1
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
2
|
Huang X, Deng H, Shen QK, Quan ZS. Tanshinone IIA: Pharmacology, total synthesis, and progress in structure-modifications. Curr Med Chem 2021; 29:1959-1989. [PMID: 34749607 DOI: 10.2174/0929867328666211108110025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Tanshinone IIA, a major bioactive constituent of Danshen, a Chinese herbal medicine, has gained extensive exploration owing to its unique structural features and multiple promising biological activities. This review focuses on the pharmacology, total synthesis, and structural modifications of tanshinone IIA. We hope this review will contribute to a better understanding of the progress in the field and provide constructive suggestions for further study of tanshinone IIA.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| |
Collapse
|
3
|
Alomari A, Gowland R, Southwood C, Barrow J, Bentley Z, Calvin-Nelson J, Kaminski A, LeFevre M, Callaghan AJ, Vincent HA, Gowers DM. Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA). Molecules 2021; 26:molecules26092508. [PMID: 33923034 PMCID: PMC8123306 DOI: 10.3390/molecules26092508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.
Collapse
Affiliation(s)
- Arqam Alomari
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Department of Basic Sciences, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Robert Gowland
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Callum Southwood
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jak Barrow
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Zoe Bentley
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jashel Calvin-Nelson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Alice Kaminski
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Matthew LeFevre
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Correspondence:
| |
Collapse
|
4
|
Yi L, Lü X. New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes. Curr Med Chem 2019; 26:1761-1787. [PMID: 29110590 DOI: 10.2174/0929867324666171106160326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance is found in all microorganisms and has become one of the biggest threats to global health. New antimicrobials with different action mechanisms are effective weapons to fight against antibiotic-resistance. OBJECTIVE This review aims to find potential drugs which can be further developed into clinic practice and provide clues for developing more effective antimicrobials. METHODS DNA replication universally exists in all living organisms and is a complicated process in which multiple enzymes are involved in. Enzymes in bacterial DNA replication of initiation and elongation phases bring abundant targets for antimicrobial development as they are conserved and indispensable. In this review, enzyme inhibitors of DNA helicase, DNA primase, topoisomerases, DNA polymerase and DNA ligase were discussed. Special attentions were paid to structures, activities and action modes of these enzyme inhibitors. RESULTS Among these enzymes, type II topoisomerase is the most validated target with abundant inhibitors. For type II topoisomerase inhibitors (excluding quinolones), NBTIs and benzimidazole urea derivatives are the most promising inhibitors because of their good antimicrobial activity and physicochemical properties. Simultaneously, DNA gyrase targeted drugs are particularly attractive in the treatment of tuberculosis as DNA gyrase is the sole type II topoisomerase in Mycobacterium tuberculosis. Relatively, exploitation of antimicrobial inhibitors of the other DNA replication enzymes are primeval, in which inhibitors of topo III are even blank so far. CONCLUSION This review demonstrates that inhibitors of DNA replication enzymes are abundant, diverse and promising, many of which can be developed into antimicrobials to deal with antibioticresistance.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
5
|
Khomenko TM, Korchagina DV, Baev DS, Vassiliev PM, Volcho KP, Salakhutdinov NF. Antimicrobial Activity of Substituted Benzopentathiepin-6-amines. J Antibiot (Tokyo) 2019; 72:590-599. [PMID: 31118480 DOI: 10.1038/s41429-019-0191-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022]
Abstract
A number of substituted benzopentathiepin-6-amines and their analogues without a polysulfur ring were synthesized and evaluated in vitro for antimicrobial activity against a panel of reference bacterial and fungal strains. Trifluoroacetamide 14 demonstrated high antibacterial activity against Staphylococcus aureus (MRSA strain) with a MIC of 4 μg/mL, which was four-fold higher than the activity of a reference drug amoxicillin. This compound was also most active against the Candida albicans fungus (MIC of 1 μg ml-1), whereas amide 17 containing a morpholine substituent was most active against the Cryptococcus neoformans fungus (MIC of 2 μg ml-1). These compounds have no hemolytic activity and are low cytotoxic. Replacement of the pentathiepine ring with 1,3-dithiolan-2-one or 1,3-dithiolane moieties leads to loss of antimicrobial activity. Based on the QSAR analysis and molecular docking data, bacterial DNA ligase might be one of the targets for the antibacterial activity of substituted benzopentathiepin-6-amines against S. aureus.
