1
|
Zhang T, Zhang M. NL-1 Promotes PINK1-Parkin-Mediated Mitophagy Through MitoNEET Inhibition in Subarachnoid Hemorrhage. Neurochem Res 2024; 49:1506-1516. [PMID: 37828361 DOI: 10.1007/s11064-023-04024-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
NL-1 is a mitoNEET ligand known for its antileukemic effects and has recently shown neuroprotective effects in an ischemic stroke model. However, its underlying process in subarachnoid hemorrhage (SAH) is still unclear. Thus, we aimed to investigate the possible mechanism of NL-1 after SAH in rats. 112 male adult Sprague-Dawley rats were used for experiments. SAH model was performed with endovascular perforation. Rats were dosed intraperitoneally (i.p.) with NL-1 (3 mg/kg, 10 mg/kg, 30 mg/kg) or a vehicle (10% DMSO aqueous solution) at 1 h after SAH. A novel mitophagy inhibitor liensinine (60 mg/kg) was injected i.p. 24 h before SAH. SAH grades, short-term and long-term neurological scores were measured for neurobehavior. TdTmediated dUTP nick end labeling (TUNEL) staining, dihydroethidium (DHE) staining and western blot measurements were used to detect the outcomes and mechanisms of NL-1 administration. NL-1 treatment significantly improved short-term neurological behavior in Modified Garcia and beam balance sores in comparison with SAH + vehicle group. NL-1 administration also increased mitoNEET which induced phosphatase and tensin-induced kinase 1 (PINK1), Parkin and LC3II related mitophagy compared with SAH + vehicle group. In addition, the expressions of apoptotic protein Cleaved Caspase-3 and oxidative stress related protein Romo1 in NL-1 treatment group were reversed from SAH + vehicle group. Meanwhile, NL-1 treatment notably reduced TUNEL-positive cells, DHE-positive cells compared with SAH + vehicle group. NL-1 treatment notably improved long-term neurological behavior in rotarod and water maze tests compared to SAH + vehicle group. However, the administration of liensinine may inhibit the treatment effect of NL-1, leading to reduced expression of mitophagy markers Pink1, Parkin, LC3I/II, and increased expressions of Romo1 and Cleaved Caspase-3. NL-1 induced PINK1/PARKIN related mitophagy via mitoNEET, which reduced oxidative stress and apoptosis in early brain injury after SAH in rats. NL-1 may serve as a prospective drug for the treatment of SAH.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minghai Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Chongqing Tongnan District People's Hospital, Chongqing, China.
| |
Collapse
|
2
|
Newton E, Starcovic SA, Menze M, Konkle ME, Long TE, Hazlehurst LA, Huber JD, Robart AR, Geldenhuys WJ. Development of a fluorescence screening assay for binding partners of the iron-sulfur mitochondrial protein mitoNEET. Bioorg Med Chem Lett 2023; 89:129310. [PMID: 37137430 PMCID: PMC10308443 DOI: 10.1016/j.bmcl.2023.129310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
MitoNEET belongs to the CDGSH Iron-Sulfur Domain (CISD)-gene family of proteins and is a [2Fe-2S] cluster-containing protein found on the outer membrane of mitochondria. The specific functions of mitoNEET/CISD1 remain to be fully elucidated, but the protein is involved in regulating mitochondrial bioenergetics in several metabolic diseases. Unfortunately, drug discovery efforts targeting mitoNEET to improve metabolic disorders are hampered by the lack of ligand-binding assays for this mitochondrial protein. We have developed a protocol amenable for high-throughput screening (HTS) assay, by modifying an ATP fluorescence polarization method to facilitate drug discovery targeting mitoNEET. Based on our observation that adenosine triphosphate (ATP) interacts with mitoNEET, ATP-fluorescein was used during assay development. We established a novel binding assay suitable for both 96- or 384-well plate formats with tolerance for the presence of 2% v/v dimethyl sulfoxide (DMSO). We determined the IC50-values for a set of benzesulfonamide derivatives and found the novel assay reliably ranked the binding-affinities of compounds compared to radioactive binding assay with human recombinant mitoNEET. The developed assay platform is crucial in identifying novel chemical probes for metabolic diseases. It will accelerate drug discovery targeting mitoNEET and potentially other members of the CISD gene family.
