1
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Monsen RC, DeLeeuw LW, Dean WL, Gray RD, Chakravarthy S, Hopkins JB, Chaires JB, Trent JO. Long promoter sequences form higher-order G-quadruplexes: an integrative structural biology study of c-Myc, k-Ras and c-Kit promoter sequences. Nucleic Acids Res 2022; 50:4127-4147. [PMID: 35325198 PMCID: PMC9023277 DOI: 10.1093/nar/gkac182] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.
Collapse
Affiliation(s)
- Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lynn W DeLeeuw
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - William L Dean
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Debbarma S, Acharya PC. Targeting G-Quadruplex Dna For Cancer Chemotherapy. Curr Drug Discov Technol 2022; 19:e140222201110. [PMID: 35156574 DOI: 10.2174/1570163819666220214115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
The self-association of DNA formed by Hoogsteen hydrogen bonding comprises several layers of four guanine or G-tetrads or G4s. The distinct feature of G4s, such as the G-tetrads and loops, qualify structure-selective recognition by small molecules and various ligands and can act as potential anticancer therapeutic molecules. The G4 selective-ligands, can influence gene expression by targeting a nucleic acid structure rather than sequence. Telomere G4 can be targeted for cancer treatment by small molecules inhibiting the telomerase activity whereas c-MYC is capable of controlling transcription, can be targeted to influence transcription. The k-RAS is one of the most frequently encountered oncogenic driver mutations in pancreatic, colorectal, and lung cancers. The k-RAS oncogene plays important role in acquiring and increasing the drug resistance and can also be directly targeted by small molecules to combat k-RAS mutant tumors. Modular G4 ligands with different functional groups, side chains and rotatable bonds as well as conformation affect the binding affinity/selectivity in cancer chemotherapeutic interventions. These modular G4 ligands act by targeting the diversity of G4 loops and groves and assists to develop more drug-like compounds with selectivity. In this review, we present the recent research on synthetic G4 DNA-interacting ligands as an approach toward the discovery of target specific anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Sumanta Debbarma
- Department of Pharmacy, Tripura University, Suryamaninagar-799022, India
| | | |
Collapse
|
4
|
Fleming AM, Burrows CJ. Oxidative stress-mediated epigenetic regulation by G-quadruplexes. NAR Cancer 2021; 3:zcab038. [PMID: 34541539 PMCID: PMC8445369 DOI: 10.1093/narcan/zcab038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
5
|
Kulkarni S, Kaur K, Jaitak V. Recent Developments in Oxazole Derivatives as Anticancer Agents: Review on Synthetic Strategies, Mechanism of Action and SAR studies. Anticancer Agents Med Chem 2021; 22:1859-1882. [PMID: 34525925 DOI: 10.2174/1871520621666210915095421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the world's third deadliest disease. Despite the availability of numerous treatments, researchers are focusing on the development of new drugs lacking resistance and toxicity issues. Many newly synthesized drugs fail to reach clinical trials due to poor pharmacokinetic properties. Therefore, there is an imperative requisite to expand novel anticancer agents with in vivo efficacy. OBJECTIVE This review emphasizes synthetic methods, contemporary strategies used for the inclusion of oxazole moiety, mechanistic targets along with comprehensive structure-activity relationship studies to provide perspective into the rational design of highly efficient oxazole-based anticancer drugs. METHODS Literature related to oxazole derivatives engaged in cancer research is reviewed. This article gives a detailed account of synthetic strategies, targets of oxazole in cancer, including STAT3, Microtubules, G-quadruplex, DNA topoisomerases, DNA damage, Protein kinases, miscellaneous targets, in vitro studies, and some SAR studies. RESULTS Oxazole derivatives possess potent anticancer activity by inhibiting novel targets such as STAT3 and G-quadruplex. Oxazoles also inhibit tubulin protein to induce apoptosis in cancer cells. Some other targets such as DNA topoisomerase enzyme, protein kinases, and miscellaneous targets including Cdc25, mitochondrial enzymes, HDAC, LSD1, HPV E2 TAD, NQO1, Aromatase, BCl-6, Estrogen receptor, GRP-78, and Keap-Nrf2 pathway are inhibited by oxazole derivatives Many derivatives showed excellent potencies on various cancer cell lines with IC50 values in nanomolar concentrations. CONCLUSION Oxazole is a five-membered heterocycle, with oxygen and nitrogen at 1 and 3 positions respectively. It is often combined with other pharmacophores in the expansion of novel anticancer drugs. In summary, oxazole is a promising entity to develop new anticancer drugs.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151 401. India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151 401. India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151 401. India
| |
Collapse
|
6
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
7
|
Kakkar S, Narasimhan B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem 2019; 13:16. [PMID: 31384765 PMCID: PMC6661760 DOI: 10.1186/s13065-019-0531-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
The utility of oxazole as intermediates for the synthesis of new chemical entities in medicinal chemistry have been increased in the past few years. Oxazole is an important heterocyclic nucleus having a wide spectrum of biological activities which drew the attention of researchers round the globe to synthesize various oxazole derivatives and screen them for their various biological activities. The present review article aims to review the work reported on therapeutic potentials of oxazole scaffolds which are valuable for medical applications during new millennium.
