1
|
Gao X, Zhao F, Wang Y, Ma X, Chai H, Han J, Fang F. Discovery of novel hybrids of mTOR inhibitor and NO donor as potential anti-tumor therapeutics. Bioorg Med Chem 2023; 91:117402. [PMID: 37421709 DOI: 10.1016/j.bmc.2023.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Nitric oxide (NO) may be beneficial to overcoming drug resistance resulting from mutation of mTOR kinases and bypass mechanisms. In this study, a novel structural series of hybrids of mTOR inhibitor and NO donor were designed and synthesized via structure-based drug design (SBDD). Throughout the 20 target compounds, half of the compounds (13a, 13b, 19a-19d, 19f-19j) demonstrated attractive mTOR inhibitory activity with IC50 at single-digit nanomolar level. In particular, 19f exerted superior anti-proliferative activity against HepG2, MCF-7, HL-60 cells (HepG2, IC50 = 0.24 μM; MCF-7, IC50 = 0.88 μM; HL-60, IC50 = 0.02 μM) to that of the clinical investigated mTOR inhibitor MLN0128, and show mild cytotoxicity against normal cells with IC50 over 10 μM. 19a, with the most potent mTOR inhibitory activity in this series (IC50 = 3.31 nM), also displayed attractive cellular potency. In addition, 19f treatment in HL-60 reduces the levels of Phos-Akt and Phos-S6 in a dose-dependent manner, and releases NO in cells. In summary, 19f deserves further development as a novel mTOR-based multi-target anti-cancer agent.
Collapse
Affiliation(s)
- Xin Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Huayi Chai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingjing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Peng P, Zheng Z, Yu J, Gao X, Yang J, Zhao C, Zhang F. Practical Process for synthesizing R-Tetrahydropapaverine─A Key Intermediate of Cisatracurium Besylate (Nimbex). Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhibo Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Yu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Pudong District, Shanghai 201203, China
| | - Xuezhi Gao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Pudong District, Shanghai 201203, China
| | - Jiangtao Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Pudong District, Shanghai 201203, China
| | - Chuanmeng Zhao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Pudong District, Shanghai 201203, China
| | - Fuli Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Pudong District, Shanghai 201203, China
| |
Collapse
|
3
|
Ramazani A, Karimi M, Hosseinzadeh Z, Rezayati S, Hanifehpour Y, Joo SW. Syntheses and Antitumor Properties of Furoxan Derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208183751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death in Iran, next to heart disease. Current
therapy suffers from the major limitations of side effects and drug resistance, so the characterization
of new structures that can be power-selective and less-toxic anticancer agents is the
main challenge to medicinal chemistry research. Furoxan (1,2,5-oxadiazole-2-oxide) is a crucial
compound with many medicinal and pharmaceutical properties. The most important aspect
of furoxan is the nitric oxide (NO) molecule. One of the most essential furoxan derivatives,
which could be utilized in medicinal goals and pharmaceutical affairs, is benzofuroxan.
Furoxan could be described as a NO-donating compound in a variety of reactions, which
could also appear as hybridised with different medicinal compounds. This review article presents
a summary of syntheses and antitumor properties of furoxan derivatives as possible
chemotherapy agents for cancer. Furoxan can inhibit tumor growth in vivo without any side
effects in normal cells. Furthermore, due to NO-releasing in high levels in vivo and a wide
range of anticancer compounds, furoxan derivatives and especially its hybridised compounds could be considered as
antitumor, cytotoxic and apoptosis compounds to be applied in the human body.
Collapse
Affiliation(s)
- Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Masoud Karimi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Zahra Hosseinzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Younes Hanifehpour
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
Zhao J, Méndez-Sánchez D, Roddan R, Ward JM, Hailes HC. Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1’-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianxiong Zhao
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Daniel Méndez-Sánchez
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rebecca Roddan
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 8HX, United Kingdom
| | - John M. Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Helen C. Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
5
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
6
|
Calcaterra A, Mangiardi L, Delle Monache G, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. The Pictet-Spengler Reaction Updates Its Habits. Molecules 2020; 25:E414. [PMID: 31963860 PMCID: PMC7024544 DOI: 10.3390/molecules25020414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
The Pictet-Spengler reaction (P-S) is one of the most direct, efficient, and variable synthetic method for the construction of privileged pharmacophores such as tetrahydro-isoquinolines (THIQs), tetrahydro-β-carbolines (THBCs), and polyheterocyclic frameworks. In the lustro (five-year period) following its centenary birthday, the P-S reaction did not exit the stage but it came up again on limelight with new features. This review focuses on the interesting results achieved in this period (2011-2015), analyzing the versatility of this reaction. Classic P-S was reported in the total synthesis of complex alkaloids, in combination with chiral catalysts as well as for the generation of libraries of compounds in medicinal chemistry. The P-S has been used also in tandem reactions, with the sequences including ring closing metathesis, isomerization, Michael addition, and Gold- or Brønsted acid-catalyzed N-acyliminium cyclization. Moreover, the combination of P-S reaction with Ugi multicomponent reaction has been exploited for the construction of highly complex polycyclic architectures in few steps and high yields. The P-S reaction has also been successfully employed in solid-phase synthesis, affording products with different structures, including peptidomimetics, synthetic heterocycles, and natural compounds. Finally, the enzymatic version of P-S has been reported for biosynthesis, biotransformations, and bioconjugations.