Collapse
Affiliation(s)
- Ebenezer Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501, USA
| | - Sarah A Starcovic
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown WV 26506, USA
| | - Michael Menze
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Mary E Konkle
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Timothy E Long
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25755, USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA
| | - Aaron R Robart
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown WV 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
3
|
Marjault HB, Yang-Sung S, Zuo K, Carloni P, Mittler R, Nechushtai R. Structure-Based Screening Reveals a Ligand That Stabilizes the [2Fe-2S] Clusters of Human mitoNEET and Reduces Ovarian Cancer Cell Proliferation. J Phys Chem B 2022; 126:9559-9565. [PMID: 36374279 DOI: 10.1021/acs.jpcb.2c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human NEET proteins play an important role in a variety of diseases, including cancer. Using the recently published X-ray structure of the human mNT-M1 complex, we screened a commercial chemical compound library and identified a new human mitoNEET (mNT) binding ligand (NTS-01). Biochemical investigations revealed that NTS-01 specifically binds to the human mNT protein and stabilizes its [2Fe-2S] clusters under oxidative conditions in vitro. Treatment of ovarian cancer cells with NTS-01 induces ovarian cancer (SKOV-3) mitochondrial fragmentation (fission) and reduces ovarian cancer cell proliferation in a 2D single-layer cell culture, as well as in a 3D-spheroids culture. The NTS-01 molecule represents therefore a new lead compound for further drug design studies attempting to develop efficient treatment against ovarian cancer.
Collapse
Affiliation(s)
- Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
- Department of Physics, RWTH Aachen University, 52074Aachen, Germany
| | - Sohn Yang-Sung
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Ke Zuo
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
- Department of Physics, RWTH Aachen University, 52074Aachen, Germany
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52074Aachen, Germany
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
- JARA Institute: Molecular Neuroscience and Imaging, Institute of Neuroscience and Medicine INM-11, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, Missouri65211, United States
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
4
|
Ferroptosis as a Major Factor and Therapeutic Target for Neuroinflammation in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9111679. [PMID: 34829907 PMCID: PMC8615560 DOI: 10.3390/biomedicines9111679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence suggests that ferroptosis is not just a consequence but also a fundamental contributor to the development and progression of Parkinson’s disease (PD). Ferroptosis is characterized as iron-dependent regulated cell death caused by excessive lipid peroxidation, leading to plasma membrane rupture, release of damage-associated molecular patterns, and neuroinflammation. Due to the crucial role of intracellular iron in mediating the production of reactive oxygen species and the formation of lipid peroxides, ferroptosis is intimately controlled by regulators involved in many aspects of iron metabolism, including iron uptake, storage and export, and by pathways constituting the antioxidant systems. Translational and transcriptional regulation of iron homeostasis and redox status provide an integrated network to determine the sensitivity of ferroptosis. We herein review recent advances related to ferroptosis, ranging from fundamental mechanistic discoveries and cutting-edge preclinical animal studies, to clinical trials in PD and the regulation of neuroinflammation via ferroptosis pathways. Elucidating the roles of ferroptosis in the survival of dopaminergic neurons and microglial activity can enhance our understanding of the pathogenesis of PD and provide opportunities for the development of novel prevention and treatment strategies.
Collapse
|
5
|
The balancing act of NEET proteins: Iron, ROS, calcium and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118805. [PMID: 32745723 DOI: 10.1016/j.bbamcr.2020.118805] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
NEET proteins belong to a highly conserved group of [2Fe-2S] proteins found across all kingdoms of life. Due to their unique [2Fe2S] cluster structure, they play a key role in the regulation of many different redox and oxidation processes. In eukaryotes, NEET proteins are localized to the mitochondria, endoplasmic reticulum (ER) and the mitochondrial-associated membranes connecting these organelles (MAM), and are involved in the control of multiple processes, ranging from autophagy and apoptosis to ferroptosis, oxidative stress, cell proliferation, redox control and iron and iron‑sulfur homeostasis. Through their different functions and interactions with key proteins such as VDAC and Bcl-2, NEET proteins coordinate different mitochondrial, MAM, ER and cytosolic processes and functions and regulate major signaling molecules such as calcium and reactive oxygen species. Owing to their central role in cells, NEET proteins are associated with numerous human maladies including cancer, metabolic diseases, diabetes, obesity, and neurodegenerative diseases. In recent years, a new and exciting role for NEET proteins was uncovered, i.e., the regulation of mitochondrial dynamics and morphology. This new role places NEET proteins at the forefront of studies into cancer and different metabolic diseases, both associated with the regulation of mitochondrial dynamics. Here we review recent studies focused on the evolution, biological role, and structure of NEET proteins, as well as discuss different studies conducted on NEET proteins function using transgenic organisms. We further discuss the different strategies used in the development of drugs that target NEET proteins, and link these with the different roles of NEET proteins in cells.