Collapse
Affiliation(s)
- Saloni Kakkar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | | |
Collapse
|
8
|
Naphthalene Diimides as Multimodal G-Quadruplex-Selective Ligands. Molecules 2019; 24:molecules24030426. [PMID: 30682828 PMCID: PMC6384834 DOI: 10.3390/molecules24030426] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acids structures that can form in guanine-rich sequences. Following the observation that G-quadruplexes are particularly abundant in genomic regions related to cancer, such as telomeres and oncogenes promoters, several G-quadruplex-binding molecules have been developed for therapeutic purposes. Among them, naphthalene diimide derivatives have reported versatility, consistent selectivity and high affinity toward the G-quadruplex structures. In this review, we present the chemical features, synthesis and peculiar optoelectronic properties (absorption, emission, redox) that make naphtalene diimides so versatile for biomedical applications. We present the latest developments on naphthalene diimides as G-quadruplex ligands, focusing on their ability to bind G-quadruplexes at telomeres and oncogene promoters with consequent anticancer activity. Their different binding modes (reversible versus irreversible/covalent) towards G-quadruplexes and their additional use as antimicrobial agents are also presented and discussed.
Collapse
|
9
|
Kakkar S, Kumar S, Lim SM, Ramasamy K, Mani V, Shah SAA, Narasimhan B. Design, synthesis and biological evaluation of 3-(2-aminooxazol-5-yl)-2H-chromen-2-one derivatives. Chem Cent J 2018; 12:130. [PMID: 30515643 PMCID: PMC6768039 DOI: 10.1186/s13065-018-0499-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In view of wide range of biological activities of oxazole, a new series of oxazole analogues was synthesized and its chemical structures were confirmed by spectral data (Proton/Carbon-NMR, IR, MS etc.). The synthesized oxazole derivatives were screened for their antimicrobial and antiproliferative activities. RESULTS AND DISCUSSION The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively. CONCLUSION The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50 = 71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50 = 74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
Collapse
Affiliation(s)
- Saloni Kakkar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA (UiTM), PuncakAlam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | |
Collapse
|
10
|
Oxadiazole/Pyridine-Based Ligands: A Structural Tuning for Enhancing G-Quadruplex Binding. Molecules 2018; 23:molecules23092162. [PMID: 30154319 PMCID: PMC6225118 DOI: 10.3390/molecules23092162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Non-macrocyclic heteroaryls represent a valuable class of ligands for nucleic acid recognition. In this regard, non-macrocyclic pyridyl polyoxazoles and polyoxadiazoles were recently identified as selective G-quadruplex stabilizing compounds with high cytotoxicity and promising anticancer activity. Herein, we describe the synthesis of a new family of heteroaryls containing oxadiazole and pyridine moieties targeting DNA G-quadruplexes. To perform a structure–activity analysis identifying determinants of activity and selectivity, we followed a convergent synthetic pathway to modulate the nature and number of the heterocycles (1,3-oxazole vs. 1,2,4-oxadiazole and pyridine vs. benzene). Each ligand was evaluated towards secondary nucleic acid structures, which have been chosen as a prototype to mimic cancer-associated G-quadruplex structures (e.g., the human telomeric sequence, c-myc and c-kit promoters). Interestingly, heptapyridyl-oxadiazole compounds showed preferential binding towards the telomeric sequence (22AG) in competitive conditions vs. duplex DNA. In addition, G4-FID assays suggest a different binding mode from the classical stacking on the external G-quartet. Additionally, CD titrations in the presence of the two most promising compounds for affinity, TOxAzaPy and TOxAzaPhen, display a structural transition of 22AG in K-rich buffer. This investigation suggests that the pyridyl-oxadiazole motif is a promising recognition element for G-quadruplexes, combining seven heteroaryls in a single binding unit.