Collapse
Affiliation(s)
- Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Laura Mangiardi
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Giuliano Delle Monache
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Silvia Balducci
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Simone Berardozzi
- Department of Chemistry and Applied Biosciences, ETH-Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Roberta Franzini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
7
|
Zhao J, Méndez-Sánchez D, Ward JM, Hailes HC. Biomimetic Phosphate-Catalyzed Pictet-Spengler Reaction for the Synthesis of 1,1'-Disubstituted and Spiro-Tetrahydroisoquinoline Alkaloids. J Org Chem 2019; 84:7702-7710. [PMID: 31095375 PMCID: PMC7007230 DOI: 10.1021/acs.joc.9b00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Tetrahydroisoquinoline (THIQ) alkaloids
are an important group
of compounds that exhibit a range of bioactivities. Here, a phosphate
buffer-catalyzed Pictet–Spengler reaction (PSR) using unreactive
ketone substrates is described. A variety of 1,1′-disubstituted
and spiro-tetrahydroisoquinoline alkaloids were readily prepared in
one-step and high yields, highlighting the general applicability of
this approach. This study features the role of phosphate in the aqueous-based
PSR and provides an atom-efficient, sustainable route to new THIQs.
Collapse
Affiliation(s)
- Jianxiong Zhao
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London WC1H 0AJ , U.K
| | - Daniel Méndez-Sánchez
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London WC1H 0AJ , U.K
| | - John M Ward
- Department of Biochemical Engineering , University College London , London WC1E 6BT , U.K
| | - Helen C Hailes
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London WC1H 0AJ , U.K
| |
Collapse
|
8
|
Abstract
The increasing understanding of the role of nitric oxide (NO) in cancer biology has generated significant progress in the use of NO donor-based therapy to fight cancer. These advances strongly suggest the potential adoption of NO donor-based therapy in clinical practice, and this has been supported by several clinical studies in the past decade. In this review, we first highlight several types of important NO donors, including recently developed NO donors bearing a dinitroazetidine skeleton, represented by RRx-001, with potential utility in cancer therapy. Special emphasis is then given to the combination of NO donor(s) with other therapies to achieve synergy and to the hybridization of NO donor(s) with an anticancer drug/agent/fragment to enhance the activity or specificity or to reduce toxicity. In addition, we briefly describe inducible NO synthase gene therapy and nanotechnology, which have recently entered the field of NO donor therapy.
Collapse
Affiliation(s)
- Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Junjie Fu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Fershtat LL, Makhova NN. Molecular Hybridization Tools in the Development of Furoxan-Based NO-Donor Prodrugs. ChemMedChem 2017; 12:622-638. [DOI: 10.1002/cmdc.201700113] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| |
Collapse
|
10
|
Abstract
INTRODUCTION 1,2,3,4-Tetrahydroisoquinoline (THIQ) is one of the 'privileged scaffolds', commonly found in nature. Initially, this class of compounds was known for its neurotoxicity. Later on, 1-methyl-1,2,3,4-tetrahydroisoquinoline was proved as an endogeneous Parkinsonism-preventing agent in mammals. The fused THIQs have been studied for their role as anticancer antibiotics. The US FDA approval of the trabectedin for the treatment of soft tissue sarcomas, is a milestone in the anticancer drug discovery. Areas covered: This review covers the patents on various therapeutic activities of the THIQ derivatives in the years between 2010 and 2015. Patents were collected using a thorough search of Espacenet and WIPO databases. The therapeutic areas covered include cancer, malaria, central nervous system (CNS), cardiovascular, metabolic disorders, and so on. This also includes several patents on specific THIQs of clinical importance. Expert opinion: A large number of the THIQ derivatives have been synthesised for various therapeutic activities, with noticeable success in the area of drug discovery for cancer and CNS. They may also prove to be promising candidates for various infectious diseases, such as malaria, tuberculosis, HIV-infection, HSV-infection, leishmaniasis, etc. They can also be developed as novel class of drugs for various therapeutic activities with unique mechanism of action.
