1
|
Freitas de Lima Hercos G, Gabriela Faleiro de Moura Lodi Cruz M, Clara Cassiano Martinho A, de Melo Resende D, Farago Nascimento D, Derksen Macruz P, Jorge Pilau E, Maria Fonseca Murta S, de Oliveira Rezende Júnior C. Optimization of benzenesulfonyl derivatives as anti-Trypanosomatidae agents: Structural design, synthesis, and pharmacological assessment against Trypanosoma cruzi and Leishmania infantum. Bioorg Med Chem 2024; 105:117736. [PMID: 38677111 DOI: 10.1016/j.bmc.2024.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- Guilherme Freitas de Lima Hercos
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | | | - Ana Clara Cassiano Martinho
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Daniela de Melo Resende
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG 30190-002, Brazil
| | - Danilo Farago Nascimento
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Paula Derksen Macruz
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR 807020-900, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR 807020-900, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG 30190-002, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
2
|
Rodriguez ME, Tekiel V, Campo VA. In vitro evaluation of Resveratrol as a potential pre-exposure prophylactic drug against Trypanosoma cruzi infection. Int J Parasitol Drugs Drug Resist 2022; 20:54-64. [PMID: 36099853 PMCID: PMC9474288 DOI: 10.1016/j.ijpddr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Chagas' disease or American trypanosomiasis, caused by Trypanosoma cruzi infection, is an endemic disease in Latin America, which has spread worldwide in the past years. The drugs presently used for treatment have shown limited efficacy due to the appearance of resistant parasites and severe side effects. Some of the most recent studies on anti-parasitic drugs have been focused on protein acetylation, a reversible reaction modulated by Acetyl Transferases (KATs) and Deacetylases (KDACs). We have previously reported the anti-parasite activity of resveratrol (RSV), an activator of KDACs type III (or sirtuins), and showed that this drug can reduce the growth of T. cruzi epimastigotes and the infectivity of trypomastigotes. Since RSV is now widely used in humans due to its beneficial effects as an antioxidant, it has become an attractive candidate as a repurposing drug. In this context, the aim of the present study was to evaluate the ability of this drug to protect three different types of host cells from parasite infection. RSV treatment before parasite infection reduced the percentage of infected cells by 50-70% depending on the cell type. Although the mammalian cell lines tested showed different sensitivity to RSV, apoptosis was not significantly affected, showing that RSV was able to protect cells from infection without the activation of this process. Since autophagy has been described as a key process in parasite invasion, we also monitored this process on host cells pretreated with RSV. The results showed that, at the concentrations and incubation times tested, autophagy was not induced in any of the cell types evaluated. Our results show a partial protective effect of RSV in vitro, which justifies extending studies to an in vivo model to elucidate the mechanism by which this effect occurs.
Collapse
Affiliation(s)
| | | | - Vanina A. Campo
- Corresponding author. IIB: Instituto de Investigaciones Biotecnologicas, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Ghazy E, Abdelsalam M, Robaa D, Pierce RJ, Sippl W. Histone Deacetylase (HDAC) Inhibitors for the Treatment of Schistosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15010080. [PMID: 35056137 PMCID: PMC8779837 DOI: 10.3390/ph15010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites’ Achilles’ heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.
Collapse
Affiliation(s)
- Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
| | - Raymond J. Pierce
- Centre d’Infection et d’Immunité de Lille, U1019—UMR9017—CIIL, Institute Pasteur de Lille, CNRS, Inserm, CHU Lille, Univ. Lille, F-59000 Lille, France;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Correspondence:
| |
Collapse
|
4
|
Marek M, Ramos-Morales E, Picchi-Constante GFA, Bayer T, Norström C, Herp D, Sales-Junior PA, Guerra-Slompo EP, Hausmann K, Chakrabarti A, Shaik TB, Merz A, Troesch E, Schmidtkunz K, Goldenberg S, Pierce RJ, Mourão MM, Jung M, Schultz J, Sippl W, Zanchin NIT, Romier C. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep 2021; 37:110129. [PMID: 34936867 DOI: 10.1016/j.celrep.2021.110129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.
Collapse
Affiliation(s)
- Martin Marek
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Elizabeth Ramos-Morales
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | - Theresa Bayer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | | | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Policarpo A Sales-Junior
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | | | - Kristin Hausmann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Tajith B Shaik
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Annika Merz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Edouard Troesch
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil
| | - Raymond J Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL -Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Marina M Mourão
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, SE-17165 Solna, Sweden
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Nilson I T Zanchin
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil.
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
5
|
Abstract
Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.