Collapse
|
11
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Das RN, Chevret E, Desplat V, Rubio S, Mergny JL, Guillon J. Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex. Molecules 2017; 23:molecules23010081. [PMID: 29301210 PMCID: PMC6017375 DOI: 10.3390/molecules23010081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 μM concentration for the most potent ligand 1c. The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.
Collapse
Affiliation(s)
- Rabindra Nath Das
- Université de Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, UFR des Sciences Pharmaceutiques, 33076 Bordeaux CEDEX, France.
| | - Edith Chevret
- Université de Bordeaux, INSERM U1053, Cutaneous Lymphoma Oncogenesis Team, 33076 Bordeaux CEDEX, France.
| | - Vanessa Desplat
- Université de Bordeaux, INSERM U1035, Cellules souches hématopoïétiques normales et leucémiques, UFR des Sciences Pharmaceutiques, 33076 Bordeaux CEDEX, France.
| | - Sandra Rubio
- Université de Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, UFR des Sciences Pharmaceutiques, 33076 Bordeaux CEDEX, France.
| | - Jean-Louis Mergny
- Université de Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, UFR des Sciences Pharmaceutiques, 33076 Bordeaux CEDEX, France.
- Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jean Guillon
- Université de Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, UFR des Sciences Pharmaceutiques, 33076 Bordeaux CEDEX, France.
| |
Collapse
|
13
|
Abstract
Quadruplex-forming sequences are widely prevalent in human and other genomes, including bacterial ones. These sequences are over-represented in eukaryotic telomeres, promoters, and 5' untranslated regions. They can form quadruplex structures, which may be transient in many situations in normal cells since they can be effectively resolved by helicase action. Mutated helicases in cancer cells are unable to unwind quadruplexes, which are impediments to transcription, translation, or replication, depending on their location within a particular gene. Small molecules that can stabilize quadruplex structures augment these effects and produce cell and proliferation growth inhibition. This article surveys the chemical biology of quadruplexes. It critically examines the major classes of quadruplex-binding small molecules that have been developed to date and the various approaches to discovering selective agents. The challenges of requiring (and achieving) small-molecule targeted selectivity for a particular quadruplex are discussed in relation to the potential of these small molecules as clinically useful therapeutic agents.
Collapse
Affiliation(s)
- Stephen Neidle
- UCL School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
14
|
Brito H, Martins AC, Lavrado J, Mendes E, Francisco AP, Santos SA, Ohnmacht SA, Kim NS, Rodrigues CMP, Moreira R, Neidle S, Borralho PM, Paulo A. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS One 2015; 10:e0126891. [PMID: 26024321 PMCID: PMC4449006 DOI: 10.1371/journal.pone.0126891] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A guanine-rich strand within the promoter of the KRAS gene can fold into an intra-molecular G-quadruplex structure (G4), which has an important role in the regulation of KRAS transcription. We have previously identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains (IQ3A) as effective G4 stabilizers and promising selective anticancer leads. Herein we investigated the anticancer mechanism of action of these compounds, which we hypothesized due to stabilization of the G4 sequence in the KRAS promoter and subsequent down-regulation of gene expression. METHODOLOGY/PRINCIPAL FINDINGS IQ3A compounds showed greater stabilization of G4 compared to duplex DNA structures and reduced KRAS promoter activity in a dual luciferase reporter assay. Moreover, IQ3A compounds showed high anti-proliferative activity in HCT116 and SW620 colon cancer cells (IC50 < 2.69 μM), without eliciting cell death in non-malignant HEK293T human embryonic kidney, and human colon fibroblasts CCD18co. IQ3A compounds significantly reduced KRAS mRNA and protein steady-state levels at IC50 concentrations, and increased p53 protein steady-state levels and cell death by apoptosis in HCT116 cells (mut KRAS, wt p53). Furthermore, KRAS silencing in HCT116 p53 wild-type (p53(+/+)) and null (p53(-/-)) isogenic cell lines induced a higher level of cell death, and a higher IQ3A-induced cell death in HCT116 p53(+/+) compared to HCT116 p53(-/-). CONCLUSIONS Herein we provide evidence that G4 ligands such as IQ3A compounds can target G4 motifs present in KRAS promoter, down-regulate the expression of the mutant KRAS gene through inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer therapy strategy for colon cancer.
