1
|
Hanaki Y, Miyoshi S, Sugiyama Y, Yanagita RC, Sato M. 12-O-Tetradecanoylphorbol 13-acetate promotes proliferation and epithelial-mesenchymal transition in HHUA cells cultured on collagen type I gel: A feasible model to find new therapies for endometrial diseases. Biosci Biotechnol Biochem 2022; 86:1417-1422. [PMID: 35973688 DOI: 10.1093/bbb/zbac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022]
Abstract
HHUA endometrial adenocarcinoma cells aggregated into spheroids when cultured on collagen type I gels. 12-O-Tetradecanoylphorbol 13-acetate, a PKC activator, disassembled the spheroids through epithelial-mesenchymal transition and increased their proliferation rate, while inducing cell death under monolayer culture conditions. These unusual behaviors of endometrial epithelial cells with collagen fibers could be a target for the treatment of some endometrial diseases.
Collapse
Affiliation(s)
- Yusuke Hanaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Sena Miyoshi
- Division of Applied Biological and Rare Sugar Sciences, Graduate School of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Yasunori Sugiyama
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Ryo C Yanagita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
2
|
Synthesis of the C1 – C16 fragment of bryostatin for incorporation into 20,20-fluorinated analogues. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Itoh H, Inoue M. Comprehensive Structure–Activity Relationship Studies of Macrocyclic Natural Products Enabled by Their Total Syntheses. Chem Rev 2019; 119:10002-10031. [DOI: 10.1021/acs.chemrev.9b00063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Mears PR, Hoekman S, Rye CE, Bailey FP, Byrne DP, Eyers PA, Thomas EJ. Towards 20,20-difluorinated bryostatin: synthesis and biological evaluation of C17,C27-fragments. Org Biomol Chem 2019; 17:1487-1505. [DOI: 10.1039/c8ob03152e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The syntheses of compounds corresponding to 20,20-difluorinated C17–C27 fragments of bryostatin are reported together with preliminary PKC binding data.
Collapse
Affiliation(s)
- Paul R. Mears
- The School of Chemistry
- The University of Manchester
- Manchester
- UK
| | - Steven Hoekman
- The School of Chemistry
- The University of Manchester
- Manchester
- UK
| | - Claire E. Rye
- The School of Chemistry
- The University of Manchester
- Manchester
- UK
| | - Fiona P. Bailey
- The Department of Biochemistry
- IIB
- The University of Liverpool
- Liverpool
- UK
| | - Dominic P. Byrne
- The Department of Biochemistry
- IIB
- The University of Liverpool
- Liverpool
- UK
| | - Patrick A. Eyers
- The Department of Biochemistry
- IIB
- The University of Liverpool
- Liverpool
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
5
|
Zhao X, Kedei N, Michalowski A, Lewin NE, Keck GE, Blumberg PM. Deletion of the C26 Methyl Substituent from the Bryostatin Analogue Merle 23 Has Negligible Impact on Its Biological Profile and Potency. Chembiochem 2018. [PMID: 29517836 DOI: 10.1002/cbic.201700677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Important strides are being made in understanding the effects of structural features of bryostatin 1, a candidate therapeutic agent for cancer and dementia, in conferring its potency toward protein kinase C and the unique spectrum of biological responses that it induces. A critical pharmacophoric element in bryostatin 1 is the secondary hydroxy group at the C26 position, with a corresponding primary hydroxy group playing an analogous role in binding of phorbol esters to protein kinase C. Herein, we describe the synthesis of a bryostatin homologue in which the C26 hydroxy group is primary, as it is in the phorbol esters, and show that its biological activity is almost indistinguishable from that of the corresponding compound with a secondary hydroxy group.