Collapse
|
6
|
Alam MA. Methods for Hydroxamic Acid Synthesis. CURR ORG CHEM 2019; 23:978-993. [PMID: 32565717 PMCID: PMC7304568 DOI: 10.2174/1385272823666190424142821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022]
Abstract
Substituted hydroxamic acid is one of the most extensively studied pharmacophores because of their ability to chelate biologically important metal ions to modulate various enzymes, such as HDACs, urease, metallopeptidase, and carbonic anhydrase. Syntheses and biological studies of various classes of hydroxamic acid derivatives have been reported in numerous research articles in recent years but this is the first review article dedicated to their synthetic methods and their application for the synthesis of these novel molecules. In this review article, commercially available reagents and preparation of hydroxylamine donating reagents have also been described.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
7
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
8
|
Moretti NS, Cestari I, Anupama A, Stuart K, Schenkman S. Comparative Proteomic Analysis of Lysine Acetylation in Trypanosomes. J Proteome Res 2018; 17:374-385. [PMID: 29168382 DOI: 10.1021/acs.jproteome.7b00603] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein acetylation is a post-translational modification regulating diverse cellular processes. By using proteomic approaches, we identified N-terminal and ε-lysine acetylated proteins in Trypanosoma cruzi and Trypanosoma brucei, which are protozoan parasites that cause significant human and animal diseases. We detected 288 lysine acetylation sites in 210 proteins of procyclic form, an insect stage of T. brucei, and 380 acetylation sites in 285 proteins in the form of the parasite that replicates in mammalian bloodstream. In T. cruzi insect proliferative form we found 389 ε-lysine-acetylated sites in 235 proteins. Notably, we found distinct acetylation profiles according to the developmental stage and species, with only 44 common proteins between T. brucei stages and 18 in common between the two species. While K-ac proteins from T. cruzi are enriched in enzymes involved in oxidation/reduction balance, required for the parasite survival in the host, in T. brucei, most K-ac proteins are enriched in metabolic processes, essential for its adaptation in its hosts. We also identified in both parasites a quite variable N-terminal acetylation sites. Our results suggest that protein acetylation is involved in differential regulation of multiple cellular processes in Trypanosomes, contributing to our understanding of the essential mechanisms for parasite infection and survival.
Collapse
Affiliation(s)
- Nilmar Silvio Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo , R. Pedro de Toledo 669 L6A, 04039-032 São Paulo, SP, Brazil.,Center for Infectious Disease Research , 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, United States
| | - Igor Cestari
- Center for Infectious Disease Research , 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, United States
| | - Atashi Anupama
- Center for Infectious Disease Research , 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, United States
| | - Ken Stuart
- Center for Infectious Disease Research , 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, United States
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo , R. Pedro de Toledo 669 L6A, 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
9
|
Evolutionary relationships among protein lysine deacetylases of parasites causing neglected diseases. INFECTION GENETICS AND EVOLUTION 2017; 53:175-188. [DOI: 10.1016/j.meegid.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
10
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
11
|
Bagnall NH, Hines BM, Lucke AJ, Gupta PK, Reid RC, Fairlie DP, Kotze AC. Insecticidal activities of histone deacetylase inhibitors against a dipteran parasite of sheep, Lucilia cuprina. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:51-60. [PMID: 28110187 PMCID: PMC5247571 DOI: 10.1016/j.ijpddr.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are being investigated for the control of various human parasites. Here we investigate their potential as insecticides for the control of a major ecto-parasite of sheep, the Australian sheep blowfly, Lucilia cuprina. We assessed the ability of HDACi from various chemical classes to inhibit the development of blowfly larvae in vitro, and to inhibit HDAC activity in nuclear protein extracts prepared from blowfly eggs. The HDACi prodrug romidepsin, a cyclic depsipeptide that forms a thiolate, was the most potent inhibitor of larval growth, with equivalent or greater potency than three commercial blowfly insecticides. Other HDACi with potent activity were hydroxamic acids (trichostatin, CUDC-907, AR-42), a thioester (KD5170), a disulphide (Psammaplin A), and a cyclic tetrapeptide bearing a ketone (apicidin). On the other hand, no insecticidal activity was observed for certain other hydroxamic acids, fatty acids, and the sesquiterpene lactone parthenolide. The structural diversity of the 31 hydroxamic acids examined here revealed some structural requirements for insecticidal activity; for example, among compounds with flexible linear zinc-binding extensions, greater potency was observed in the presence of branched capping groups that likely make multiple interactions with the blowfly HDAC enzymes. The insecticidal activity correlated with inhibition of HDAC activity in blowfly nuclear protein extracts, indicating that the toxicity was most likely due to inhibition of HDAC enzymes in the blowfly larvae. The inhibitor potencies against blowfly larvae are different from inhibition of human HDACs, suggesting some selectivity for human over blowfly HDACs, and a potential for developing compounds with the inverse selectivity. In summary, these novel findings support blowfly HDAC enzymes as new targets for blowfly control, and point to development of HDAC inhibitors as a promising new class of insecticides. We measured the insecticidal effects of histone deacetylase inhibitors against the sheep blowfly. Insecticidal activity correlated with inhibition of HDAC enzyme activity in nuclear extracts. Romidepsin showed equivalent or greater potency than commercial blowfly insecticides. Some insights gained into structural requirements for insecticidal HDAC inhibitors. Potential for HDAC inhibitors as insecticides.
