1
|
Horiguchi H, Kadomatsu T, Oike Y. The Two Faces of Angiopoietin-Like Protein 2 in Cancer. Cancer Sci 2024. [PMID: 39686837 DOI: 10.1111/cas.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells and various stromal cell types, such as immune cells, fibroblasts, and vascular cells. Signaling interactions between tumor and stromal cells orchestrate the tumor microenvironment's contribution to tumor progression. Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies indicate that tumor cell-derived ANGPTL2 serves as a tumor promoter. However, recent studies suggest that tumor stroma-derived ANGPTL2 shows tumor-suppressive activity by enhancing anti-tumor immune responses, supporting a dual function for ANGPTL2 in cancer pathology. Such complexity can complicate development of effective therapeutic strategies targeting ANGPTL2. In this Review, we focus on ANGPTL2 activity in the tumor microenvironment and its function in anti-cancer immunity.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Lin DC, Lih TM, Liu H, Zhang H. Characterization of Cell Surface Glycoproteins Using Enzymatic Treatment and Mass Spectrometry. Anal Chem 2024. [PMID: 39556700 DOI: 10.1021/acs.analchem.4c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Almost all proteins on the cell surface are modified by glycosylation. Cell surface glycoproteins participate in various cellular pathways, such as cell adhesion, cell-cell communication, and immune response. Due to their functional importance, glycoproteins on the cell surface often serve as potential therapeutic targets. Recent advancements in mass spectrometry (MS) have facilitated the characterization of glycoproteins that are generally localized on the cell surface, secreted to the extracellular environment, or found in intracellular organelles such as the endoplasmic reticulum, Golgi apparatus, and peroxisome. However, the selective characterization of glycoproteins on the cell surface remains challenging. In this study, we applied enzymatic treatment to live cells, followed by MS-based glycoproteomics analysis, to assess changes in protein glycosylation at different treatment time points as a method to identify cell surface glycoproteins. To demonstrate this approach, a renal cell carcinoma cell line, A498, was treated with glycosidases, sialidase and PNGase F, over two treatment time intervals, 2 and 24 h. Glycoproteins were identified as cell surface glycoproteins from A498 cells when enzyme treatment altered the glycosylation of the glycoproteins. The results revealed the effectiveness of integrating enzymatic treatment with MS-based glycoproteomics for analyzing cell surface glycoproteins. Our established method has demonstrated the potential applications for assessing accessibility of therapeutic targets on the cell surface over time and supporting the development of new targeted therapies.
Collapse
Affiliation(s)
- Ding Chiao Lin
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - T Mamie Lih
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Hongyi Liu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
3
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
[Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses]. Se Pu 2021; 39:1045-1054. [PMID: 34505426 PMCID: PMC9404232 DOI: 10.3724/sp.j.1123.2021.06011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。
Collapse
|
5
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
6
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
7
|
Mass Spectrometry-Based Glycoproteomics and Prostate Cancer. Int J Mol Sci 2021; 22:ijms22105222. [PMID: 34069262 PMCID: PMC8156230 DOI: 10.3390/ijms22105222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant glycosylation has long been known to be associated with cancer, since it is involved in key mechanisms such as tumour onset, development and progression. This review will focus on protein glycosylation studies in cells, tissue, urine and serum in the context of prostate cancer. A dedicated section will cover the glycoforms of prostate specific antigen, the molecule that, despite some important limitations, is routinely tested for helping prostate cancer diagnosis. Our aim is to provide readers with an overview of mass spectrometry-based glycoproteomics of prostate cancer. From this perspective, the first part of this review will illustrate the main strategies for glycopeptide enrichment and mass spectrometric analysis. The molecular information obtained by glycoproteomic analysis performed by mass spectrometry has led to new insights into the mechanism linking aberrant glycosylation to cancer cell proliferation, migration and immunoescape.