Collapse
|
6
|
Geldenhuys WJ, Nair RR, Piktel D, Martin KH, Gibson LF. The MitoNEET Ligand NL-1 Mediates Antileukemic Activity in Drug-Resistant B-Cell Acute Lymphoblastic Leukemia. J Pharmacol Exp Ther 2019; 370:25-34. [PMID: 31010844 PMCID: PMC6538890 DOI: 10.1124/jpet.118.255984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Disease relapse in B-cell acute lymphoblastic leukemia (ALL), either due to development of acquired resistance after therapy or because of de novo resistance, remains a therapeutic challenge. In the present study, we have developed a cytarabine (Ara-C)-resistant REH cell line (REH/Ara-C) as a chemoresistance model. REH/Ara-C 1) was not crossresistant to vincristine or methotrexate; 2) showed a similar proliferation rate and cell surface marker expression as parental REH; 3) demonstrated decreased chemotaxis toward bone marrow stromal cells; and 4) expressed higher transcript levels of cytidine deaminase (CDA) and mitoNEET (CISD1) than the parental REH cell line. Based on these findings, we tested NL-1, a mitoNEET inhibitor, which induced a concentration-dependent decrease in cell viability with a comparable IC50 value in REH and REH/Ara-C. Furthermore, NL-1 decreased cell viability in six different ALL cell lines and showed inhibitory activity in a hemosphere assay. NL-1 also impaired the migratory ability of leukemic cells, irrespective of the chemoattractant used, in a chemotaxis assay. More importantly, NL-1 showed specific activity in inducing death in a drug-resistant population of leukemic cells within a coculture model that mimicked the acquired resistance and de novo resistance observed in the bone marrow of relapsed patients. Subsequent studies indicated that NL-1 mediates autophagy, and inhibition of autophagy partially decreased NL-1-induced tumor cell death. Finally, NL-1 showed antileukemic activity in an in vivo mouse ALL model. Taken together, our study demonstrates that mitoNEET has potential as a novel antileukemic drug target in treatment refractory or relapsed ALL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Rajesh R Nair
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Debbie Piktel
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Karen H Martin
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Laura F Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| |
Collapse
|
7
|
Patel SP, Cox DH, Gollihue JL, Bailey WM, Geldenhuys WJ, Gensel JC, Sullivan PG, Rabchevsky AG. Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery. Exp Neurol 2017; 293:74-82. [PMID: 28365473 PMCID: PMC5473659 DOI: 10.1016/j.expneurol.2017.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
Abstract
Pioglitazone is an FDA-approved PPAR-γ agonist drug used to treat diabetes, and it has demonstrated neuroprotective effects in multiple models of central nervous system (CNS) injury. Acute treatment after spinal cord injury (SCI) in rats is reported to suppress neuroinflammation, rescue injured tissues, and improve locomotor recovery. In the current study, we additionally assessed the protective efficacy of pioglitazone treatment on acute mitochondrial respiration, as well as functional and anatomical recovery after contusion SCI in adult male C57BL/6 mice. Mice received either vehicle or pioglitazone (10mg/kg) at either 15min or 3h after injury (75kdyn at T9) followed by a booster at 24h post-injury. At 25h, mitochondria were isolated from spinal cord segments centered on the injury epicenters and assessed for their respiratory capacity. Results showed significantly compromised mitochondrial respiration 25h following SCI, but pioglitazone treatment that was initiated either at 15min or 3h post-injury significantly maintained mitochondrial respiration rates near sham levels. A second cohort of injured mice received pioglitazone at 15min post injury, then once a day for 5days post-injury to assess locomotor recovery and tissue sparing over 4weeks. Compared to vehicle, pioglitazone treatment resulted in significantly greater recovery of hind-limb function over time, as determined by serial locomotor BMS assessments and both terminal BMS subscores and gridwalk performance. Such improvements correlated with significantly increased grey and white matter tissue sparing, although pioglitazone treatment did not abrogate long-term injury-induced inflammatory microglia/macrophage responses. In sum, pioglitazone significantly increased functional neuroprotection that was associated with remarkable maintenance of acute mitochondrial bioenergetics after traumatic SCI. This sets the stage for dose-response and delayed administration studies to maximize pioglitazone's efficacy for SCI while elucidating the precise role that mitochondria play in governing its neuroprotection; the ultimate goal to develop novel therapeutics that specifically target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Samir P Patel
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David H Cox
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Jenna L Gollihue
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Alexander G Rabchevsky
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA.