Collapse
Affiliation(s)
- Neil H Bagnall
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia
| | - Barney M Hines
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia.
| |
Collapse
|
12
|
Repurposing strategies for tropical disease drug discovery. Bioorg Med Chem Lett 2016; 26:2569-76. [PMID: 27080183 DOI: 10.1016/j.bmcl.2016.03.103] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
Neglected tropical diseases (NTDs) and other diseases of the developing world, such as malaria, attract research investments that are disproportionately low compared to their impact on human health worldwide. Therefore, pragmatic methods for launching new drug discovery programs have emerged that repurpose existing chemical matter as new drugs or new starting points for optimization. In this Digest we describe applications of different repurposing approaches for NTDs, and provide a means by which these approaches may be differentiated from each other. These include drug repurposing, target repurposing, target class repurposing, and lead repurposing.
Collapse
|
13
|
Melesina J, Robaa D, Pierce RJ, Romier C, Sippl W. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors. J Mol Graph Model 2015; 62:342-361. [DOI: 10.1016/j.jmgm.2015.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
|
14
|
Wang Q, Rosa BA, Nare B, Powell K, Valente S, Rotili D, Mai A, Marshall GR, Mitreva M. Targeting Lysine Deacetylases (KDACs) in Parasites. PLoS Negl Trop Dis 2015; 9:e0004026. [PMID: 26402733 PMCID: PMC4581690 DOI: 10.1371/journal.pntd.0004026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/02/2015] [Indexed: 12/30/2022] Open
Abstract
Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. Due to pandemic drug resistance in the treatment of parasitic infections, there is an urgent need to identify novel drug targets and their associated drug compounds. Although “drug repurposing”, i.e. the application of known drugs and compounds to new indications such as infectious diseases, provides a cost effective approach in the development of novel therapeutics, selectivity is one of the major obstacles to overcome in getting such compounds into clinical trials as anti-parasitic drugs. Using the lysine deacetylases (KDACs) as an example, we explored the activities of a panel of known inhibitors against the KDAC targets in a range of parasitic organisms. The computational study of their binding modes to the targets (by docking the compounds to the homology models within different organisms in comparison with the human proteins) helps to rationalize the different activities observed and provide insight on the optimization of lead compounds to improve selectivity. Our work provides support of “drug repurposing” in the treatment of parasitic diseases, and demonstrates the necessity of optimizing these leads for the ultimate goal of preparing them for clinical use.
Collapse
Affiliation(s)
- Qi Wang
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bakela Nare
- SCYNEXIS, Inc, Research Triangle Park, North Carolina, United States of America
| | - Kerrie Powell
- SCYNEXIS, Inc, Research Triangle Park, North Carolina, United States of America
| | - Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Dante Rotili
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments of Genetics and of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Carrillo AK, Guiguemde WA, Guy RK. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg Med Chem 2015; 23:5151-5. [DOI: 10.1016/j.bmc.2014.12.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 01/31/2023]
|
16
|
Engel JA, Jones AJ, Avery VM, Sumanadasa SDM, Ng SS, Fairlie DP, Skinner-Adams T, Andrews KT. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015. [PMID: 26199860 PMCID: PMC4506969 DOI: 10.1016/j.ijpddr.2015.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®), romidepsin (Istodax®) and belinostat (Beleodaq®), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4. Four clinically approved anti-cancer HDAC inhibitors potently inhibited P. falciparum. Only one, Romidepsin, was active against T. b. brucei parasites. All compounds hyperacetylated histone and non-histone proteins in P. falciparum. Some differential effects on Plasmodium histone acetylation were observed. All compounds inhibited Plasmodium nuclear deacetylase activity and PfHDAC1.