Collapse
|
8
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
9
|
Nguyen K, Kubota M, Arco JD, Feng C, Singha M, Beasley S, Sakr J, Gandhi SP, Blurton-Jones M, Fernández Lucas J, Spitale RC. A Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA. ACS Chem Biol 2020; 15:3099-3105. [PMID: 33222436 DOI: 10.1021/acschembio.0c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jon del Arco
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Beasley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jasmine Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Sunil P. Gandhi
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew Blurton-Jones
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Jesus Fernández Lucas
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine. Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
10
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Xu Z, Ku X, Tomioka A, Xie W, Liang T, Zou X, Cui Y, Sato T, Kaji H, Narimatsu H, Yan W, Zhang Y. O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53. Biochim Biophys Acta Gen Subj 2020; 1864:129635. [PMID: 32417172 DOI: 10.1016/j.bbagen.2020.129635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mucin-type O-glycosylation (referred to as O-GalNAc glycosylation) is the most abundant O-glycosylation on membrane and secretory proteins. Recently several evidences suggest that nuclear or cytoplasmic proteins might also have O-GalNAc glycosylation. However, what nucleocytoplasmic proteins are O-GalNAc glycosylated and what the biological function of this modification in cells are still poorly understood. Previously, we reported the tumor suppressor p53 could be O-GalNAc glycosylated in vitro. To investigate the existence and function of O-GalNAc glycosylation on nucleocytoplasmic proteins in cell, p53 as a representative nucleocytoplasmic protein was studied. METHODS Using lectin blotting with GalNAc specific lectins, enzymatic treatments with O-GlcNAcase, core 1 β1, 3-galactosyltransferase and O-glycosidase, and metabolic labeling with un-O-acetylated GalNAz in UDP-Gal/UDP-GalNAc 4-epimerase (GALE) knockout cells, we validated the O-GalNAc glycosylation on p53. Using mass spectrometry analysis and site-directed mutagenesis, we identified the glycosylated sites and studied the functions of O-GalNAc glycosylation on p53. RESULTS The p53 was O-GalNAc glycosylated in cells. Ser121 residue was one of the glycosylated sites on p53. The O-GalNAc glycosylation at Ser121 was associated with the stability and activity of p53. CONCLUSIONS These results revealed that the O-GalNAc glycosylation was a novel modification on p53. GENERAL SIGNIFICANCE Our study provided a pilot evidence that the O-GalNAc glycosylation existed on nucleocytoplasmic protein.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Azusa Tomioka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Wenxian Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Liang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hiroyuki Kaji
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China.
| |
Collapse
|
12
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
14
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
16
|
Sun F, Wu R. Systematic and site-specific analysis of N-glycoproteins on the cell surface by integrating bioorthogonal chemistry and MS-based proteomics. Methods Enzymol 2019; 626:223-247. [PMID: 31606076 DOI: 10.1016/bs.mie.2019.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycoproteins on the cell surface are essential for various cellular activities including cell-cell communication and cell-matrix interaction. Alterations of glycosylation are correlated with many diseases such as cancer and infectious diseases. However, it is greatly challenging to systematically and site-specially analyze glycoproteins only located on cell surface because of the heterogeneity of glycans, the low abundance of many surface glycoproteins and the requirement of effective methods to separate surface glycoproteins. In this chapter, we briefly review existing mass spectrometry (MS)-based methods for global analysis of surface glycoproteins. Then we discuss an effective method integrating metabolic labeling, click and enzymatic reactions, and MS-based proteomics to comprehensively and site-specifically investigate cell surface N-glycoproteins. A detailed protocol for this method is also included. In combination with quantitative proteomics, we applied this method to quantify cell surface N-glycoproteins and study the relationship between cell invasiveness and N-sialoglycoproteins on the cell surface. Considering the importance of surface glycoproteins, this method can be extensively applied to advance glycoscience, which leads to a better understanding of the molecular mechanisms of human diseases, and the discovery of surface glycoproteins as biomarkers for disease detection.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
17
|
