1
|
Lu N, Zhang L, Tian Y, Yang J, Zheng S, Wang L, Guo W. Biosynthetic pathways and related genes regulation of bioactive ingredients in mulberry leaves. PLANT SIGNALING & BEHAVIOR 2023; 18:2287881. [PMID: 38014901 PMCID: PMC10761104 DOI: 10.1080/15592324.2023.2287881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Mulberry leaves are served not only as fodder for silkworms but also as potential functional food, exhibiting nutritional and medical benefits due to the complex and diverse constituents, including alkaloids, flavonoids, phenolic acids, and benzofurans, which possess a wide range of biological activities, such as anti-diabete, anti-oxidant, anti-inflammatory, and so on. Nevertheless, compared with the well-studied phytochemistry and pharmacology of mulberry leaves, the current understanding of the biosynthesis mechanisms and regulatory mechanisms of active ingredients in mulberry leaves remain unclear. Natural resources of these active ingredients are limited owing to their low contents in mulberry leaves tissues and the long growth cycle of mulberry. Biosynthesis is emerging as an alternative means for accumulation of the desired high-value compounds, which can broaden channels for their large-scale green productions. Therefore, this review summarizes the recent research advance on the correlative key genes, enzyme biocatalytic reactions and biosynthetic pathways of valuable natural ingredients (i.e. alkaloids, flavonoids, phenolic acids, and benzofurans) in mulberry leaves, thereby offering important insights for their further biomanufacturing.
Collapse
Affiliation(s)
- Na Lu
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yuqing Tian
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jinghua Yang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shicun Zheng
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Liang Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Wei Guo
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
2
|
Zhang S, Lin T, Zhang D, Chen X, Ge Y, Gao Q, Fan J. Use of the selected metal-dependent enzymes for exploring applicability of human annexin A1 as a purification tag. J Biosci Bioeng 2023; 136:423-429. [PMID: 37805288 DOI: 10.1016/j.jbiosc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/09/2023]
Abstract
Several fusion tags have been developed for non-chromatographic fusion protein purification. Previously, we identified that human annexin A1 as a novel N-terminal purification tag was used for purifying the fusion proteins produced in Escherichia coli through precipitation in 10 mM Ca2+ buffer, and redissolution of the precipitate in 15 mM EDTA buffer. In this work, we selected four metal-dependent enzymes including E. coli 5-aminolevulinate dehydratase, yeast 3-hydroxyanthranilate 3,4-dioxygenase, maize serine racemase and copper amine oxidase for investigating the annexin A1 tag applicability. Fusion of the His6-tag or the enzyme changed the behavior of precipitation-redissolution. The relatively high recovery yields of three tagged enzymes with the improved purities were obtained through two rounds of purification, whereas low recovery yield of the annexin A1 tagged maize amine oxidase was prepared. The added EDTA displayed different abilities to redissolve the fusion proteins precipitates in two precipitation-redissolution cycles. It inactivated three enzymes and obviously inhibited the activity of the fused maize serine racemase. Based on current findings, we believe that four enzymes could be applied for evaluating applicability of the proteins or peptides as affinity tags for chromatographic purification in a calcium dependent manner.
Collapse
Affiliation(s)
- Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Qing Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Yu JG, Tang JY, Wei R, Lan MF, Xiang RC, Zhang XC, Xiang QP. The first homosporous lycophyte genome revealed the association between the recent dynamic accumulation of LTR-RTs and genome size variation. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01366-0. [PMID: 37380791 DOI: 10.1007/s11103-023-01366-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
The contrasting genome size between homosporous and heterosporous plants is fascinating. Different from the heterosporous seed plants and mainly homosporous ferns, the lycophytes are either heterosporous (Isoetales and Selaginellales) or homosporous (Lycopodiales). Many lycophytes are the resource plants of Huperzine A (HupA) which is invaluable for treating Alzheimer's disease. For the seed-free vascular plants, several high-quality genomes of heterosporous Selaginella, homosporous ferns (maidenhair fern, monkey spider tree fern), and heterosporous ferns (Azolla) have been published and provided important insights into the origin and evolution of early land plants. However, the homosporous lycophyte genome has not been decoded. Here, we assembled the first homosporous lycophyte genome and conducted comparative genomic analyses by applying a reformed pipeline for filtering out non-plant sequences. The obtained genome size of Lycopodium clavatum is 2.30 Gb, distinguished in more than 85% repetitive elements of which 62% is long terminal repeat (LTR). This study disclosed a high birth rate and a low death rate of the LTR-RTs in homosporous lycophytes, but the opposite occurs in heterosporous lycophytes. we propose that the recent activity of LTR-RT is responsible for the immense genome size variation between homosporous and heterosporous lycophytes. By combing Ks analysis with a phylogenetic approach, we discovered two whole genome duplications (WGD). Morover, we identified all the five recognized key enzymes for the HupA biosynthetic pathway in the L. clavatum genome, but found this pathway incomplete in other major lineages of land plants. Overall, this study is of great importance for the medicinal utilization of lycophytes and the decoded genome data will be a key cornerstone to elucidate the evolution and biology of early vascular land plants.