Collapse
Affiliation(s)
- Inder Pal Singh
- a Department of Natural Products , National Institute of Pharmaceutical Education and Research (NIPER) , Punjab , India
| | - Purvi Shah
- a Department of Natural Products , National Institute of Pharmaceutical Education and Research (NIPER) , Punjab , India
| |
Collapse
|
11
|
Ren Z, Gu X, Lu B, Chen Y, Chen G, Feng J, Lin J, Zhang Y, Peng H. Anticancer efficacy of a nitric oxide-modified derivative of bifendate against multidrug-resistant cancer cells. J Cell Mol Med 2016; 20:1095-105. [PMID: 26864945 PMCID: PMC4882976 DOI: 10.1111/jcmm.12796] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023] Open
Abstract
The development of multidrug resistance (MDR) not only actively transports a wide range of cytotoxic drugs across drug transporters but is also a complex interaction between a number of important cellular signalling pathways. Nitric oxide donors appear to be a new class of anticancer therapeutics for satisfying all the above conditions. Previously, we reported furoxan‐based nitric oxide‐releasing compounds that exhibited selective antitumour activity in vitro and in vivo. Herein, we demonstrate that bifendate (DDB)‐nitric oxide, a synthetic furoxan‐based nitric oxide‐releasing derivative of bifendate, effectively inhibits the both sensitive and MDR tumour cell viability at a comparatively low concentration. Interestingly, the potency of DDB‐nitric oxide is the independent of inhibition of the functions and expressions of three major ABC transporters. The mechanism of DDB‐nitric oxide appears to be in two modes of actions by inducing mitochondrial tyrosine nitration and apoptosis, as well as by down‐regulating HIF‐1α expression and protein kinase B (AKT), extracellular signal‐regulated kinases (ERK), nuclear factor κB (NF‐κB) activation in MDR cells. Moreover, the addition of a typical nitric oxide scavenger significantly attenuated all the effects of DDB‐nitric oxide, indicating that the cytotoxicity of DDB‐nitric oxide is as a result of higher levels of nitric oxide release in MDR cancer cells. Given that acquired MDR to nitric oxide donors is reportedly difficult to achieve and genetically unstable, compound like DDB‐nitric oxide may be a new type of therapeutic agent for the treatment of MDR tumours.
Collapse
Affiliation(s)
- Zhiguang Ren
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, China.,Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bin Lu
- School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, China
| | - Yaqiong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Guojiang Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jiannan Feng
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jizhen Lin
- Department of Otolaryngology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Tang W, Xie J, Xu S, Lv H, Lin M, Yuan S, Bai J, Hou Q, Yu S. Novel Nitric Oxide-Releasing Derivatives of Brusatol as Anti-Inflammatory Agents: Design, Synthesis, Biological Evaluation, and Nitric Oxide Release Studies. J Med Chem 2014; 57:7600-12. [DOI: 10.1021/jm5007534] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weibin Tang
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jianlin Xie
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Song Xu
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Haining Lv
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Shaopeng Yuan
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jinye Bai
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Qi Hou
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Shishan Yu
- State Key Laboratory of Bioactive
Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
13
|
Wang XJ, Duan Y, Li ZT, Feng JH, Pan XP, Zhang XR, Shi LH, Zhang T. Preparation and antitumor activity of a tamibarotene-furoxan derivative. Asian Pac J Cancer Prev 2014; 15:6343-7. [PMID: 25124622 DOI: 10.7314/apjcp.2014.15.15.6343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Multi-target drug design, in which drugs are designed as single molecules to simultaneously modulate multiple physiological targets, is an important strategy in the field of drug discovery. QT-011, a tamibarotene-furoxan derivative, was here prepared and proposed to exert synergistic effects on antileukemia by releasing nitric oxide and tamibarotene. Compared with tamibarotene itself, QT-011 displayed stronger antiproliferative effects on U937 and HL-60 cells and was more effective evaluated in a nude mice U937 xenograft model in vivo. In addition, QT-011 could release nitric oxide which might contribute to the antiproliferative activity. Autodocking assays showed that QT-011 fits well with the hydrophobic pocket of retinoic acid receptors. Taken together, these results suggest that QT-011 might be a highly effective derivative of tamibarotene and a potential candidate compound as antileukemia agent.
Collapse
Affiliation(s)
- Xue-Jian Wang
- School of Pharmacy and Biology Science, Weifang Medical University, Weifang, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Site-directed delivery of nitric oxide to cancers. Nitric Oxide 2014; 43:8-16. [PMID: 25124221 DOI: 10.1016/j.niox.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 01/28/2023]
Abstract
Nitric oxide (NO) is a reactive gaseous free radical which mediates numerous biological processes. At elevated levels, NO is found to be toxic to cancers and hence, a number of strategies for site-directed delivery of NO to cancers are in development during the past two decades. More recently, the focus of research has been to, in conjunction with other cancer drugs deliver NO to cancers for its secondary effects including inhibition of cellular drug efflux pumps. Among the various approaches toward site-selective delivery of exogenous NO sources, enzyme activated nitric oxide donors belonging to the diazeniumdiolate category afford unique advantages including exquisite control of rates of NO generation and selectivity of NO production. For this prodrug approach, enzymes including esterase, glutathione/glutathione S-transferase, DT-diaphorase, and nitroreductase are utilized. Here, we review the design and development of various approaches to enzymatic site-directed delivery of NO to cancers and their potential.
Collapse
|
15
|
Synthesis and in vitro biological evaluation of nitric oxide-releasing derivatives of hydroxylcinnamic acids as anti-tumor agents. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|