Sun F, Suttapitugsakul S, Wu R. Enzymatic Tagging of Glycoproteins on the Cell Surface for Their Global and Site-Specific Analysis with Mass Spectrometry. Anal Chem 2019; 91:4195-4203. [PMID: 30794380 PMCID: PMC6518397 DOI: 10.1021/acs.analchem.9b00441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell surface is normally covered with sugars that are bound to lipids or proteins. Surface glycoproteins play critically important roles in many cellular events, including cell-cell communications, cell-matrix interactions, and response to environmental cues. Aberrant protein glycosylation on the cell surface is often a hallmark of human diseases such as cancer and infectious diseases. Global analysis of surface glycoproteins will result in a better understanding of glycoprotein functions and the molecular mechanisms of diseases and the discovery of surface glycoproteins as biomarkers and drug targets. Here, an enzyme is exploited to tag surface glycoproteins, generating a chemical handle for their selective enrichment prior to mass spectrometric (MS) analysis. The enzymatic reaction is very efficient, and the reaction conditions are mild, which are well-suited for surface glycoprotein tagging. For biologically triplicate experiments, on average 953 N-glycosylation sites on 393 surface glycoproteins per experiment were identified in MCF7 cells. Integrating chemical and enzymatic reactions with MS-based proteomics, the current method is highly effective to globally and site-specifically analyze glycoproteins only located on the cell surface. Considering the importance of surface glycoproteins, this method is expected to have extensive applications to advance glycoscience.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Xiao H, Suttapitugsakul S, Sun F, Wu R. Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation. Acc Chem Res 2018; 51:1796-1806. [PMID: 30011186 DOI: 10.1021/acs.accounts.8b00200] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylation is one of the most common protein modifications, and it is essential for mammalian cell survival. It often determines protein folding and trafficking, and regulates nearly every extracellular activity, including cell-cell communication and cell-matrix interactions. Aberrant protein glycosylation events are hallmarks of human diseases such as cancer and infectious diseases. Therefore, glycoproteins can serve as effective biomarkers for disease detection and targets for drug and vaccine development. Despite the importance of glycoproteins, global analysis of protein glycosylation (either glycoproteins or glycans) in complex biological samples has been a daunting task, and here we mainly focus on glycoprotein analysis using mass spectrometry (MS)-based bottom-up proteomics. Although the emergence of MS-based proteomics has provided a great opportunity to analyze glycoproteins globally, the low abundance of many glycoproteins and the heterogeneity of glycans dramatically increase the technical difficulties. In order to overcome these obstacles, considerable progress has been made in recent years, which has contributed to comprehensive analysis of glycoproteins. In our lab, we developed effective MS-based chemical and enzymatic methods to (1) globally analyze glycoproteins in complex biological samples, (2) target glycoproteins specifically on the surface of human cells, (3) systematically quantify glycoprotein and surface glycoprotein dynamics (the abundance changes of glycoproteins as a function of time), and (4) selectively characterize glycoproteins with a particular and important glycan. In this Account, we first briefly describe the glycopeptide/protein enrichment methods in the literature and then discuss the developments of boronic acid-based methods to enrich glycopeptides for large-scale analysis of protein glycosylation. Boronic acids can form reversible covalent interactions with sugars, but the low binding affinity of normal boronic acid-based methods prevents us from capturing glycoproteins with low abundance, which often contain more valuable information. We enhanced the boronic acid-glycan interactions by using a boronic acid derivative (benzoboroxole) and conjugating it onto a dendrimer to allow synergistic interactions between the boronic acid derivative and sugars. The new method is capable of globally analyzing protein glycosylation with site and glycan structure information, especially for those with low abundance. In the next part, we discuss the combination of metabolic labeling, click chemistry and enzymatic reactions, and MS-based proteomics as a very powerful approach for surface glycoproteome analysis in human cells. The methods enable us to specifically identify surface glycoproteins and to quantify their abundance changes and dynamics together with quantitative proteomics. The last section of this Account focuses on chemical and enzymatic methods to study glycoproteins containing a particular and important glycan (the Tn antigen, i.e., O-GalNAc). Although not comprehensive, this Account provides an overview of chemical and enzymatic methods to characterize protein glycosylation in combination with MS-based proteomics. These methods will have extensive applications in the fields of biology and biomedicine, which will lead to a better understanding of glycoprotein functions and the molecular mechanisms of diseases. Eventually, glycoproteins will be identified as effective biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David R. Spiciarich
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Rosalie Nolley
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sophia L. Maund
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sean C. Purcell
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Jason Herschel
- Department of Mathematics; California State University; East Bay Hayward CA 94542 USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility; UC Berkeley; Berkeley CA 94720 USA
| | - Donna M. Peehl
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Carolyn R. Bertozzi
- Department of Chemistry; Stanford University; Stanford CA 94305-4401 USA
- Howard Hughes Medical Institute; USA
| |
Collapse
|
20
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [PMID: 28649697 DOI: 10.1002/anie.201701424] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell-surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide-functionalized sialic acid biosynthetic precursor Ac4 ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.
