1
|
Biliz Y, Hasdemir B, Başpınar Küçük H, Zaim M, Şentürk AM, Müdüroğlu Kırmızıbekmez A, Kara İ. Novel N-Acyl Hydrazone Compounds as Promising Anticancer Agents: Synthesis and Molecular Docking Studies. ACS OMEGA 2023; 8:20073-20084. [PMID: 37305237 PMCID: PMC10249086 DOI: 10.1021/acsomega.3c02361] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new series of N-acyl hydrazones 7a-e, 8a-e, and 9a-e, starting from methyl δ-oxo pentanoate with different substituted groups 1a-e, were synthesized as anticancer agents. The structures of obtained target molecules were identified by spectrometric analysis methods (FT-IR, 11H NMR, 13C NMR, and LC-MS). The antiproliferative activity of the novel N-acyl hydrazones was evaluated on the breast (MCF-7) and prostate (PC-3) cancer cell lines by an MTT assay. Additionally, breast epithelial cells (ME-16C) were used as reference normal cells. All newly synthesized compounds 7a-e, 8a-e, and 9a-e exhibited selective antiproliferative activity with high toxicity to both cancer cells simultaneously without any toxicity to normal cells. Among these novel N-acyl hydrazones, 7a-e showed the most potent anticancer activities with IC50 values at 7.52 ± 0.32-25.41 ± 0.82 and 10.19 ± 0.52-57.33 ± 0.92 μM against MCF-7 and PC-3 cells, respectively. Also, molecular docking studies were applied to comprehend potential molecular interactions between compounds and target proteins. It was seen that the docking calculations and the experimental data are in good agreement.
Collapse
Affiliation(s)
- Yağmur Biliz
- Institute
of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey
| | - Belma Hasdemir
- Department
of Chemistry, Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Hatice Başpınar Küçük
- Department
of Chemistry, Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Merve Zaim
- SANKARA
Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul 34320, Turkey
| | - Ahmet Mesut Şentürk
- Department
of Pharmeceutical Chemistry, Faculty of Pharmacy, Istanbul Biruni University, Topkapı, Istanbul 34010, Turkey
| | - Aynur Müdüroğlu Kırmızıbekmez
- Department
of Physical Therapy and Rehabilitation, School of Health Sciences, Nisantasi University, Maslak, Istanbul 34398, Turkey
| | - İhsan Kara
- SANKARA
Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
2
|
Morales-Manrique C, Baquero EA, Guevara-Pulido J. Recent Advances in the Synthesis of 3,4-Dihydropyran-2-Ones Organocatalyzed by N-Heterocyclic Carbenes. Molecules 2023; 28:molecules28093743. [PMID: 37175154 PMCID: PMC10179788 DOI: 10.3390/molecules28093743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, N-heterocyclic carbenes (NHC) have gained recognition as versatile molecules capable of acting as organocatalysts in various reactions, particularly through the activation of aldehydes via Breslow-type adducts. This organocatalytic activation has enabled the production of numerous 3,4-dihydropyran-2-ones and related derivatives. In this review, we provide an overview of the production of 3,4-dihydropyran-2-ones and derivatives via organocatalytic processes involving NHCs over the past eight years. These processes involve the use of a diverse range of substrates, catalysts, and reaction conditions, which can be classified into [4+2]-and [3+3]-type cycloadditions, primarily aimed at synthesizing this skeleton due to its biological activity and multiple stereocenters. These processes are scaled up to the gram scale, and the resulting products are often directed towards epimerization and functionalization to produce more complex molecules with potential applications in the biological field. Finally, we provide a perspective and the future directions of this topic in organic synthesis.
Collapse
Affiliation(s)
- Camilo Morales-Manrique
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| | - Edwin A Baquero
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
| | - James Guevara-Pulido
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| |
Collapse
|
3
|
Aydın E, Şentürk AM, Küçük HB, Güzel M. Cytotoxic Activity and Docking Studies of 2-arenoxybenzaldehyde N-acyl Hydrazone and 1,3,4-Oxadiazole Derivatives against Various Cancer Cell Lines. Molecules 2022; 27:7309. [PMID: 36364134 PMCID: PMC9657749 DOI: 10.3390/molecules27217309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 08/25/2023] Open
Abstract
To understand whether previously synthesized novel hydrazone and oxadiazole derivatives have promising anticancer effects, docking studies and in vitro toxicity assays were performed on A-549, MDA-MB-231, and PC-3 cell lines. The antiproliferative properties of the compounds were investigated using molecular docking experiments. Each compound's best-docked poses, binding affinity, and receptor-ligand interaction were evaluated. Compounds' molecular weights, logPs, TPSAs, abilities to pass the blood-brain barrier, GI absorption qualities, and CYPP450 inhibition have been given. When the activities of these molecules were examined in vitro, for the A-549 cell line, hydrazone 1e had the minimum IC50 value of 13.39 μM. For the MDA-MB-231 cell line, oxadiazole 2l demonstrated the lowest IC50 value, with 22.73 μM. For PC-3, hydrazone 1d showed the lowest C50 value of 9.38 μM. The three most promising compounds were determined as compounds 1e, 1d, and 2a based on their minimum IC50 values, and an additional scratch assay was performed for A-549 and MDA-MB-231 cells, which have high migration capacity, for the three most potent molecules; it was determined that these molecules did not show a significant antimetastatic effect.