Collapse
Affiliation(s)
- Tatyana M Khomenko
- Novosibirsk Institute of Organic Chemistry, Lavrentjev av. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova st. 1, Novosibirsk, 630090, Russia
| | - Dina V Korchagina
- Novosibirsk Institute of Organic Chemistry, Lavrentjev av. 9, Novosibirsk, 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Lavrentjev av. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova st. 1, Novosibirsk, 630090, Russia
| | - Pavel M Vassiliev
- Volgograd State Medical University, Pavshikh Bortsov Sq. 1, Volgograd, 400131, Russia
| | - Konstantin P Volcho
- Novosibirsk Institute of Organic Chemistry, Lavrentjev av. 9, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogova st. 1, Novosibirsk, 630090, Russia.
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Lavrentjev av. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova st. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Yeo WL, Chew X, Smith DJ, Chan KP, Sun H, Zhao H, Lim YH, Ang EL. Probing the molecular determinants of fluorinase specificity. Chem Commun (Camb) 2018; 53:2559-2562. [PMID: 28184383 DOI: 10.1039/c6cc09213f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular determinants of FlA1 fluorinase specificity were probed using 5'-chloro-5'-deoxyadenosine (5'-ClDA) analogs as substrates and FlA1 active site mutants. Modifications at F213 or A279 residues are beneficial towards these modified substrates, including 5'-chloro-5'-deoxy-2-ethynyladenosine, ClDEA (>10-fold activity improvement), and conferred novel activity towards substrates not readily accepted by wild-type FlA1.
Collapse
Affiliation(s)
- W L Yeo
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669.
| | - X Chew
- Institute of Chemical and Engineering Sciences (ICES), A*STAR, 8 Biomedical Grove, Neuros #07-01/02/03, Singapore 138665.
| | - D J Smith
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671 and Biotransformation Innovation Platform, A*STAR, 61 Biopolis Drive, Proteos #04-14, Singapore 138673
| | - K P Chan
- Institute of Chemical and Engineering Sciences (ICES), A*STAR, 8 Biomedical Grove, Neuros #07-01/02/03, Singapore 138665.
| | - H Sun
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669.
| | - H Zhao
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669. and 215 Roger Adams Laboratory, Box C3, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| | - Y H Lim
- Institute of Chemical and Engineering Sciences (ICES), A*STAR, 8 Biomedical Grove, Neuros #07-01/02/03, Singapore 138665.
| | - E L Ang
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669.
| |
Collapse
|
7
|
van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother 2018; 72:1275-1284. [PMID: 28073967 PMCID: PMC5400081 DOI: 10.1093/jac/dkw548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the impending crisis of antimicrobial resistance, there is an urgent need to develop novel antimicrobials to combat difficult infections and MDR pathogenic microorganisms. DNA replication is essential for cell viability and is therefore an attractive target for antimicrobials. Although several antimicrobials targeting DNA replication proteins have been developed to date, gyrase/topoisomerase inhibitors are the only class widely used in the clinic. Given the numerous essential proteins in the bacterial replisome that may serve as a potential target for inhibitors and the relative paucity of suitable compounds, it is evident that antimicrobials targeting the replisome are underdeveloped so far. In this review, we report on the diversity of antimicrobial compounds targeting DNA replication and highlight some of the challenges in developing new drugs that target this process.