| |
Collapse
|
8
|
Geldenhuys WJ, Yonutas HM, Morris DL, Sullivan PG, Darvesh AS, Leeper TC. Identification of small molecules that bind to the mitochondrial protein mitoNEET. Bioorg Med Chem Lett 2016; 26:5350-5353. [PMID: 27687671 DOI: 10.1016/j.bmcl.2016.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/01/2023]
Abstract
MitoNEET (CISD1) is a 2Fe-2S iron-sulfur cluster protein belonging to the zinc-finger protein family. Recently mitoNEET has been shown to be a major role player in the mitochondrial function associated with metabolic type diseases such as obesity and cancers. The anti-diabetic drug pioglitazone and rosiglitazone were the first identified ligands to mitoNEET. Since little is known about structural requirements for ligand binding to mitoNEET, we screened a small set of compounds to gain insight into these requirements. We found that the thiazolidinedione (TZD) warhead as seen in rosiglitazone was not an absolutely necessity for binding to mitoNEET. These results will aid in the development of novel compounds that can be used to treat mitochondrial dysfunction seen in several diseases.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506, USA.
| | - Heather M Yonutas
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | - Daniel L Morris
- Department of Chemistry and Biochemistry, University of Akron, Akron, OH 44325, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44240, USA
| | - Thomas C Leeper
- Department of Chemistry and Biochemistry, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
9
|
Tamir S, Paddock ML, Darash-Yahana-Baram M, Holt SH, Sohn YS, Agranat L, Michaeli D, Stofleth JT, Lipper CH, Morcos F, Cabantchik IZ, Onuchic JN, Jennings PA, Mittler R, Nechushtai R. Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1294-315. [PMID: 25448035 DOI: 10.1016/j.bbamcr.2014.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
A novel family of 2Fe-2S proteins, the NEET family, was discovered during the last decade in numerous organisms, including archea, bacteria, algae, plant and human; suggesting an evolutionary-conserved function, potentially mediated by their CDGSH Iron-Sulfur Domain. In human, three NEET members encoded by the CISD1-3 genes were identified. The structures of CISD1 (mitoNEET, mNT), CISD2 (NAF-1), and the plant At-NEET uncovered a homodimer with a unique "NEET fold", as well as two distinct domains: a beta-cap and a 2Fe-2S cluster-binding domain. The 2Fe-2S clusters of NEET proteins were found to be coordinated by a novel 3Cys:1His structure that is relatively labile compared to other 2Fe-2S proteins and is the reason of the NEETs' clusters could be transferred to apo-acceptor protein(s) or mitochondria. Positioned at the protein surface, the NEET's 2Fe-2S's coordinating His is exposed to protonation upon changes in its environment, potentially suggesting a sensing function for this residue. Studies in different model systems demonstrated a role for NAF-1 and mNT in the regulation of cellular iron, calcium and ROS homeostasis, and uncovered a key role for NEET proteins in critical processes, such as cancer cell proliferation and tumor growth, lipid and glucose homeostasis in obesity and diabetes, control of autophagy, longevity in mice, and senescence in plants. Abnormal regulation of NEET proteins was consequently found to result in multiple health conditions, and aberrant splicing of NAF-1 was found to be a causative of the neurological genetic disorder Wolfram Syndrome 2. Here we review the discovery of NEET proteins, their structural, biochemical and biophysical characterization, and their most recent structure-function analyses. We additionally highlight future avenues of research focused on NEET proteins and propose an essential role for NEETs in health and disease. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Sagi Tamir
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Mark L Paddock
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Merav Darash-Yahana-Baram
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Sarah H Holt
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Yang Sung Sohn
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Lily Agranat
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Dorit Michaeli
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jason T Stofleth
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Colin H Lipper
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Ioav Z Cabantchik
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Patricia A Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Rachel Nechushtai
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Kuntz S, Mazerbourg S, Boisbrun M, Cerella C, Diederich M, Grillier-Vuissoz I, Flament S. Energy restriction mimetic agents to target cancer cells: comparison between 2-deoxyglucose and thiazolidinediones. Biochem Pharmacol 2014; 92:102-11. [PMID: 25083915 DOI: 10.1016/j.bcp.2014.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/02/2023]
Abstract
The use of energy restriction mimetic agents (ERMAs) to selectively target cancer cells addicted to glycolysis could be a promising therapeutic approach. Thiazolidinediones (TZDs) are synthetic agonists of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity but the molecular mechanisms involved in the anticancer action are not yet well understood. Results obtained on ciglitazone derivatives, mainly in prostate cancer cell models, suggest that these compounds could act as ERMAs. In the present paper, we introduce how compounds like 2-deoxyglucose target the Warburg effect and then we discuss the possibility that the PPARγ-independent effects of various TZD could result from their action as ERMAs.
