Affiliation(s)
- Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Daniel Szulczyk
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 02-097 Warszawa, Poland; Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Silvia Madeddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Gabriele Giliberti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Ilona B Materek
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Anna E Koziol
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warszawa, Poland
| |
Collapse
|
10
|
Lopez-Tapia F, Walker KAM, Brotherton-Pleiss C, Caroon J, Nitzan D, Lowrie L, Gleason S, Zhao SH, Berger J, Cockayne D, Phippard D, Suttmann R, Fitch WL, Bourdet D, Rege P, Huang X, Broadbent S, Dvorak C, Zhu J, Wagner P, Padilla F, Loe B, Jahangir A, Alker A. Novel Series of Dihydropyridinone P2X7 Receptor Antagonists. J Med Chem 2015; 58:8413-26. [DOI: 10.1021/acs.jmedchem.5b00365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Francisco Lopez-Tapia
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Keith A. M. Walker
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | | | - Joanie Caroon
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Dov Nitzan
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Lee Lowrie
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Shelley Gleason
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Shu-Hai Zhao
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Jacob Berger
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Debra Cockayne
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Deborah Phippard
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Rebecca Suttmann
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - William L. Fitch
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - David Bourdet
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Pankaj Rege
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Xiaojun Huang
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Scott Broadbent
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Charles Dvorak
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Jiang Zhu
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Paul Wagner
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Fernando Padilla
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Brad Loe
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Alam Jahangir
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - André Alker
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| |
Collapse
|
11
|
Ahmadi M, Nowroozi A, Shahlaei M. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors. J Mol Graph Model 2015; 61:243-61. [PMID: 26298810 DOI: 10.1016/j.jmgm.2015.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/22/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
The P2X purinoceptor 7 (P2X7R) is a trimeric ATP-activated ion channel gated by extracellular ATP. P2X7R has important role in numerous diseases including pain, neurodegeneration, and inflammatory diseases such as rheumatoid arthritis and osteoarthritis. In this prospective, the discovery of small-molecule inhibitors for P2X7R as a novel therapeutic target has received considerable attention in recent years. At first, 3D structure of P2X7R was built by using homology modeling (HM) and a 50ns molecular dynamics simulation (MDS). Ligand-based quantitative pharmacophore modeling methodology of P2X7R antagonists were developed based on training set of 49 compounds. The best four-feature pharmacophore model, includes two hydrophobic aromatic, one hydrophobic and one aromatic ring features, has the highest correlation coefficient (0.874), cost difference (368.677), low RMSD (2.876), as well as it shows a high goodness of fit and enrichment factor. Consequently, some hit compounds were introduced as final candidates by employing virtual screening and molecular docking procedure simultaneously. Among these compounds, six potential molecule were identified as potential virtual leads which, as such or upon further optimization, can be used to design novel P2X7R inhibitors.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Falk S, Schwab S, Frøsig-Jørgensen M, Clausen R, Dickenson A, Heegaard AM. P2X7 receptor-mediated analgesia in cancer-induced bone pain. Neuroscience 2015; 291:93-105. [DOI: 10.1016/j.neuroscience.2015.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/19/2015] [Accepted: 02/05/2015] [Indexed: 11/28/2022]
|
13
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|