Collapse
Affiliation(s)
- Hugo Brito
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Martins
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Eduarda Mendes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Paula Francisco
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Sofia A. Santos
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stephan A. Ohnmacht
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Cecília M. P. Rodrigues
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Pedro M. Borralho
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- * E-mail: (PMB); (AP)
| | - Alexandra Paulo
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- * E-mail: (PMB); (AP)
| |
Collapse
|
15
|
Lavrado J, Ohnmacht SA, Correia I, Leitão C, Pisco S, Gunaratnam M, Moreira R, Neidle S, Santos DJVAD, Paulo A. Indolo[3,2-c]quinoline G-quadruplex stabilizers: a structural analysis of binding to the human telomeric G-quadruplex. ChemMedChem 2015; 10:836-49. [PMID: 25820698 DOI: 10.1002/cmdc.201500067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/04/2015] [Indexed: 12/22/2022]
Abstract
A library of 5-methylindolo[3,2-c]quinolones (IQc) with various substitution patterns of alkyldiamine side chains were evaluated for G-quadruplex (G4) binding mode and efficiency. Fluorescence resonance energy transfer melting assays showed that IQcs with a positive charge in the heteroaromatic nucleus and two weakly basic side chains are potent and selective human telomeric (HT) and gene promoter G4 stabilizers. Spectroscopic studies with HT G4 as a model showed that an IQc stabilizing complex involves the binding of two IQc molecules (2,9-bis{[3-(diethylamino)propyl]amino}-5-methyl-11H-indolo[3,2-c]quinolin-5-ium chloride, 3 d) per G4 unit, in two non-independent but equivalent binding sites. Molecular dynamics studies suggest that end-stacking of 3 d induces a conformational rearrangement in the G4 structure, driving the binding of a second 3 d ligand to a G4 groove. Modeling studies also suggest that 3 d, with two three-carbon side chains, has the appropriate geometry to participate in direct or water-mediated hydrogen bonding to the phosphate backbone and/or G4 loops, assisted by the terminal nitrogen atoms of the side chains. Additionally, antiproliferative studies showed that IQc compounds 2 d (2-{[3-(diethylamino)propyl]amino}-5-methyl-11H-indolo[3,2-c]quinolin-5-ium chloride) and 3 d are 7- to 12-fold more selective for human malignant cell lines than for nonmalignant fibroblasts.
Collapse
Affiliation(s)
- João Lavrado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon (Portugal).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Small-molecule quadruplex-targeted drug discovery. Bioorg Med Chem Lett 2014; 24:2602-12. [DOI: 10.1016/j.bmcl.2014.04.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023]
|
17
|
Ohnmacht SA, Varavipour E, Nanjunda R, Pazitna I, Di Vita G, Gunaratnam M, Kumar A, Ismail MA, Boykin DW, Wilson WD, Neidle S. Discovery of new G-quadruplex binding chemotypes. Chem Commun (Camb) 2014; 50:960-3. [PMID: 24302123 PMCID: PMC3901018 DOI: 10.1039/c3cc48616h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here on the discovery and preliminary evaluation of a novel non-macrocyclic low molecular weight quadruplex-stabilizing chemotype. The lead compounds, based on a furan core, show high G-quadruplex stabilisation and selectivity as well as potent in vitro anti-proliferative activity.