Collapse
Affiliation(s)
- Xiguang Zhao
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Alexandra Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Gary E Keck
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| |
Collapse
|
6
|
Cummins TJ, Kedei N, Czikora A, Lewin NE, Kirk S, Petersen ME, McGowan KM, Chen JQ, Luo X, Johnson RC, Ravichandran S, Blumberg PM, Keck GE. Synthesis and Biological Evaluation of Fluorescent Bryostatin Analogues. Chembiochem 2018; 19:877-889. [PMID: 29424951 DOI: 10.1002/cbic.201700655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/10/2022]
Abstract
To investigate the cellular distribution of tumor-promoting vs. non-tumor-promoting bryostatin analogues, we synthesized fluorescently labeled variants of two bryostatin derivatives that have previously shown either phorbol ester-like or bryostatin-like biological activity in U937 leukemia cells. These new fluorescent analogues both displayed high affinity for protein kinase C (PKC) binding and retained the basic properties of the parent unlabeled compounds in U937 assays. The fluorescent compounds showed similar patterns of intracellular distribution in cells, however; this argues against an existing hypothesis that various patterns of intracellular distribution are responsible for differences in biological activity. Upon further characterization, the fluorescent compounds revealed a slow rate of cellular uptake; correspondingly, they showed reduced activity for cellular responses that were only transient upon treatment with phorbol ester or bryostatin 1.
Collapse
Affiliation(s)
- Thomas J Cummins
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Sharon Kirk
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Mark E Petersen
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Kevin M McGowan
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1044, Bethesda, MD, 20892, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1044, Bethesda, MD, 20892, USA
| | - Randall C Johnson
- Advanced Biomedical and Computational Sciences Biomedical Informatics, and Data Science (BIDS), Directorate Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Building 430, Miller Drive, Fort Detrick, Frederick, MD, 21702, USA
| | - Sarangan Ravichandran
- Advanced Biomedical and Computational Sciences Biomedical Informatics, and Data Science (BIDS), Directorate Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Building 430, Miller Drive, Fort Detrick, Frederick, MD, 21702, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Gary E Keck
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Hanaki Y, Shikata Y, Kikumori M, Hotta N, Imoto M, Irie K. Identification of protein kinase C isozymes involved in the anti-proliferative and pro-apoptotic activities of 10-Methyl-aplog-1, a simplified analog of debromoaplysiatoxin, in several cancer cell lines. Biochem Biophys Res Commun 2018; 495:438-445. [DOI: 10.1016/j.bbrc.2017.11.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
|
8
|
Green AP, Hardy S, Thomas EJ. Synthetic approaches to the C11-C27 fragments of bryostatins. Org Biomol Chem 2017; 15:9475-9496. [PMID: 29109991 DOI: 10.1039/c7ob02127e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The modified Julia reaction and acyl carbanion chemistry, especially reactions of 2-lithiated dithianes, have been investigated for the synthesis of intermediates that are the synthetic equivalents of the C11-C27 fragments of bryostatins. The modified Julia reaction using 2-benzothiazolylsulfones was found to be more useful for the formation of the C16-C17 double-bond than the classical Julia reaction using phenylsulfones, and bulky sulfones gave very good (E)-stereoselectivity. The alkylation of a dithiane monoxide that corresponded to a C19-acyl carbanion using (E)-1-bromobut-2-ene was efficient but the use of a more complex allylic bromide corresponding to the C20-C27 fragment of the bryostatins was unsuccessful, possibly due to competing elimination reactions. This meant that the use of C19 dithianes for the synthesis of 20-deoxybryostatins would have to involve the stepwise assembly of the C20-C27 fragment from simpler precursors. However, lithiated C19 dithianes gave good yields of adducts with aldehydes and conditions were developed for the stereoselective conversion of the major adducts into methoxyacetals that corresponded to the C17-C27 fragment of 20-oxygenated bryostatins. A convergent synthesis of the C11-C27 fragment of a 20-deoxybryostatin was subsequently achieved using a 2-benzothiazolylsulfone corresponding to the intact C17-C27 fragment.