Collapse
Affiliation(s)
- Sandra Kuntz
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Sabine Mazerbourg
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Michel Boisbrun
- Université de Lorraine, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, F-54506, France; CNRS, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, F-54506, France
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer. Hôpital Kirchberg, L-2540, Luxembourg
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer. Hôpital Kirchberg, L-2540, Luxembourg; Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Isabelle Grillier-Vuissoz
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Stephane Flament
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France.
| |
Collapse
|
11
|
Geldenhuys WJ, Leeper TC, Carroll RT. mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discov Today 2014; 19:1601-6. [PMID: 24814435 DOI: 10.1016/j.drudis.2014.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/31/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Mitochondrial dysfunction plays an important part in the pathology of several diseases, including Alzheimer's disease and Parkinson's disease. Targeting mitochondrial proteins shows promise in treating and attenuating the neurodegeneration seen in these diseases, especially considering their complex and pleiotropic origins. Recently, the mitochondrial protein mitoNEET [also referred to as CDGSH iron sulfur domain 1 (CISD1)] has emerged as the mitochondrial target of thiazolidinedione drugs such as the antidiabetic pioglitazone. In this review, we evaluate the current understanding regarding how mitoNEET regulates cellular bioenergetics as well as the structural requirements for drug compound association with mitoNEET. With a clear understanding of mitoNEET function, it might be possible to develop therapeutic agents useful in several different diseases including neurodegeneration, breast cancer, diabetes and inflammation.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Thomas C Leeper
- Department of Chemistry, University of Akron, Akron, OH, USA
| | - Richard T Carroll
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
12
|
Landry AP, Ding H. Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide. J Biol Chem 2014; 289:4307-15. [PMID: 24403080 DOI: 10.1074/jbc.m113.542050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mitochondrial outer membrane protein mitoNEET is a novel target of the type II diabetes drug pioglitazone. The C-terminal cytosolic domain of mitoNEET hosts a redox-active [2Fe-2S] cluster via an unusual ligand arrangement of three cysteine residues and one histidine residue. Here we report that human mitoNEET [2Fe-2S] clusters are fully reduced when expressed in Escherichia coli cells. In vitro studies show that purified mitoNEET [2Fe-2S] clusters can be partially reduced by monothiols such as reduced glutathione, L-cysteine or N-acetyl-L-cysteine and fully reduced by dithiothreitol or the E. coli thioredoxin/thioredoxin reductase system under anaerobic conditions. Importantly, thiol-reduced mitoNEET [2Fe-2S] clusters can be reversibly oxidized by hydrogen peroxide without disruption of the clusters in vitro and in E. coli cells, indicating that mitoNEET may act as a sensor of oxidative signals to regulate mitochondrial functions via its [2Fe-2S] clusters. Furthermore, the binding of the type II diabetes drug pioglitazone in mitoNEET effectively inhibits the thiol-mediated reduction of [2Fe-2S] clusters, suggesting that pioglitazone may modulate the function of mitoNEET by blocking the thiol-mediated reduction of [2Fe-2S] clusters in the protein.