Collapse
Affiliation(s)
- David R Spiciarich
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sophia L Maund
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean C Purcell
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jason Herschel
- Department of Mathematics, California State University, East Bay Hayward, CA, 94542, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, UC Berkeley, Berkeley, CA, 94720, USA
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4401, USA.,Howard Hughes Medical Institute, USA
| |
Collapse
|
21
|
Xu Z, Li X, Zhou S, Xie W, Wang J, Cheng L, Wang S, Guo S, Xu Z, Cao X, Zhang M, Yu B, Narimatsu H, Tao SC, Zhang Y. Systematic identification of the protein substrates of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T1/T2/T3 using a human proteome microarray. Proteomics 2017; 17. [PMID: 28394504 DOI: 10.1002/pmic.201600485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
O-GalNAc glycosylation is the initial step of the mucin-type O-glycosylation. In humans, it is catalyzed by a family of 20 homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). So far, there is very limited information on their protein substrate specificities. In this study, we developed an on-chip ppGalNAc-Ts assay that could rapidly and systematically identify the protein substrates of each ppGalNAc-T. In detail, we utilized a human proteome microarray as the protein substrates and UDP-GalNAz as the nucleotide sugar donor for click chemistry detection. From a total of 16 368 human proteins, we identified 570 potential substrates of ppGalNAc-T1, T2, and T3. Among them, 128 substrates were overlapped, while the rest were isoform specific. Further cluster analysis of these substrates showed that the substrates of ppGalNAc-T1 had a closer phylogenetic relationship with that of ppGalNAc-T3 compared with ppGalNAc-T2, which was consistent with the topology of the phylogenetic tree of these ppGalNAc-Ts. Taken together, our microarray-based enzymatic assay comprehensively reveals the substrate profile of the ppGalNAc-T1, T2, and T3, which not only provides a plausible explanation for their partial functional redundancy as reported, but clearly implies some specialized roles of each enzyme in different biological processes.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xing Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shumin Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxian Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Li Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sheng Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhaowei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Cao
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Menghui Zhang
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Biao Yu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- SCSB (China) - AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- SCSB (China) - AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
22
|
Xiao H, Wu R. Quantitative investigation of human cell surface N-glycoprotein dynamics. Chem Sci 2017; 8:268-277. [PMID: 28616130 PMCID: PMC5458730 DOI: 10.1039/c6sc01814a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/13/2016] [Indexed: 12/21/2022] Open
Abstract
Surface glycoproteins regulate nearly every extracellular event and they are dynamic for cells to adapt to the ever-changing extracellular environment. These glycoproteins contain a wealth of information on cellular development and disease states, and have significant biomedical implications. Systematic investigation of surface glycoproteins will result in a better understanding of surface protein functions, cellular activities and the molecular mechanisms of disease. However, it is extraordinarily challenging to specifically and globally analyze surface glycoproteins. Here we designed the first method to systematically analyze surface glycoprotein dynamics and measure their half-lives by integrating pulse-chase labeling, selective enrichment of surface glycoproteins, and multiplexed proteomics. The current results clearly demonstrated that surface glycoproteins with catalytic activities were more stable than those with binding and receptor activities. Glycosylation sites located outside of any domain had a notably longer median half-life than those within domains, which strongly suggests that glycans within domains regulate protein interactions with other molecules while those outside of domains mainly play a role in protecting the protein from degradation. This method can be extensively applied to biological and biomedical research.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry , The Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| | - Ronghu Wu
- School of Chemistry and Biochemistry , The Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| |
Collapse
|
23