Collapse
Affiliation(s)
- Anthony P Green
- The School of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| | | | | |
Collapse
|
9
|
Green AP, Hardy S, Lee ATL, Thomas EJ. Total synthesis of 7-des-O-pivaloyl-7-O-benzylbryostatin 10. Org Biomol Chem 2017; 15:9497-9526. [PMID: 29109995 DOI: 10.1039/c7ob02129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first total synthesis of a derivative of a 20-deoxybryostatin, namely 7-des-O-pivaloyl-7-O-benzylbryostatin 10 is described. Preliminary studies demonstrated that the modified Julia reactions of 2-benzothiazolylsulfones corresponding to the C17-C27 fragment with aldehydes corresponding to the C1-C16 fragment, provided an efficient and stereoselective assembly of advanced intermediates with the (E)-16,17-double-bond. The synthesis of the C1-C16 fragment was then modified so that the C1 acid was present as its allyl ester before the Julia coupling. A more efficient synthesis of the C17-C27 sulfone was developed in which a key step was the bismuth mediated coupling of an allylic bromide with an aldehyde in the presence of an acrylate moiety in the allylic bromide. A scalable synthesis of an advanced macrolide was completed using the modified Julia reaction followed by selective deprotection and macrolactonisation. The final stages of the synthesis required selective hydroxyl deprotection and the introduction of the sensitive C19-C21 unsaturated keto-ester functionality. Unexpected selectivities were observed during studies of the hydroxyl group deprotections. In particular, cleavage of tri-isopropylsilyl ethers of the exocyclic primary allylic alcohols was observed in the presence of the triethylsilyl ether of the secondary alcohol at C19. Model studies helped in the design of the methods used to introduce the C19-C21 keto-ester functionality and led to the completion of a total synthesis of a close analogue of bryostatin 10 in which a benzyloxy group rather than the pivaloyloxy group was present at C7.
Collapse
Affiliation(s)
- Anthony P Green
- The School of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
10
|
|
11
|
Loss of the Phenolic Hydroxyl Group and Aromaticity from the Side Chain of Anti-Proliferative 10-Methyl-aplog-1, a Simplified Analog of Aplysiatoxin, Enhances Its Tumor-Promoting and Proinflammatory Activities. Molecules 2017; 22:molecules22040631. [PMID: 28406454 PMCID: PMC6153940 DOI: 10.3390/molecules22040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/29/2023] Open
Abstract
Aplysiatoxin (ATX) is a protein kinase C (PKC) activator with potent tumor-promoting activity. In contrast, 10-methyl-aplog-1 (1), a simplified analog of ATX, was anti-proliferative towards several cancer cell lines without significant tumor-promoting and proinflammatory activities. To determine the effects of the phenolic group on the biological activities of 1, we synthesized new derivatives (2, 3) that lack the phenolic hydroxyl group and/or the aromatic ring. Compound 2, like 1, showed potent anti-proliferative activity against several cancer cell lines, but little with respect to tumor-promoting and proinflammatory activities. In contrast, 3 exhibited weaker growth inhibitory activity, and promoted inflammation and tumorigenesis. The binding affinity of 3 for PKCδ, which is involved in growth inhibition and apoptosis, was several times lower than those of 1 and 2, possibly due to the absence of the hydrogen bond and CH/π interaction between its side chain and either Met-239 or Pro-241 in the PKCδ-C1B domain. These results suggest that both the aromatic ring and phenolic hydroxyl group can suppress the proinflammatory and tumor-promoting activities of 1 and, therefore, at least the aromatic ring in the side chain of 1 is indispensable for developing anti-cancer leads with potent anti-proliferative activity and limited side effects. In accordance with the binding affinity, the concentration of 3 necessary to induce PKCδ-GFP translocation to the plasma membrane and perinuclear regions in HEK293 cells was higher than that of 1 and 2. However, the translocation profiles for PKCδ-GFP due to induction by 1–3 were similar.
Collapse
|
12
|
Ball M, Gregson T, Omori H, Thomas EJ. Syntheses of C17–C27 fragments of 20-deoxybryostatins for assembly using Julia and metathesis reactions. Org Biomol Chem 2017; 15:2740-2767. [DOI: 10.1039/c7ob00076f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two approaches to the synthesis of compounds corresponding to the C17–C27 fragment of the 20-deoxybryostatins are described.
Collapse
Affiliation(s)
- Matthew Ball
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Thomas Gregson
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Hiroki Omori
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
13
|
Dumeunier R, Gregson T, MacCormick S, Omori H, Thomas EJ. Some limitations of an approach to the assembly of bryostatins by ring-closing metathesis. Org Biomol Chem 2017; 15:2768-2783. [DOI: 10.1039/c7ob00079k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preliminary studies into the use of ring-closing metathesis (RCM) in a convergent approach for the total synthesis of bryostatins are described.