Collapse
|
8
|
Affiliation(s)
- Jie Li
- ShanghaiTech University, Shanghai 201210, China
| | - Yu Xue
- Department
of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhoulong Fan
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- ShanghaiTech University, Shanghai 201210, China
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Korycka-Machala M, Nowosielski M, Kuron A, Rykowski S, Olejniczak A, Hoffmann M, Dziadek J. Naphthalimides Selectively Inhibit the Activity of Bacterial, Replicative DNA Ligases and Display Bactericidal Effects against Tubercle Bacilli. Molecules 2017; 22:E154. [PMID: 28106753 PMCID: PMC6155577 DOI: 10.3390/molecules22010154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all organisms, however bacterial ligases essential for DNA replication use β-nicotinamide adenine dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use adenosine-5'-triphosphate. This fact leads to the conclusion that NAD⁺-dependent DNA ligases in bacteria could be targeted by their co-factor specific inhibitors. The development of novel alternative medical strategies, including new drugs, are a top priority focus areas for tuberculosis research due to an increase in the number of multi-drug resistant as well as totally drug resistant tubercle bacilli strains. Here, through the use of a virtual high-throughput screen and manual inspection of the top 200 records, 23 compounds were selected for in vitro studies. The selected compounds were evaluated in respect to their Mycobacterium tuberculosis NAD⁺ DNA ligase inhibitory effect by a newly developed assay based on Genetic Analyzer 3500 Sequencer. The most effective agents (e.g., pinafide, mitonafide) inhibited the activity of M. tuberculosis NAD⁺-dependent DNA ligase A at concentrations of 50 µM. At the same time, the ATP-dependent (phage) DNA LigT₄ was unaffected by the agents at concentrations up to 2 mM. The selected compounds appeared to also be active against actively growing tubercle bacilli in concentrations as low as 15 µM.
Collapse
Affiliation(s)
| | - Marcin Nowosielski
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
- Quantum Chemistry Group, A. Mickiewicz University, Poznan 60-780, Poland.
| | - Aneta Kuron
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| | | | - Marcin Hoffmann
- Quantum Chemistry Group, A. Mickiewicz University, Poznan 60-780, Poland.
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| |
Collapse
|
10
|
Pergolizzi G, Wagner GK, Bowater RP. Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea. Biosci Rep 2016; 36:00391. [PMID: 27582505 PMCID: PMC5052709 DOI: 10.1042/bsr20160003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterisation. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5'-phosphate of the DNA end that will ultimately be joined to the 3'-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use nicotinamide adenine dinucleotide ( β -NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5'-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β -NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesised novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes.
Collapse
Affiliation(s)
- Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, N/A, United Kingdom
| | - Gerd K Wagner
- Department of Chemistry, King's College London, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London, N/A, United Kingdom
| | - Richard Peter Bowater
- School of Biological Sciences, University of East Anglia, Norwich, N/A, NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Sashidhara KV, Singh LR, Shameem M, Shakya S, Kumar A, Laxman TS, Krishna S, Siddiqi MI, Bhatta RS, Banerjee D. Design, synthesis and anticancer activity of dihydropyrimidinone–semicarbazone hybrids as potential human DNA ligase 1 inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00447d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of rationally designed new class of hLig1 inhibitors with potentin vitroanti-cancer properties is presented.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - L. Ravithej Singh
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Mohammad Shameem
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sarika Shakya
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Anoop Kumar
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | | - Shagun Krishna
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Rabi S. Bhatta
- Pharmacokinetics and Metabolism Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| |
Collapse
|
12
|
Murphy-Benenato KE, Gingipalli L, Boriack-Sjodin PA, Martinez-Botella G, Carcanague D, Eyermann CJ, Gowravaram M, Harang J, Hale MR, Ioannidis G, Jahic H, Johnstone M, Kutschke A, Laganas VA, Loch JT, Miller MD, Oguto H, Patel SJ. Negishi cross-coupling enabled synthesis of novel NAD(+)-dependent DNA ligase inhibitors and SAR development. Bioorg Med Chem Lett 2015; 25:5172-7. [PMID: 26463129 DOI: 10.1016/j.bmcl.2015.09.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023]
Abstract
Two novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117. Synthetic challenges limited opportunities for diversification of the naphthyridine core, therefore most of the SAR was focused on a pyridopyrimidine scaffold. The initial diversification at R(1) improved both enzyme and cell potency. Further SAR developed at the R(2) position using the Negishi cross-coupling reaction provided several compounds, among these compounds 22g showed good enzyme potency and cellular potency.