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Woo CM, Felix A, Zhang L, Elias JE, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Anal Bioanal Chem 2016; 409:579-588. [PMID: 27695962 DOI: 10.1007/s00216-016-9934-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Protein glycosylation is a post-translational modification (PTM) responsible for many aspects of proteomic diversity and biological regulation. Assignment of intact glycan structures to specific protein attachment sites is a critical step towards elucidating the function encoded in the glycome. Previously, we developed isotope-targeted glycoproteomics (IsoTaG) as a mass-independent mass spectrometry method to characterize azide-labeled intact glycopeptides from complex proteomes. Here, we extend the IsoTaG approach with the use of alkynyl sugars as metabolic labels and employ new probes in analysis of the sialylated glycoproteome from PC-3 cells. Using an Orbitrap Fusion Tribrid mass spectrometer, we identified 699 intact glycopeptides from 192 glycoproteins. These intact glycopeptides represent a total of eight sialylated glycan structures across 126 N- and 576 O-glycopeptides. IsoTaG is therefore an effective platform for identification of intact glycopeptides labeled by alkynyl or azido sugars and will facilitate further studies of the glycoproteome.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alejandra Felix
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lichao Zhang
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Joshua E Elias
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Sheta R, Woo CM, Roux-Dalvai F, Fournier F, Bourassa S, Droit A, Bertozzi CR, Bachvarov D. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J Proteomics 2016; 145:91-102. [PMID: 27095597 PMCID: PMC5436706 DOI: 10.1016/j.jprot.2016.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 12/29/2022]
Abstract
UNLABELLED Epithelial ovarian cancer (EOC) is a disease responsible for more deaths among women in the Western world than all other gynecologic malignancies. There is urgent need for new therapeutic targets and a better understanding of EOC initiation and progression. We have previously identified the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) gene, a member of the GalNAc-transferases (GalNAc-Ts) gene family, as hypomethylated and overexpressed in high-grade serous EOC tumors, compared to low malignant potential EOC tumors and normal ovarian tissues. This data also suggested for a role of GALNT3 in aberrant EOC glycosylation, possibly implicated in disease progression. To evaluate differential glycosylation in EOC caused by modulations in GALNT3 expression, we used a metabolic labeling strategy for enrichment and mass spectrometry-based characterization of glycoproteins following GALNT3 gene knockdown (KD) in A2780s EOC cells. A total of 589 differentially expressed glycoproteins were identified upon GALNT3 KD. Most identified proteins were involved in mechanisms of cellular metabolic functions, post-translational modifications, and some have been reported to be implicated in EOC etiology. The GALNT3-dependent glycoproteins identified by this metabolic labeling approach support the oncogenic role of GALNT3 in EOC dissemination and may be pursued as novel EOC biomarkers and/or therapeutic targets. BIOLOGICAL SIGNIFICANCE Knowledge of the O-glycoproteome has been relatively elusive, and the functions of the individual polypeptide GalNAc-Ts have been poorly characterized. Alterations in GalNAc-Ts expression were shown to provide huge variability in the O-glycoproteome in various pathologies, including cancer. The application of a chemical biology approach for the metabolic labeling and subsequent characterization of O-glycoproteins in EOC using the Ac4GalNAz metabolite has provided a strategy allowing for proteomic discovery of GalNAc-Ts specific functions. Our study supports an essential role of one of the GalNAc-Ts - GALNT3, in EOC dissemination, including its implication in modulating PTMs and EOC metabolism. Our approach validates the use of the applied metabolic strategy to identify important functions of GalNAc-Ts in normal and pathological conditions.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Laval University, Québec, PQ, Canada; Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, PQ, Canada
| | - Christina M Woo
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | | | - Sylvie Bourassa
- Centre de recherche du CHU de Québec, CHUL, Québec, PQ, Canada
| | - Arnaud Droit
- Department of Molecular Medicine, Laval University, Québec, PQ, Canada; Centre de recherche du CHU de Québec, CHUL, Québec, PQ, Canada
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec, PQ, Canada; Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, PQ, Canada
| |
Collapse
|
26
|
Woo CM, Bertozzi CR. Isotope Targeted Glycoproteomics (IsoTaG) to Characterize Intact, Metabolically Labeled Glycopeptides from Complex Proteomes. ACTA ACUST UNITED AC 2016; 8:59-82. [PMID: 26995354 DOI: 10.1002/9780470559277.ch150185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein glycosylation plays many critical roles in biological function and creates the most diversity of all post-translational modifications (PTMs). Glycan structural diversity is directly correlated with difficulty in characterizing the intact glycoproteome by mass spectrometry (MS). In this protocol, we describe a novel mass-independent chemical glycoproteomics platform for characterizing intact, metabolically labeled glycopeptides from complex proteomes, termed Isotope Targeted Glycoproteomics (IsoTaG). To use IsoTaG, cell culture samples are metabolically labeled with an azido- or alkynyl-sugar. Metabolically labeled glycoproteins are then tagged using Click chemistry and enriched with an isotopic recoding biotin probe. Intact glycopeptides are recovered by cleavage of the probe, analyzed with directed MS, and assigned by targeted mass-independent data analysis. The outlined procedure is well defined in cell culture and has been executed with over 15 cell lines.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, Stanford University, Stanford, California