Collapse
Affiliation(s)
- Raphaël Dumeunier
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Thomas Gregson
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | | | - Hiroki Omori
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
14
|
Ketcham JM, Volchkov I, Chen TY, Blumberg PM, Kedei N, Lewin NE, Krische MJ. Evaluation of Chromane-Based Bryostatin Analogues Prepared via Hydrogen-Mediated C-C Bond Formation: Potency Does Not Confer Bryostatin-like Biology. J Am Chem Soc 2016; 138:13415-13423. [PMID: 27676096 PMCID: PMC5094189 DOI: 10.1021/jacs.6b08695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and biological evaluation of chromane-containing bryostatin analogues WN-2-WN-7 and the previously reported salicylate-based analogue WN-8 are described. Analogues WN-2-WN-7 are prepared through convergent assembly of the chromane-containing fragment B-I with the "binding domain" fragment A-I or its C26-des-methyl congener, fragment A-II. The synthesis of fragment B-I features enantioselective double C-H allylation of 1,3-propanediol to form the C2-symmetric diol 3 and Heck cyclization of bromo-diene 5 to form the chromane core. The synthesis of salicylate WN-8 is accomplished through the union of fragments A-III and B-II. The highest binding affinities for PKCα are observed for the C26-des-methyl analogues WN-3 (Ki = 63.9 nM) and WN-7 (Ki = 63.1 nM). All analogues, WN-2-WN-8, inhibited growth of Toledo cells, with the most potent analogue being WN-7. This response, however, does not distinguish between phorbol ester-like and bryostatin-like behavior. In contrast, while many of the analogues contain a conserved C-ring in the binding domain and other features common to analogues with bryostatin-like properties, all analogues evaluated in the U937 proliferation and cell attachment assays displayed phorbol ester-like and/or toxic behavior, including WN-8, for which "bryostatin-like PKC modulatory activities" previously was suggested solely on the basis of PKC binding. These results underscore the importance of considering downstream biological effects, as tumor suppression cannot be inferred from potent PKC binding.
Collapse
Affiliation(s)
- John M. Ketcham
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Ivan Volchkov
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Te-Yu Chen
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Nancy E. Lewin
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| |
Collapse
|
15
|
Petersen ME, Kedei N, Lewin NE, Blumberg PM, Keck GE. Replacement of the Bryostatin A- and B-Pyran Rings With Phenyl Rings Leads to Loss of High Affinity Binding With PKC. Tetrahedron Lett 2016; 57:4749-4753. [PMID: 27713589 DOI: 10.1016/j.tetlet.2016.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We describe a convergent synthesis of a bryostatin analogue in which the natural A- and B-ring pyrans have been replaced by phenyl rings. The new analogue exhibited PMA like behavior in cell assays, but failed to maintain high affinity binding for PKC, despite retaining an unaltered C-ring 'binding domain'.
Collapse
Affiliation(s)
- Mark E Petersen
- University of Utah, Department of Chemistry, Salt Lake City, UT, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Gary E Keck
- University of Utah, Department of Chemistry, Salt Lake City, UT, 84112, USA
| |
Collapse
|
16
|
Baumann DO, McGowan KM, Kedei N, Peach ML, Blumberg PM, Keck GE. Synthesis and Biological Evaluation of Several Bryostatin Analogues Bearing a Diacylglycerol Lactone C-Ring. J Org Chem 2016; 81:7862-83. [PMID: 27494208 PMCID: PMC6957265 DOI: 10.1021/acs.joc.6b01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an initial step in designing a simplified bryostatin hybrid molecule, three bryostatin analogues bearing a diacylglycerol lactone-based C-ring, which possessed the requisite pharmacophores for binding to protein kinase C (PKC) together with a modified bryostatin-like A- and B-ring region, were synthesized and evaluated. Merle 46 and Merle 47 exhibited binding affinity to PKC alpha with Ki values of 7000 ± 990 and 4940 ± 470 nM, respectively. Reinstallation of the trans-olefin and gem-dimethyl group present in bryostatin 1 in Merle 48 resulted in improved binding affinity, 363 ± 42 nM. While Merle 46 and 47 were only marginally active biologically, Merle 48 showed sufficient activity on the U937 cells to confirm that it was PMA-like for growth and attachment, as predicted by the substitution pattern of its A- and B-rings.
