1
|
Zhu Z, He X, Lv J, Xiao H, Pu Y, Hong J, Zeng K, Hu J, Yang G. Dicyanoimidazole resin with bisphenol A moiety: Synthesis, processing, properties, and composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhengzhu Zhu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Xian He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Jiangbo Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Hang Xiao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Yu Pu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Jinlang Hong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Ke Zeng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Jianghuai Hu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Gang Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu People's Republic of China
| |
Collapse
|
2
|
Samsonowicz-Górski J, Brodzka A, Ostaszewski R, Koszelewski D. Intensification of Double Kinetic Resolution of Chiral Amines and Alcohols via Chemoselective Formation of a Carbonate-Enzyme Intermediate. Molecules 2022; 27:molecules27144346. [PMID: 35889218 PMCID: PMC9319036 DOI: 10.3390/molecules27144346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chiral amines and alcohols are synthons of numerous pharmaceutically-relevant compounds. The previously developed enzymatic kinetic resolution approaches utilize a chiral racemic molecule and achiral acyl donor (or acyl acceptor). Thus, only one enantiodivergent step of the catalytic cycle is engaged, which does not fully exploit the enzyme’s abilities. The first carbonate-mediated example of simultaneous double chemoselective kinetic resolution of chiral amines and alcohols is described. Herein, we established a biocatalytic approach towards four optically-pure compounds (>99% ee, Enantioselectivity: E > 200) via double enzymatic kinetic resolution, engaging chiral organic carbonates as acyl donors. High enantioselectivity was ensured by extraordinary chemoselectivity in lipase-catalyzed formation of unsymmetrical organic carbonates and engaged in a process applicable for the synthesis of enantiopure organic precursors of valuable compounds. This study focused not only on preparative synthesis, but additionally the catalytic mechanism was discussed and the clear impact of this rarely observed carbonate-derived acyl enzyme was shown. The presented protocol is characterized by atom efficiency, acyl donor sustainability, easy acyl group removal, mild reaction conditions, and biocatalyst recyclability, which significantly decreases the cost of the reported process.
Collapse
|
3
|
Codony S, Valverde E, Leiva R, Brea J, Isabel Loza M, Morisseau C, Hammock BD, Vázquez S. Exploring the size of the lipophilic unit of the soluble epoxide hydrolase inhibitors. Bioorg Med Chem 2019; 27:115078. [PMID: 31488357 DOI: 10.1016/j.bmc.2019.115078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/31/2019] [Accepted: 08/25/2019] [Indexed: 01/18/2023]
Abstract
Soluble epoxide hydrolase (sEH) inhibitors are potential drugs for several diseases. Adamantyl ureas are excellent sEH inhibitors but have limited metabolic stability. Herein, we report the effect of replacing the adamantane group by alternative polycyclic hydrocarbons on sEH inhibition, solubility, permeability and metabolic stability. Compounds bearing smaller or larger polycyclic hydrocarbons than adamantane yielded all good inhibition potency of the human sEH (0.4 ≤ IC50 ≤ 21.7 nM), indicating that sEH is able to accommodate inhibitors of very different size. Human liver microsomal stability of diamantane containing inhibitors is lower than that of their corresponding adamantane counterparts.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
4
|
Karami L, Saboury AA, Rezaee E, Tabatabai SA. Investigation of the binding mode of 1, 3, 4-oxadiazole derivatives as amide-based inhibitors for soluble epoxide hydrolase (sEH) by molecular docking and MM-GBSA. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:445-459. [PMID: 27928588 DOI: 10.1007/s00249-016-1188-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/03/2016] [Accepted: 11/17/2016] [Indexed: 01/24/2023]
Abstract
The soluble epoxide hydrolase (sEH) enzyme plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. Inhibition of sEH provides a new approach to the treatment of inflammation, hypertension and atherosclerosis. In this study, the binding modes and inhibition mechanisms of the new oxadiazole-based amide inhibitors of the human soluble epoxide hydrolase were investigated by molecular docking and molecular dynamics (MD) simulation followed by the MM-GBSA method to calculate the binding free energy of each inhibitor to sEH. The results obtained from the binding free energy (ΔG binding) calculation and normal mode analysis indicate that the major favorable contributors are the van der Waals and electrostatic terms, whereas the polar solvation term opposes binding. In addition, a good agreement between the calculated ΔG binding and the experimental IC50 was obtained [correlation coefficient, r 2 = 0.89 (with) and 0.87 (without) entropy]. Besides, comparison of the enthalpy changes (ΔG MM-GBSA) with entropy changes (-TΔS) indicates that binding process of all inhibitors to sEH is enthalpy-driven. Based on the ΔG binding on per residue decomposition, Asp335 and Tyr383 residues from the active site and Trp336, Leu499 and His524 residues from hydrophobic pockets contribute the most to ΔG binding. Moreover, hydrogen bond analysis reveals that Tyr383, Tyr466 and Asp335 residues have an important role in the binding to inhibitors by forming hydrogen bonds with high occupancies. Our obtained results are useful for the understanding of the sEH-inhibitor interactions and may have great importance in the design of future sEH inhibitors.