Collapse
Affiliation(s)
- Esranur Aydın
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies SABITA, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Molecular Medicine, and Biotechnology, Health Sciences Institute, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ahmet Mesut Şentürk
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul Biruni University, 34010 Istanbul, Turkey
| | - Hatice Başpınar Küçük
- Department of Chemistry, Faculty of Engineering, Organic Chemistry Division, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey
| | - Mustafa Güzel
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies SABITA, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Molecular Medicine, and Biotechnology, Health Sciences Institute, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
4
|
Xu X, Chen Y, Fu Q, Ni D, Zhang J, Li X, Lu S. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem 2019; 34:361-374. [PMID: 30734603 PMCID: PMC6327997 DOI: 10.1080/14756366.2018.1553167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositide-dependent protein kinase-1 (PDK1) is an important protein in mediating the PI3K-AKT pathway and is thus identified as a promising target. The catalytic activity of PDK1 is tightly regulated by allosteric modulators, which bind to the PDK1 Interacting Fragment (PIF) pocket of the kinase domain that is topographically distinct from the orthosteric, ATP binding site. Allosteric modulators by attaching to the less conserved PIF-pocket have remarkable advantages such as higher selectivity, less side effect, and lower toxicity. Targeting allosteric PIF-pocket of PDK1 has become the focus of recent attention. In this review, we summarise the current advances in the structure-based discovery of PDK1 allosteric modulators. We will first present the three-dimensional structure of PDK1 and illustrate the allosteric regulatory mechanism of PDK1 through the modulation of the PIF-pocket. Then, the recent advances of PDK1 allosteric modulators targeting the PIF-pocket will be recapitulated detailly according to the structural similarity of allosteric modulators.
Collapse
Affiliation(s)
- Xinyuan Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Shao X, AbdelKhalek A, Abutaleb NS, Velagapudi UK, Yoganathan S, Seleem MN, Talele TT. Chemical Space Exploration around Thieno[3,2- d]pyrimidin-4(3 H)-one Scaffold Led to a Novel Class of Highly Active Clostridium difficile Inhibitors. J Med Chem 2019; 62:9772-9791. [PMID: 31584822 DOI: 10.1021/acs.jmedchem.9b01198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile infection (CDI) is the leading cause of healthcare-associated infection in the United States. Therefore, development of novel treatments for CDI is a high priority. Toward this goal, we began in vitro screening of a structurally diverse in-house library of 67 compounds against two pathogenic C. difficile strains (ATCC BAA 1870 and ATCC 43255), which yielded a hit compound, 2-methyl-8-nitroquinazolin-4(3H)-one (2) with moderate potency (MIC = 312/156 μM). Optimization of 2 gave lead compound 6a (2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one) with improved potency (MIC = 19/38 μM), selectivity over normal gut microflora, CC50s > 606 μM against mammalian cell lines, and acceptable stability in simulated gastric and intestinal fluid. Further optimization of 6a at C2-, N3-, C4-, and C7-positions resulted in a library of >50 compounds with MICs ranging from 3 to 800 μM against clinical isolates of C. difficile. Compound 8f (MIC = 3/6 μM) was identified as a promising lead for further optimization.
Collapse
Affiliation(s)
- Xuwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Ahmed AbdelKhalek
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease , West Lafayette , Indiana 47907-2027 , United States
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| |
Collapse
|
6
|
Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur J Med Chem 2016; 112:298-346. [PMID: 26907156 DOI: 10.1016/j.ejmech.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors.
Collapse
|
7
|
Mortenson PN, Berdini V, O'Reilly M. Fragment-based approaches to the discovery of kinase inhibitors. Methods Enzymol 2014; 548:69-92. [PMID: 25399642 DOI: 10.1016/b978-0-12-397918-6.00003-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.
Collapse
|