Collapse
Affiliation(s)
- David O. Baumann
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin M. McGowan
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program, Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Gary E. Keck
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Kelsey JS, Cataisson C, Chen J, Herrmann MA, Petersen ME, Baumann DO, McGowan KM, Yuspa SH, Keck GE, Blumberg PM. Biological activity of the bryostatin analog Merle 23 on mouse epidermal cells and mouse skin. Mol Carcinog 2016; 55:2183-2195. [PMID: 26859836 DOI: 10.1002/mc.22460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/19/2022]
Abstract
Bryostatin 1, a complex macrocyclic lactone, is the subject of multiple clinical trials for cancer chemotherapy. Although bryostatin 1 biochemically functions like the classic mouse skin tumor promoter phorbol 12-myristate 13-acetate (PMA) to bind to and activate protein kinase C, paradoxically, it fails to induce many of the typical phorbol ester responses, including tumor promotion. Intense synthetic efforts are currently underway to develop simplified bryostatin analogs that preserve the critical functional features of bryostatin 1, including its lack of tumor promoting activity. The degree to which bryostatin analogs maintain the unique pattern of biological behavior of bryostatin 1 depends on the specific cellular system and the specific response. Merle 23 is a significantly simplified bryostatin analog that retains bryostatin like activity only to a limited extent. Here, we show that in mouse epidermal cells the activity of Merle 23 was either similar to bryostatin 1 or intermediate between bryostatin 1 and PMA, depending on the specific parameter examined. We then examined the hyperplastic and tumor promoting activity of Merle 23 on mouse skin. Merle 23 showed substantially reduced hyperplasia and was not tumor promoting at a dose comparable to that for PMA. These results suggest that there may be substantial flexibility in the design of bryostatin analogs that retain its lack of tumor promoting activity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jinqiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle A Herrmann
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mark E Petersen
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - David O Baumann
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Kevin M McGowan
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Gary E Keck
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
18
|
Ball M, Baron A, Bradshaw B, Dumeunier R, O'Brien M, Thomas EJ. The evolution of a stereoselective synthesis of the C1–C16 fragment of bryostatins. Org Biomol Chem 2016; 14:9650-9681. [DOI: 10.1039/c6ob01804a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Scaleable syntheses of the C1–C16 fragment of bryostatins are described.
Collapse
Affiliation(s)
- Matthew Ball
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Anne Baron
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Ben Bradshaw
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Raphaël Dumeunier
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Matthew O'Brien
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
19
|
Russo P, Kisialiou A, Lamonaca P, Moroni R, Prinzi G, Fini M. New Drugs from Marine Organisms in Alzheimer's Disease. Mar Drugs 2015; 14:5. [PMID: 26712769 PMCID: PMC4728502 DOI: 10.3390/md14010005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder. Current approved drugs may only ameliorate symptoms in a restricted number of patients and for a restricted period of time. Currently, there is a translational research challenge into identifying the new effective drugs and their respective new therapeutic targets in AD and other neurodegenerative disorders. In this review, selected examples of marine-derived compounds in neurodegeneration, specifically in AD field are reported. The emphasis has been done on compounds and their possible relevant biological activities. The proposed drug development paradigm and current hypotheses should be accurately investigated in the future of AD therapy directions although taking into account successful examples of such approach represented by Cytarabine, Trabectedin, Eribulin and Ziconotide. We review a complexity of the translational research for such a development of new therapies for AD. Bryostatin is a prominent candidate for the therapy of AD and other types of dementia in humans.
Collapse
Affiliation(s)
- Patrizia Russo
- Clinical and Molecular Epidemiology Division, IRCCS "San RaffaelePisana" Via di Valcannuta, 247, RomeI-00166, Italy.
| | - Aliaksei Kisialiou
- Clinical and Molecular Epidemiology Division, IRCCS "San RaffaelePisana" Via di Valcannuta, 247, RomeI-00166, Italy.
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology Division, IRCCS "San RaffaelePisana" Via di Valcannuta, 247, RomeI-00166, Italy.
| | - Rossana Moroni
- Clinical and Molecular Epidemiology Division, IRCCS "San RaffaelePisana" Via di Valcannuta, 247, RomeI-00166, Italy.