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California.,Department of Chemical and Systems Biology, Stanford University, Stanford, California.,Howard Hughes Medical Institute, Stanford, California
| |
Collapse
|
27
|
Haun RS, Quick CM, Siegel ER, Raju I, Mackintosh SG, Tackett AJ. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers. Cancer Biol Ther 2015; 16:1557-65. [PMID: 26176765 DOI: 10.1080/15384047.2015.1071740] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To develop new diagnostic and therapeutic tools to specifically target pancreatic tumors, it is necessary to identify cell-surface proteins that may serve as potential tumor-specific targets. In this study we used an azido-labeled bioorthogonal chemical reporter to metabolically label N-linked glycoproteins on the surface of pancreatic cancer cell lines to identify potential targets that may be exploited for detection and/or treatment of pancreatic cancer. Labeled glycoproteins were tagged with biotin using click chemistry, purified by streptavidin-coupled magnetic beads, separated by gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (MS). MS/MS analysis of peptides from 3 cell lines revealed 954 unique proteins enriched in the azido sugar samples relative to control sugar samples. A comparison of the proteins identified in each sample indicated 20% of these proteins were present in 2 cell lines (193 of 954) and 17 of the proteins were found in all 3 cell lines. Five of the 17 proteins identified in all 3 cell lines have not been previously reported to be expressed in pancreatic cancer; thus indicating that novel cell-surface proteins can be revealed through glycoprotein profiling. Western analysis of one of these glycoproteins, ecto-5'-nucleotidase (NT5E), revealed it is expressed in 8 out of 8 pancreatic cancer cell lines examined. Further, immunohistochemical analysis of human pancreatic tissues indicates NT5E is significantly overexpressed in pancreatic tumors compared to normal pancreas. Thus, we have demonstrated that metabolic labeling with bioorthogonal chemical reporters can be used to selectively enrich and identify novel cell-surface glycoproteins expressed in pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Randy S Haun
- a Central Arkansas Veterans Healthcare System; Little Rock , AR USA.,b Department of Pharmaceutical Sciences ; University of Arkansas for Medical Sciences; Little Rock , AR USA
| | - Charles M Quick
- c Department of Pathology; University of Arkansas for Medical Sciences; Little Rock , AR USA
| | - Eric R Siegel
- d Department of Biostatistics; University of Arkansas for Medical Sciences; Little Rock , AR USA
| | - Ilangovan Raju
- b Department of Pharmaceutical Sciences ; University of Arkansas for Medical Sciences; Little Rock , AR USA
| | - Samuel G Mackintosh
- e Department of Biochemistry & Molecular Biology; University of Arkansas for Medical Sciences; Little Rock , AR USA
| | - Alan J Tackett
- e Department of Biochemistry & Molecular Biology; University of Arkansas for Medical Sciences; Little Rock , AR USA
| |
Collapse
|
28
|
Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods 2015; 12:561-7. [PMID: 25894945 DOI: 10.1038/nmeth.3366] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022]
Abstract
Protein glycosylation is a heterogeneous post-translational modification (PTM) that plays an essential role in biological regulation. However, the diversity found in glycoproteins has undermined efforts to describe the intact glycoproteome via mass spectrometry (MS). We present IsoTaG, a mass-independent chemical glycoproteomics platform for characterization of intact, metabolically labeled glycopeptides at the whole-proteome scale. In IsoTaG, metabolic labeling of the glycoproteome is combined with (i) chemical enrichment and isotopic recoding of glycopeptides to select peptides for targeted glycoproteomics using directed MS and (ii) mass-independent assignment of intact glycopeptides. We structurally assigned 32 N-glycopeptides and over 500 intact and fully elaborated O-glycopeptides from 250 proteins across three human cancer cell lines and also discovered unexpected peptide sequence polymorphisms (pSPs). The IsoTaG platform is broadly applicable to the discovery of PTM sites that are amenable to chemical labeling, as well as previously unknown protein isoforms including pSPs.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California, USA
| | - David R Spiciarich
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | - Carolyn R Bertozzi
- 1] Department of Chemistry, University of California, Berkeley, California, USA. [2] Department of Molecular and Cell Biology, University of California, Berkeley, California, USA. [3] Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