Collapse
Affiliation(s)
- Leila Karami
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kitamura S, Hvorecny KL, Niu J, Hammock BD, Madden DR, Morisseau C. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa. J Med Chem 2016; 59:4790-9. [PMID: 27120257 DOI: 10.1021/acs.jmedchem.6b00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Kelli L Hvorecny
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , 7200 Vail Building, Hanover, New Hampshire 03755, United States
| | - Jun Niu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Dean R Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , 7200 Vail Building, Hanover, New Hampshire 03755, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
6
|
McLellan GJ, Aktas Z, Hennes-Beean E, Kolb AW, Larsen IV, Schmitz EJ, Clausius HR, Yang J, Hwang SH, Morisseau C, Inceoglu B, Hammock BD, Brandt CR. Effect of a Soluble Epoxide Hydrolase Inhibitor, UC1728, on LPS-Induced Uveitis in the Rabbit. ACTA ACUST UNITED AC 2016; 4. [PMID: 28066796 PMCID: PMC5218821 DOI: 10.13188/2334-2838.1000024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 epoxygenase isozymes convert free arachidonic acid into eicosanoids named epoxyeicosatrienoic acids (EETs) that have roles in regulating inflammation. EETs are rapidly converted to dihydroxyeicosatrienoic acids (DiHETs) by soluble epoxide hydrolase (sEH). Little is known about the potential role of these metabolites in uveitis, but conversion of EETs to DiHETs could contribute to the inflammation. We tested a potent and orally available inhibitor of sEH for its ability to reduce ocular inflammation in a rabbit LPS-induced model of uveitis. Rabbits were treated by subcutaneous injection with the sEH inhibitor (UC1728, 3 mg/kg), or the vehicle control (PEG400) and uveitis was assessed at 6, 24 and 48 h post-intracameral LPS injection using a modified Hackett-McDonald scoring system. Eyes treated by intra-cameral injection of PBS, or by aseptic preparation served as further controls. Signs of inflammation in this model were mild and transient. Treatment with UC1728 did not significantly reduce inflammation compared to animals treated with the PEG400 vehicle. Blood levels of UC1728 were a thousand fold higher than the in vitro determined inhibitory potency (IC50) of the compound suggesting a significant degree of inhibition of sEH in the rabbit. The lack of efficacy suggests that sEH or its substrates the EETs may not be involved in mediating inflammation in this model of uveitis.
Collapse
Affiliation(s)
- Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA; Comparative Ophthalmic Research Laboratories, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin, USA
| | - Zeynep Aktas
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; Department of Surgical Sciences, Gazi University, Turkey
| | - Elizabeth Hennes-Beean
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Inna V Larsen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Emily J Schmitz
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Hilary R Clausius
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; Comparative Ophthalmic Research Laboratories, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
7
|
Kim IH, Park YK, Nishiwaki H, Hammock BD, Nishi K. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase. Bioorg Med Chem 2015; 23:7199-210. [PMID: 26507430 DOI: 10.1016/j.bmc.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/01/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022]
Abstract
Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore.
Collapse
Affiliation(s)
- In-Hae Kim
- Department of Applied Bioscience, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yong-Kyu Park
- Department of Medicinal Chemistry, Hyundai Pharm Co., Ltd, Suwon, Gyonggi 443-270, Republic of Korea
| | - Hisashi Nishiwaki
- Department of Applied Bioscience, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Kosuke Nishi
- Department of Applied Bioscience, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
8
|
Kim IH, Lee IH, Nishiwaki H, Hammock BD, Nishi K. Structure-activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase. Bioorg Med Chem 2014; 22:1163-75. [PMID: 24433964 PMCID: PMC4172381 DOI: 10.1016/j.bmc.2013.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 12/21/2022]
Abstract
We explored both structure-activity relationships among substituted oxyoxalamides used as the primary pharmacophore of inhibitors of the human sEH and as a secondary pharmacophore to improve water solubility of inhibitors. When the oxyoxalamide function was modified with a variety of alkyls or substituted alkyls, compound 6 with a 2-adamantyl group and a benzyl group was found to be a potent sEH inhibitor, suggesting that the substituted oxyoxalamide function is a promising primary pharmacophore for the human sEH, and compound 6 can be a novel lead structure for the development of further improved oxyoxalamide or other related derivatives. In addition, introduction of substituted oxyoxalamide to inhibitors with an amide or urea primary pharmacophore produced significant improvements in inhibition potency and water solubility. In particular, the N,N,O-trimethyloxyoxalamide group in amide or urea inhibitors (26 and 31) was most effective among those tested for both inhibition and solubility. The results indicate that substituted oxyoxalamide function incorporated into amide or urea inhibitors is a useful secondary pharmacophore, and the resulting structures will be an important basis for the development of bioavailable sEH inhibitors.
Collapse
Affiliation(s)
- In-Hae Kim
- Department of Applied Bioscience, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - In-Hee Lee
- Department of Medicinal Chemistry, Hyundai Pharm Co., Ltd, Suwon, Gyonggi 443-270, Republic of Korea
| | - Hisashi Nishiwaki
- Department of Applied Bioscience, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kosuke Nishi
- Department of Applied Bioscience, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
9
|
Rezaee Zavareh E, Hedayati M, Hoghooghi Rad L, Shahhosseini S, Faizi M, Tabatabai SA. Design, synthesis and biological evaluation of 4-benzamidobenzoic Acid hydrazide derivatives as novel soluble epoxide hydrolase inhibitors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2014; 13:51-9. [PMID: 24711829 PMCID: PMC3977053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benzamidobenzoic acid hydrazide derivatives with hydrazide group as a novel secondary pharmacophore against sEH enzyme were developed. The designed compounds were synthesized in acceptable yield and their in vitro assay was determined. Most of the synthesized compounds have appropriate physical properties and exhibited considerable in-vitro sEH inhibitory activity in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoicacid (AUDA), a potent urea-based sEH inhibitor. 4-(2-(4-(4-chlorobenzamido) benzoyl)hydrazinyl)-4-oxobutanoic acid 6c was found to be the most potent inhibitor with inhibitory activity of 72% targeting sEH enzyme.
Collapse
Affiliation(s)
- Elham Rezaee Zavareh
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Laleh Hoghooghi Rad
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayyed Abbas Tabatabai
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Corresponding author:
E-mail:
| |
Collapse
|