Collapse
Affiliation(s)
- Aaron P Landry
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | | |
Collapse
|
13
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
14
|
Pedada KK, Zhou X, Jogiraju H, Carroll RT, Geldenhuys WJ, Lin L, Anderson DJ. A quantitative LC-MS/MS method for determination of thiazolidinedione mitoNEET ligand NL-1 in mouse serum suitable for pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 945-946:141-6. [PMID: 24334225 DOI: 10.1016/j.jchromb.2013.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 10/26/2022]
Abstract
Thiazolidinedione (TZD) compounds have shown promise as antidiabetic, antibiotics, antifungal and neuroprotective agents. The mitochondrial effect of a novel mitoNEET ligand, NL-1 {5-[(3,5-di-tert-butyl-4-hydroxyphenyl)methyl]-1,3-thiazolidine-2,4-dione}, and other TZD compounds, is a newly proposed mechanism for the neuroprotective action of these TZD compounds. In this work, a sensitive LC-MS/MS assay has been developed and validated for quantification of NL-1 in mouse serum. Sample preparation involved an acetonitrile protein precipitation procedure with addition of an internal standard NL-2 {5-[(4-hydroxy-3,5-dimethyl-phenyl)methyl]thiazolidine-2,4-dione}. LC-MS/MS analysis utilized a Columbus C-18 HPLC column (2mm×50mm, 5μm). Chromatography employed a multiple step gradient program that featured a steep linear gradient (25-95% in 0.5min) of 15μM ammonium acetate (additive for eliminating carry-over) in 2% methanol mixing with increasing proportions of 100% methanol. The HPLC was interfaced to a QTrap 5500 mass spectrometer (AB Sciex) equipped with an electrospray ionization source used in a negative ionization mode. Multiple reaction monitoring (MRM) of m/z 334→263 for NL-1 and m/z 250→179 for NL-2 was done. The method had a linear range of at least 1-100ng/mL in serum. The intra-assay and inter-assay percent coefficient of variation (%CV) were less than 4% and accuracies (%RE) ranged from -2.7% to 2.0%. The analytical procedure gave 96-115% absolute extraction recovery of NL-1. The relative matrix effect was measured and found to be insignificant. The analyte in serum was confirmed to be stable during storage and treatment. The method is suitable for pharmacokinetic (PK) studies of the parent drug NL-1 based on the preliminary serum results from dosed NL-1 mouse studies.
Collapse
Affiliation(s)
- Kiran K Pedada
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, United States
| | - Xiang Zhou
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, United States
| | - Harini Jogiraju
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, United States
| | - Richard T Carroll
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, United States
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, United States
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, United States
| | - David J Anderson
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, United States.
| |
Collapse
|
15
|
Tamir S, Zuris JA, Agranat L, Lipper CH, Conlan AR, Michaeli D, Harir Y, Paddock ML, Mittler R, Cabantchik ZI, Jennings PA, Nechushtai R. Nutrient-deprivation autophagy factor-1 (NAF-1): biochemical properties of a novel cellular target for anti-diabetic drugs. PLoS One 2013; 8:e61202. [PMID: 23717386 PMCID: PMC3661554 DOI: 10.1371/journal.pone.0061202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/07/2013] [Indexed: 12/28/2022] Open
Abstract
Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1's ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Sagi Tamir
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel
| | - John A. Zuris
- Departments of Chemistry and Biochemistry and Physics, University of California San Diego, La Jolla, California, United States of America
| | - Lily Agranat
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel
| | - Colin H. Lipper
- Departments of Chemistry and Biochemistry and Physics, University of California San Diego, La Jolla, California, United States of America
| | - Andrea R. Conlan
- Departments of Chemistry and Biochemistry and Physics, University of California San Diego, La Jolla, California, United States of America
| | - Dorit Michaeli
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel
| | - Yael Harir
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel
| | - Mark L. Paddock
- Departments of Chemistry and Biochemistry and Physics, University of California San Diego, La Jolla, California, United States of America
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, Texas, United States of America
| | - Zvi Ioav Cabantchik
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel
| | - Patricia A. Jennings
- Departments of Chemistry and Biochemistry and Physics, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (PAJ); (RN)
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel
- * E-mail: (PAJ); (RN)
| |
Collapse
|