1
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
2
|
Shrivastava N, Husain A, Rashid M, Alsabeelah NF, Karim S, Siddiqui NA. Recent Advances Towards Treatment of HIV: Synthesis and SAR Studies. Mini Rev Med Chem 2021; 21:471-499. [PMID: 30864523 DOI: 10.2174/1389557519666190312170158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
In the present study, authors want to encourage the research exertions through structureactivity relationship for the identification of effective molecules for the treatment of Human immunodeficiency virus because nowadays AIDS is considered as one of the main causes of death in human beings. A diversity of biological resources has been searched and developed for the treatment of HIV but unfortunately, until now, no medicine is found to be fully effective and safe for the cure of patients. Human immunodeficiency virus is a type of lentivirus which causes the infection of HIV and once it enters the human body, it stays for a longer period of time triggering immunodeficiency syndrome. For searching and developing new potent and effective anti-HIV molecules, medicinal chemists have engaged in countless targets with the structure-activity relationship (SAR) of molecules and on this basis, many antiretroviral therapies have been developed to cure HIV infection. Most of these new searched molecules have been found to be clinically active against various types of AIDS patient and auxiliary research in this area may lead to better treatment in the near future. This article encompasses and highlights the recent advancement of innumerable inhibitors laterally through synthetic, semi-synthetic and structure-activity relationship approaches.
Collapse
Affiliation(s)
- Neelima Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohammad Rashid
- College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim 31717, Saudi Arabia
| | - Nimer Fehaid Alsabeelah
- College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim 31717, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Ghosh AK, Kovela S, Osswald HL, Amano M, Aoki M, Agniswamy J, Wang YF, Weber IT, Mitsuya H. Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. J Med Chem 2020; 63:4867-4879. [PMID: 32348139 PMCID: PMC7425579 DOI: 10.1021/acs.jmedchem.0c00202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe here design, synthesis, and biological evaluation of a series of highly potent HIV-1 protease inhibitors containing stereochemically defined and unprecedented tricyclic furanofuran derivatives as P2 ligands in combination with a variety of sulfonamide derivatives as P2' ligands. These inhibitors were designed to enhance the ligand-backbone binding and van der Waals interactions in the protease active site. A number of inhibitors containing the new P2 ligand, an aminobenzothiazole as the P2' ligand and a difluorophenylmethyl as the P1 ligand, displayed very potent enzyme inhibitory potency and also showed excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The tricyclic P2 ligand has been synthesized efficiently in an optically active form using enzymatic desymmetrization of meso-1,2-(dihydroxymethyl)cyclohex-4-ene as the key step. We determined high-resolution X-ray structures of inhibitor-bound HIV-1 protease. These structures revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insights into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Satish Kovela
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather L. Osswald
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Masayuki Amano
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
| | - Manabu Aoki
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Design, synthesis and biological evaluation of HIV-1 protease inhibitors with morpholine derivatives as P2 ligands in combination with cyclopropyl as P1' ligand. Bioorg Med Chem Lett 2020; 30:127019. [PMID: 32057582 DOI: 10.1016/j.bmcl.2020.127019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
A series of novel HIV-1 protease inhibitors has been designed and synthesized, which contained morpholine derivatives as the P2 ligands and hydrophobic cyclopropyl as the P1' ligand at the meantime in this study, with the aim of improving the interactions between the active sites of HIV-1 protease and the inhibitors. Twenty-eight compounds were synthesized and assessed, among which inhibitors m18 and m1 exhibited excellent inhibitory effect on the activity of HIV-1 protease with IC50 value of 47 nM and 53 nM, respectively. The molecular modeling of m1 revealed possible hydrogen bondings or van der Waals between the inhibitor and the protease, worthy of in-depth study.
Collapse
|
5
|
Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors incorporating aminothiochromane and aminotetrahydronaphthalene carboxamide derivatives as the P2 ligands. Eur J Med Chem 2018; 160:171-182. [PMID: 30340140 PMCID: PMC6237192 DOI: 10.1016/j.ejmech.2018.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023]
Abstract
We describe the design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors with carboxamide derivatives as the P2 ligands. We have specifically designed aminothiochromane and aminotetrahydronaphthalene-based carboxamide ligands to promote hydrogen bonding and van der Waals interactions in the active site of HIV-1 protease. Inhibitors 4e and 4j have shown potent enzyme inhibitory and antiviral activity. High resolution X-ray crystal structures of 4d- and 4k-bound HIV-1 protease revealed molecular insights into the ligand-binding site interactions.