29
|
Drake RR, Jones EE, Powers TW, Nyalwidhe JO. Altered glycosylation in prostate cancer. Adv Cancer Res 2015; 126:345-82. [PMID: 25727153 DOI: 10.1016/bs.acr.2014.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer is annually the most common newly diagnosed cancer in men. The prostate functions as a major secretory gland for the production of glycoproteins critical to sperm activation and reproduction. Prostate-specific antigen (PSA), produced by the prostate, is one of the most commonly assayed glycoproteins in blood, serving as a biomarker for early detection and progression of prostate cancer. The single site of N-glycosylation on PSA has been the target of multiple glycan characterization studies. In this review, the extensive number of studies that have characterized the changes in O-linked and N-linked glycosylations associated with prostate cancer development and progression will be summarized. This includes analysis of the glycosylation of PSA, and other prostate glycoproteins, in tissues, clinical biofluids, and cell line models. Other studies are summarized in the context of understanding the complexities of these glycan changes in order to address the many confounding questions associated with prostate cancer, as well as efforts to improve prostate cancer biomarker assays using targeted glycomic-based strategies.
Collapse
Affiliation(s)
- Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - E Ellen Jones
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas W Powers
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
30
|
Chuh KN, Pratt MR. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr Opin Chem Biol 2014; 24:27-37. [PMID: 25461721 DOI: 10.1016/j.cbpa.2014.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Thousands of proteins are subjected to posttranslational modifications that can have dramatic effects on their functions. Traditional biological methods have struggled to address some of the challenges inherit in the unbiased identification of certain posttranslational modifications. As with many areas of biological discovery, the development of chemoselective and bioorthogonal reactions and chemical probes has transformed our ability to selectively label and enrich a wide variety of posttranslational modifications. Collectively, these efforts are making significant contributions to the goal of mapping the protein modification landscape.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, United States; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-0744, United States.
| |
Collapse
|
31
|
Rong J, Han J, Dong L, Tan Y, Yang H, Feng L, Wang QW, Meng R, Zhao J, Wang SQ, Chen X. Glycan Imaging in Intact Rat Hearts and Glycoproteomic Analysis Reveal the Upregulation of Sialylation during Cardiac Hypertrophy. J Am Chem Soc 2014; 136:17468-76. [DOI: 10.1021/ja508484c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Rong
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | | | | | - Lianshun Feng
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | - Jing Zhao
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- State
Key
Laboratory of Pharmaceutical Biotechnology, School of Life Sciences,
Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
32
|
Liu H, Zhang N, Wan D, Cui M, Liu Z, Liu S. Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery. Clin Proteomics 2014; 11:14. [PMID: 24722010 PMCID: PMC3984494 DOI: 10.1186/1559-0275-11-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/19/2014] [Indexed: 02/08/2023] Open
Abstract
Glycosylation is one of the most important posttranslational modifications of proteins and plays essential roles in various biological processes. Aberration in the glycan moieties of glycoproteins is associated with many diseases. It is especially critical to develop the rapid and sensitive methods for analysis of aberrant glycoproteins associated with diseases. Mass spectrometry (MS) has become a powerful tool for glycoprotein analysis. Especially, tandem mass spectrometry can provide highly informative fragments for structural identification of glycoproteins. This review provides an overview of the development of MS technologies and their applications in identification of abnormal glycoproteins and glycans in human serum to screen cancer biomarkers in recent years.
Collapse
Affiliation(s)
| | | | | | - Meng Cui
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P, R, China.
| | | | | |
Collapse
|
33
|
Belardi B, de la Zerda A, Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR. Imaging the glycosylation state of cell surface glycoproteins by two-photon fluorescence lifetime imaging microscopy. Angew Chem Int Ed Engl 2013; 52:14045-9. [PMID: 24259491 PMCID: PMC3920747 DOI: 10.1002/anie.201307512] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/27/2022]
Abstract
Glycoproteins in focus Metabolic labeling of azido sugars combined with two-photon fluorescence lifetime imaging microscopy enables the visualization of specific glycoforms of endogenous proteins. This method can be utilized to detect glycosylated proteins in both cell culture and intact human tissue slices.