Collapse
Affiliation(s)
- Jessica A Engel
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Amy J Jones
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | | | - Susanna S Ng
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Q4072, Australia
| | - Tina Skinner-Adams
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| |
Collapse
|
17
|
Identification and characterization of hundreds of potent and selective inhibitors of Trypanosoma brucei growth from a kinase-targeted library screening campaign. PLoS Negl Trop Dis 2014; 8:e3253. [PMID: 25340575 PMCID: PMC4207660 DOI: 10.1371/journal.pntd.0003253] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023] Open
Abstract
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs. Human African trypanosomiasis, or sleeping sickness, affects 10,000 patients annually, yet current drugs for this disease are poor, with high toxicity and inconvenient dosing requirements. Trypanosoma brucei, the parasite that causes sleeping sickness, is sensitive to a class of compounds called kinase inhibitors, and our project was aimed at identifying kinase-targeting compounds that rapidly and irreversibly inhibit parasite growth. This was accomplished by high-throughput screening of over 42,000 compounds, which resulted in identification of 797 potent inhibitors of parasite growth that are non-toxic to human cells. These inhibitors were studied for the speed of their effects and reversibility of growth inhibition, and were grouped on the basis of chemical structure similarity. One compound was shown to cure mice from a bloodstream of infection of T. brucei. These compounds can now be utilized by the research community as starting points for new drug discovery, and also as tool compounds for understanding the function of kinases in T. brucei.
Collapse
|
18
|
Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:95-111. [PMID: 25057459 PMCID: PMC4095053 DOI: 10.1016/j.ijpddr.2014.02.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
Abstract
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Gillian Fisher
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Tina S Skinner-Adams
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
19
|
Patel G, Roncal NE, Lee PJ, Leed SE, Erath J, Rodriguez A, Sciotti RJ, Pollastri MP. Repurposing human Aurora kinase inhibitors as leads for anti-protozoan drug discovery. MEDCHEMCOMM 2014; 5:655-658. [PMID: 24910766 DOI: 10.1039/c4md00045e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hesperadin, an established human Aurora B inhibitor, was tested against cultures of Trypanosoma brucei, Leishmania major, and Plasmodium falciparum, and was identified to be a potent proliferation inhibitor. A series of analogs was designed and tested to establish the initial structure-activity relationships for each parasite. In this study, we identified multiple non-toxic compounds with high potency against T. brucei and P. falciparum with good selectivity. These compounds may represent an opportunity for continued optimization.
Collapse
Affiliation(s)
- Gautam Patel
- Northeastern University Department of Chemistry & Chemical Biology, 360 Huntington Avenue, Boston, MA USA. Tel: 617-373-2703
| | - Norma E Roncal
- Experimental Therapeutics, Walter Reed Army Institute for Research, 2460 Linden Lane, Silver Spring, MD, 20910
| | - Patricia J Lee
- Experimental Therapeutics, Walter Reed Army Institute for Research, 2460 Linden Lane, Silver Spring, MD, 20910
| | - Susan E Leed
- Experimental Therapeutics, Walter Reed Army Institute for Research, 2460 Linden Lane, Silver Spring, MD, 20910
| | - Jessey Erath
- Anti-Infectives Screening Core, New York University School of Medicine, New York, NY 10010
| | - Ana Rodriguez
- New York University School of Medicine, Department of Microbiology, Division of Parasitology, 341 E. 25 St. New York, NY USA ; Anti-Infectives Screening Core, New York University School of Medicine, New York, NY 10010
| | - Richard J Sciotti
- Experimental Therapeutics, Walter Reed Army Institute for Research, 2460 Linden Lane, Silver Spring, MD, 20910
| | - Michael P Pollastri
- Northeastern University Department of Chemistry & Chemical Biology, 360 Huntington Avenue, Boston, MA USA. Tel: 617-373-2703
| |
Collapse
|
20
|
Lysine acetylation: elucidating the components of an emerging global signaling pathway in trypanosomes. J Biomed Biotechnol 2012; 2012:452934. [PMID: 23093844 PMCID: PMC3470893 DOI: 10.1155/2012/452934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
In the past ten years the number of acetylated proteins reported in literature grew exponentially. Several authors have proposed that acetylation might be a key component in most eukaryotic signaling pathways, as important as phosphorylation. The enzymes involved in this process are starting to emerge; acetyltransferases and deacetylases are found inside and outside the nuclear compartment and have different regulatory functions. In trypanosomatids several of these enzymes have been described and are postulated to be novel antiparasitic targets for the rational design of drugs. In this paper we overview the most important known acetylated proteins and the advances made in the identification of new acetylated proteins using high-resolution mass spectrometry. Also, we summarize what is known so far about the acetyltransferases and deacetylases in eukaryotes, focusing on trypanosomes and their potential use as chemotherapeutic targets.
Collapse
|