Collapse
|
6
|
Ghosh AK, Nyalapatla PR, Kovela S, Rao KV, Brindisi M, Osswald HL, Amano M, Aoki M, Agniswamy J, Wang YF, Weber IT, Mitsuya H. Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure-Activity Studies, Biological and X-ray Structural Analysis. J Med Chem 2018; 61:4561-4577. [PMID: 29763303 PMCID: PMC6044451 DOI: 10.1021/acs.jmedchem.8b00298] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The design, synthesis, and biological evaluation of a new class of HIV-1 protease inhibitors containing stereochemically defined fused tricyclic polyethers as the P2 ligands and a variety of sulfonamide derivatives as the P2' ligands are described. A number of ring sizes and various substituent effects were investigated to enhance the ligand-backbone interactions in the protease active site. Inhibitors 5c and 5d containing this unprecedented fused 6-5-5 ring system as the P2 ligand, an aminobenzothiazole as the P2' ligand, and a difluorophenylmethyl as the P1 ligand exhibited exceptional enzyme inhibitory potency and maintained excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The umbrella-like P2 ligand for these inhibitors has been synthesized efficiently in an optically active form using a Pauson-Khand cyclization reaction as the key step. The racemic alcohols were resolved efficiently using a lipase catalyzed enzymatic resolution. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA,The corresponding author: Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, Phone: (765)-494-5323; Fax: (765)-496-1612,
| | - Prasanth R. Nyalapatla
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Satish Kovela
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kalapala Venkateswara Rao
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Masayuki Amano
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan,Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Manabu Aoki
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan,Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Johnson Agniswamy
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hiroaki Mitsuya
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan,Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Škorpilová L, Rimpelová S, Jurášek M, Buděšínský M, Lokajová J, Effenberg R, Slepička P, Ruml T, Kmoníčková E, Drašar PB, Wimmer Z. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide. Beilstein J Org Chem 2017; 13:1316-1324. [PMID: 28781697 PMCID: PMC5530629 DOI: 10.3762/bjoc.13.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Like thapsigargin, which is undergoing clinical trials, trilobolide is a natural product with promising anticancer and anti-inflammatory properties. Similar to thapsigargin, it has limited aqueous solubility that strongly reduces its potential medicinal applications. The targeted delivery of hydrophobic drugs can be achieved using liposome-based carriers. Therefore, we designed a traceable liposomal drug delivery system for trilobolide. The fluorescent green-emitting dye BODIPY, cholesterol and trilobolide were used to create construct 6. The liposomes were composed of dipalmitoyl-3-trimethylammoniumpropane and phosphatidylethanolamine. The whole system was characterized by atomic force microscopy, the average size of the liposomes was 150 nm in width and 30 nm in height. We evaluated the biological activity of construct 6 and its liposomal formulation, both of which showed immunomodulatory properties in primary rat macrophages. The uptake and intracellular distribution of construct 6 and its liposomal formulation was monitored by means of live-cell fluorescence microscopy in two cancer cell lines. The encapsulation of construct 6 into the liposomes improved the drug distribution in cancer cells and was followed by cell death. This new liposomal trilobolide derivative not only retains the biological properties of pure trilobolide, but also enhances the bioavailability, and thus has potential for the use in theranostic applications.
Collapse
Affiliation(s)
- Ludmila Škorpilová
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.,Institute of Experimental Botany, ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, ASCR, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jana Lokajová
- Institute of Organic Chemistry and Biochemistry, ASCR, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Roman Effenberg
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Eva Kmoníčková
- Institute of Experimental Medicine, ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic.,Charles University, Faculty of Medicine in Pilsen, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Pavel B Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.,Institute of Experimental Botany, ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
8
|
Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem 2017; 26:1241-1251. [PMID: 28693917 DOI: 10.1016/j.bmc.2017.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies.
Collapse
|
9
|
Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 2016; 59:5172-208. [PMID: 26799988 PMCID: PMC5598487 DOI: 10.1021/acs.jmedchem.5b01697] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 protease inhibitors continue to play an important role in the treatment of HIV/AIDS, transforming this deadly ailment into a more manageable chronic infection. Over the years, intensive research has led to a variety of approved protease inhibitors for the treatment of HIV/AIDS. In this review, we outline current drug design and medicinal chemistry efforts toward the development of next-generation protease inhibitors beyond the currently approved drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gary Prato
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
10
|
Zacuto MJ, Dunn RF, Figus M. One-Step Synthesis of 1-Chloro-3-arylacetone Derivatives from Arylacetic Acids. J Org Chem 2014; 79:8917-25. [DOI: 10.1021/jo5016486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Zacuto
- Department of Process Research, Merck Research Laboratory, Rahway, New Jersey 07065, United States
| | - Robert F. Dunn
- Department of Process Research, Merck Research Laboratory, Rahway, New Jersey 07065, United States
| | - Margaret Figus
- Department of Process Research, Merck Research Laboratory, Rahway, New Jersey 07065, United States
| |
Collapse
|
11
|
Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors. Pharm Pat Anal 2014; 2:513-38. [PMID: 24237127 DOI: 10.4155/ppa.13.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.
Collapse
|
12
|
De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:317-58. [PMID: 23886005 DOI: 10.1016/b978-0-12-405880-4.00009-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the drugs currently used for the treatment of HIV infections (AIDS) belong to either of the following three classes: nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). At present, there are 7 NRTIs, 5 NNRTIs, and 10 PIs approved for clinical use. They are discussed from the following viewpoints: (i) chemical formulae; (ii) mechanism of action; (iii) drug combinations; (iv) clinical aspects; (v) preexposure prophylaxis; (vi) prevention of mother-to-child transmission; (vii) their use in children; (viii) toxicity; (ix) adherence (compliance); (x) resistance; (xi) new NRTIs, NNRTIs, or PIs in (pre)clinical development; and (xii) the prospects for a "cure" of the disease.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|