Collapse
Affiliation(s)
- Brian Belardi
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| | - Adam de la Zerda
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA). Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305 (USA)
| | - David R. Spiciarich
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| | - Sophia L. Maund
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 (USA)
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 (USA)
| | - Carolyn R. Bertozzi
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| |
Collapse
|
34
|
Belardi B, de la Zerda A, Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR. Imaging the Glycosylation State of Cell Surface Glycoproteins by Two-Photon Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307512] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Hayashi T, Sun Y, Tamura T, Kuwata K, Song Z, Takaoka Y, Hamachi I. Semisynthetic Lectin–4-Dimethylaminopyridine Conjugates for Labeling and Profiling Glycoproteins on Live Cell Surfaces. J Am Chem Soc 2013; 135:12252-8. [DOI: 10.1021/ja4043214] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takahiro Hayashi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Yedi Sun
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Keiko Kuwata
- Institute of Transformative
Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Zhining Song
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Yousuke Takaoka
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| |
Collapse
|
36
|
Tian Y, Zhang H. Characterization of disease-associated N-linked glycoproteins. Proteomics 2013; 13:504-11. [PMID: 23255236 DOI: 10.1002/pmic.201200333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/13/2012] [Indexed: 12/14/2022]
Abstract
N-linked glycoproteins play important roles in biological processes, including cell-to-cell recognition, growth, differentiation, and programmed cell death. Specific N-linked glycoprotein changes are associated with disease progression and identification of these N-linked glycoproteins has potential for use in disease diagnosis, prognosis, and prediction of treatments. In this review, we summarize common strategies for N-linked glycoprotein characterization and applications of these strategies to identification of glycoprotein changes associated with disease states. We also review the N-linked glycoproteins altered in diseases such as breast cancer, lung cancer, and prostate cancer. Although assays for these glycoproteins have potential clinical utility, research is needed to translate these glycoproteins to clinical biomarkers.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
37
|
Novotny MV, Alley WR. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol 2013; 17:832-40. [PMID: 23790311 DOI: 10.1016/j.cbpa.2013.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022]
Abstract
The great complexity of glycosylated biomolecules necessitates a set of powerful analytical methodologies to reveal functionally important structural features. Mass spectrometry (MS), with its different ionization techniques, mass analyzers, and detection strategies, has become the most important analytical method in glycomic and glycoproteomic investigations. In combination with MS, microscale separations (based on capillary chromatography and electrophoresis) and carbohydrate microchemistry, we feature here conceptually important applications of the recent years. This review focuses on methodological advances pertaining to disease biomarker research, immunology, developmental biology, and measurements of importance to biopharmaceuticals. High-sensitivity determinations and sample enrichment/preconcentration are particularly emphasized in glycomic and glycoproteomic profiling.
Collapse
Affiliation(s)
- Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
38
|
Duan X, Cai L, Lee LA, Chen H, Wang Q. Incorporation of azide sugar analogue decreases tumorigenic potential of breast cancer cells by reducing cancer stem cell population. Sci China Chem 2013. [DOI: 10.1007/s11426-012-4806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Bateman LA, Zaro BW, Chuh KN, Pratt MR. N-Propargyloxycarbamate monosaccharides as metabolic chemical reporters of carbohydrate salvage pathways and protein glycosylation. Chem Commun (Camb) 2012; 49:4328-30. [PMID: 23235740 DOI: 10.1039/c2cc37963e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic chemical reporters of glycosylation allow for the visualization and identification of a variety of glycoconjugates by taking advantage of the promiscuity of carbohydrate metabolism. Here we describe the synthesis and characterization of metabolic chemical reporters bearing an N-propargyloxycarbamate (Poc) group that creates discrimination between glycosylation pathways.
Collapse
Affiliation(s)
- Leslie A Bateman
- Department of Chemistry, University of Southern California, Los Angeles, USA
| | | | | | | |
Collapse
|