Collapse
|
18
|
Ohnmacht SA, Ciancimino C, Vignaroli G, Gunaratnam M, Neidle S. Optimization of anti-proliferative activity using a screening approach with a series of bis-heterocyclic G-quadruplex ligands. Bioorg Med Chem Lett 2013; 23:5351-5. [DOI: 10.1016/j.bmcl.2013.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
|
19
|
Lavrado J, Borralho PM, Ohnmacht SA, Castro RE, Rodrigues CMP, Moreira R, dos Santos DJVA, Neidle S, Paulo A. Synthesis, G-quadruplex stabilisation, docking studies, and effect on cancer cells of indolo[3,2-b]quinolines with one, two, or three basic side chains. ChemMedChem 2013; 8:1648-61. [PMID: 23960016 DOI: 10.1002/cmdc.201300288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 11/07/2022]
Abstract
G-quadruplex (G4) DNA structures in telomeres and oncogenic promoter regions are potential targets for cancer therapy, and G4 ligands have been shown to modulate telomerase activity and oncogene transcription. Herein we report the synthesis and G4 thermal stabilisation effects, determined by FRET melting assays, of 20 indolo[3,2-b]quinolines mono-, di-, and trisubstituted with basic side chains. Molecular modelling studies were also performed in an attempt to rationalise the ligands' binding poses with G4. Overall, the results suggest that ligand binding and G4 DNA thermal stabilisation increase with an N5-methyl or a 7-carboxylate group and propylamine side chains, whereas selectivity between G4 and duplex DNA appears to be modulated by the number and relative position of basic side chains. From all the indoloquinoline derivatives studied, the novel trisubstituted compounds 3 d and 4 d, bearing a 7-(aminoalkyl)carboxylate side chain, stand out as the most promising compounds; they show high G4 thermal stabilisation (ΔTm values between 17 and 8 °C) with an inter-G4 ΔTm trend of Hsp90A>KRas21R≈F21T>c-Kit2, 10-fold selectivity for G4 over duplex DNA, and 100-fold selectivity for the HCT116 cancer cell line (IC50 and IC90: <10 μM) over primary rat hepatocytes. Compounds 3 d and 4 d also decreased protein expression levels of Hsp90 and KRas in HCT116 cancer cells.
Collapse
Affiliation(s)
- João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon (Portugal)
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mpima S, Ohnmacht SA, Barletta M, Husby J, Pett LC, Gunaratnam M, Hilton ST, Neidle S. The influence of positional isomerism on G-quadruplex binding and anti-proliferative activity of tetra-substituted naphthalene diimide compounds. Bioorg Med Chem 2013; 21:6162-70. [PMID: 23769166 DOI: 10.1016/j.bmc.2013.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
The synthesis together with biophysical and biological evaluation of a series of tetra-substituted naphthalene diimide (ND) compounds, are presented. These compounds are positional isomers of a recently-described series of quadruplex-binding ND derivatives, in which the two N-methyl-piperidine-alkyl side-chains have now been interchanged with the positions of side-chains bearing a range of end-groups. Molecular dynamics simulations of a pair of positional isomers are in accord with the quadruplex stabilization and biological data for these compounds. Analysis of structure-activity data indicates that for compounds where the side-chains are not of equivalent length then the positional isomers described here tend to have improved cell proliferation potency and in some instances, superior quadruplex stabilization ability.
Collapse
Affiliation(s)
- Sheila Mpima
- The School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Micco M, Collie GW, Dale AG, Ohnmacht SA, Pazitna I, Gunaratnam M, Reszka AP, Neidle S. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J Med Chem 2013; 56:2959-74. [PMID: 23514618 DOI: 10.1021/jm301899y] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tetra-substituted naphthalene diimide (ND) derivatives with positively charged termini are potent stabilizers of human telomeric and gene promoter DNA quadruplexes and inhibit the growth of human cancer cells in vitro and in vivo. The present study reports the enhancement of the pharmacological properties of earlier ND compounds using structure-based design. Crystal structures of three complexes with human telomeric intramolecular quadruplexes demonstrate that two of the four strongly basic N-methyl-piperazine groups can be replaced by less basic morpholine groups with no loss of intermolecular interactions in the grooves of the quadruplex. The new compounds retain high affinity to human telomeric quadruplex DNA but are 10-fold more potent against the MIA PaCa-2 pancreatic cancer cell line, with IC50 values of ~10 nM. The lead compound induces cellular senescence but does not inhibit telomerase activity at the nanomolar dosage levels required for inhibition of cellular proliferation. Gene array qPCR analysis of MIA PaCa-2 cells treated with the lead compound revealed significant dose-dependent modulation of a distinct subset of genes, including strong induction of DNA damage responsive genes CDKN1A, DDIT3, GADD45A/G, and PPM1D, and repression of genes involved in telomere maintenance, including hPOT1 and PARP1.
Collapse
Affiliation(s)
- Marialuisa Micco
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | | | | | | | | | | |
Collapse
|