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology Division, IRCCS "San RaffaelePisana" Via di Valcannuta, 247, RomeI-00166, Italy.
| | - Massimo Fini
- Scientific Direction, IRCCS "San RaffaelePisana" Via di Valcannuta, 247, Rome I-00166, Italy.
| |
Collapse
|
20
|
Mears PR, Thomas EJ. Synthesis of C16–C27-fragments of bryostatins modified by 20,20-difluorination. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Kraft M, Poudel YB, Kedei N, Lewin N, Peach ML, Blumberg PM, Keck GE. Synthesis of a des-B-ring bryostatin analogue leads to an unexpected ring expansion of the bryolactone core. J Am Chem Soc 2014; 136:13202-8. [PMID: 25207434 PMCID: PMC4183620 DOI: 10.1021/ja5078188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/28/2022]
Abstract
A convergent synthesis of a des-B-ring bryostatin analogue is described. This analogue was found to undergo an unexpected ring expansion of the bryolactone core to generate the corresponding 21-membered macrocycle. The parent analogue and the ring-expanded product both displayed nanomolar binding affinity for PKC. Despite containing A-ring substitution identical to that of bryostatin 1 and displaying bryostatin-like biological function, the des-B-ring analogues displayed a phorbol-like biological function in cells. These studies shed new light on the role of the bryostatin B-ring in conferring bryo-like biological function to bryostatin analogues.
Collapse
Affiliation(s)
- Matthew
B. Kraft
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yam B. Poudel
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Nancy
E. Lewin
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program,
Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Gary E. Keck
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Andrews IP, Ketcham JM, Blumberg PM, Kedei N, Lewin N, Peach ML, Krische MJ. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties. J Am Chem Soc 2014; 136:13209-16. [PMID: 25207655 PMCID: PMC4183601 DOI: 10.1021/ja507825s] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 01/31/2023]
Abstract
The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity.
Collapse
Affiliation(s)
- Ian P. Andrews
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| | - John M. Ketcham
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Nancy
E. Lewin
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program,
Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Michael J. Krische
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Irie K, Yanagita RC. Synthesis and Biological Activities of Simplified Analogs of the Natural PKC Ligands, Bryostatin-1 and Aplysiatoxin. CHEM REC 2014; 14:251-67. [DOI: 10.1002/tcr.201300036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Ryo C. Yanagita
- Department of Applied Biological Science; Faculty of Agriculture, Kagawa University; Kagawa 761-0795 Japan
| |
Collapse
|
24
|
Kedei N, Telek A, Michalowski AM, Kraft MB, Li W, Poudel YB, Rudra A, Petersen ME, Keck GE, Blumberg PM. Comparison of transcriptional response to phorbol ester, bryostatin 1, and bryostatin analogs in LNCaP and U937 cancer cell lines provides insight into their differential mechanism of action. Biochem Pharmacol 2013; 85:313-24. [PMID: 23146662 PMCID: PMC3553297 DOI: 10.1016/j.bcp.2012.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022]
Abstract
Bryostatin 1, like the phorbol esters, binds to and activates protein kinase C (PKC) but paradoxically antagonizes many but not all phorbol ester responses. Previously, we have compared patterns of biological response to bryostatin 1, phorbol ester, and the bryostatin 1 derivative Merle 23 in two human cancer cell lines, LNCaP and U937. Bryostatin 1 fails to induce a typical phorbol ester biological response in either cell line, whereas Merle 23 resembles phorbol ester in the U937 cells and bryostatin 1 in the LNCaP cells. Here, we have compared the pattern of their transcriptional response in both cell lines. We examined by qPCR the transcriptional response as a function of dose and time for a series of genes regulated by PKCs. In both cell lines bryostatin 1 differed primarily from phorbol ester in having a shorter duration of transcriptional modulation. This was not due to bryostatin 1 instability, since bryostatin 1 suppressed the phorbol ester response. In both cell lines Merle 23 induced a pattern of transcription largely like that of phorbol ester although with a modest reduction at later times in the LNCaP cells, suggesting that the difference in biological response of the two cell lines to Merle 23 lies downstream of this transcriptional regulation. For a series of bryostatins and analogs which ranged from bryostatin 1-like to phorbol ester-like in activity on the U937 cells, the duration of transcriptional response correlated with the pattern of biological activity, suggesting that this may provide a robust platform for structure activity analysis.
Collapse
Affiliation(s)
- N Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|