Collapse
Affiliation(s)
- Kerry E Murphy-Benenato
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Lakshmaiah Gingipalli
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - P Ann Boriack-Sjodin
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Gabriel Martinez-Botella
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Dan Carcanague
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Charles J Eyermann
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Madhu Gowravaram
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Jenna Harang
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Michael R Hale
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Georgine Ioannidis
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Harris Jahic
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Michele Johnstone
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Amy Kutschke
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Valerie A Laganas
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - James T Loch
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Matthew D Miller
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Herbert Oguto
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Sahil Joe Patel
- Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| |
Collapse
|
13
|
Pergolizzi G, Cominetti MMD, Butt JN, Field RA, Bowater RP, Wagner GK. Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases. Org Biomol Chem 2015; 13:6380-98. [PMID: 25974621 DOI: 10.1039/c5ob00294j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of β-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scientific and practical interest. Our study includes several pairs of β-NAD(+) and AMP derivatives with the same substitution pattern at the adenine base. This has enabled the first direct comparison of co-substrate and inhibitor behaviour against bacterial DNA ligases. Our results suggest that an additional substituent in position 6 or 8 of the adenine base in β-NAD(+) is detrimental for activity as either co-substrate or inhibitor. In contrast, substituents in position 2 are not only tolerated, but appear to give rise to a new mode of inhibition, which targets the conformational changes these DNA ligases undergo during catalysis. Using a molecular modelling approach, we highlight that these findings have important implications for our understanding of ligase mechanism and inhibition, and may provide a promising starting point for the rational design of a new class of inhibitors against NAD(+)-dependent DNA ligases.
Collapse
Affiliation(s)
- Giulia Pergolizzi
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
14
|
Giroux X, MacNeill SA. Inhibiting NAD+-dependent DNA ligase activity with 2-(cyclopentyloxy)-5'-deoxyadenosine (CPOdA) offers a new tool for DNA replication and repair studies in the model archaeon Haloferax volcanii. FEMS Microbiol Lett 2015; 362:fnv181. [PMID: 26420852 DOI: 10.1093/femsle/fnv181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2015] [Indexed: 01/16/2023] Open
Abstract
DNA ligases play an essential role in many aspects of DNA metabolism in all three domains of life. The haloarchaeal organism Haloferax volcanii encodes both ATP- and NAD(+)-dependent DNA ligase enzymes designated LigA and LigN, respectively. Neither LigA nor LigN alone is required for cell viability but they share an essential function, most likely the ligation of Okazaki fragments during chromosome replication. Here we show that 2-(cyclopentyloxy)-5'-deoxyadenosine (referred to as CPOdA), originally developed as a inhibitor of bacterial NAD(+)-dependent DNA ligases, is a potent inhibitor of the growth of Hfx. volcanii cells expressing LigN alone, causing chromosome fragmentation and cell death, while cells expressing LigA are unaffected. Growth inhibition occurs at significantly lower CPOdA concentrations (MIC ≤ 50 ng ml(-1)) than those required for inhibition of bacterial growth (≥2 μg ml(-1)). CPOdA has the potential to become a vital tool in DNA replication and repair studies in this important model organism.
Collapse
Affiliation(s)
- Xavier Giroux
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Stuart A MacNeill
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
15
|
|
16
|
Yadav N, Khanam T, Shukla A, Rai N, Hajela K, Ramachandran R. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I. Org Biomol Chem 2015; 13:5475-87. [DOI: 10.1039/c5ob00439j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA ligases are critical components for DNA metabolism in all organisms.
Collapse
Affiliation(s)
- Nisha Yadav
- From Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- India
| | - Taran Khanam
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Ankita Shukla
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Niyati Rai
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Kanchan Hajela
- From Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- India
| | | |
Collapse
|
17
|
A novel high-throughput cell-based assay aimed at identifying inhibitors of DNA metabolism in bacteria. Antimicrob Agents Chemother 2014; 58:7264-72. [PMID: 25246396 DOI: 10.1128/aac.03475-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial biosensor strains can be useful tools for the discovery and characterization of antibacterial compounds. A plasmid-based reporter vector containing a transcriptional fusion between the recA promoter and green fluorescence protein gene was introduced into an Escherichia coli ΔtolC strain to create a biosensor strain that selectively senses inhibitors of DNA metabolism via the SOS response. The strain was used to develop a high-throughput assay to identify new inhibitors of DNA metabolism. Screening of the AstraZeneca compound library with this strain identified known inhibitors of DNA metabolism, as well as novel chemotypes. The cellular target of one novel series was elucidated as DNA gyrase through genetic characterization of laboratory-generated resistant mutants followed by 50% inhibitory concentration measurements in a DNA gyrase activity assay. These studies validated the use of this antibiotic biosensor strain to identify novel selective inhibitors of DNA metabolism by high-throughput screening.
Collapse
|
18
|
|