Collapse
Affiliation(s)
- Ji-Gao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, China
| | - Jun-Yong Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Mei-Fang Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, China
| | - Rui-Chen Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
4
|
Parks HM, Cinelli MA, Bedewitz MA, Grabar JM, Hurney SM, Walker KD, Jones AD, Barry CS. Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna. THE NEW PHYTOLOGIST 2023; 237:1810-1825. [PMID: 36451537 PMCID: PMC10107824 DOI: 10.1111/nph.18651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ1 -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N-methyl Δ1 -pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich-like decarboxylative condensation of the N-methyl Δ1 -pyrrolinium cation with 2-O-malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono- and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.
Collapse
Affiliation(s)
- Hannah M. Parks
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Maris A. Cinelli
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | | | - Josh M. Grabar
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Steven M. Hurney
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - Kevin D. Walker
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - A. Daniel Jones
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Cornelius S. Barry
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
5
|
Xia H, Noushahi HA, Khan AH, Liu Y, Cosoveanu A, Cui L, Tang J, Iqbal S, Shu S. Genome sequencing of Colletotrichum gloeosporioides ESO026 reveals plausible pathway of HupA. Mol Biol Rep 2022; 49:11611-11622. [PMID: 36161578 DOI: 10.1007/s11033-022-07850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.
Collapse
Affiliation(s)
- Haiyang Xia
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Bio-Pharmaceuticals Institute , Taizhou University, 317000, Taizhou, China
| | - Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Liu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Andreea Cosoveanu
- Department of Botany, Ecology & Plant Physiology, CIPEV Group, Faculty of Science, Biology Section, Universidad de La Laguna, 38206, San Cristobal de La Laguna, Tenerife, Spain
| | - Lingli Cui
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Tang
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shehzad Iqbal
- Faculty of Agricultural Sciences, University of Talca, 3460000, Talca, Chile
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
6
|
Wang D, Zhao L, Wan J, Liu J, Wei Y, Ouyang Z, Yu X. Molecular cloning, expression, and functional analysis of copper amine oxidase gene from mulberry (Morus alba L.). Protein Expr Purif 2022; 201:106166. [PMID: 36174814 DOI: 10.1016/j.pep.2022.106166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
In this study, we investigated a key enzyme encoded by the gene copper amine oxidase (MaCAO), which is involved in the biosynthetic pathway of 1-deoxynojirimycin (DNJ)1, an active ingredient in mulberry leaves. The 1680 bp long MaCAO was successfully cloned (GenBank accession no: MH205733). Subsequently, MaCAO was heterologously expressed using a recombinant plasmid, pET-22b (+)/MaCAO in Escherichia coli BL21 (DE3). A protein with a molecular mass of 62.9 kDa was obtained, whose function was validated through enzymatic reaction. Bioinformatics analysis identified that MaCAO contained the same conserved domain as that of copper amine oxidases ("NYDY"). Furthermore, the tertiary structure of the predicted protein using homology modeling revealed 46% similarity with that of copper amine oxidase (Protein Data Bank ID: 1W2Z). Gas chromatography-mass spectrometry analysis of the enzymatic reaction revealed that MaCAO could catalyze 1,5-pentanediamine to produce 5-aminopentanal. Additionally, levels of mulberry leaf DNJ content were significantly positively correlated with expression levels of MaCAO (P < 0.001). Our results conclude that MaCAO is the key enzyme involved in the biosynthetic pathway of DNJ. The function of MaCAO is validated, providing a foundation for the further analysis of biosynthetic pathways of DNJ in mulberry leaves using tools of synthetic biology.
Collapse
Affiliation(s)
- Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Li Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jia Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
7
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
8
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Fu Y, Niu F, Jia H, Wang Y, Guo B, Wei Y. Reference gene selection for real-time quantitative PCR assays in different tissues of Huperzia serrata based on full-length transcriptome sequencing. PLANT DIRECT 2021; 5:e362. [PMID: 34849452 PMCID: PMC8611506 DOI: 10.1002/pld3.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Huperzia serrata (H. serrata) produces various types of effective lycopodium alkaloids, especially Huperzine A (HupA), which is a promising drug for the treatment of Alzheimer's disease. Numerous studies focused on the chemistry, bioactivities, toxicology, and clinical trials of HupA; however, the public genomic and transcriptomic resources are very limited for H. serrata research, especially for the selection of optimum reference genes. Based on the full-length transcriptome datasets and previous studies, 10 traditional and three new candidate reference genes were selected in different tissue of H. serrata. Then, two optimal reference genes GAPDHB and HisH2A were confirmed by four analysis methods. In order to further verify the accuracy of the two reference genes, they were used to analyze the expression patterns of four HupA-biosynthetic genes (lysine decarboxylas, RS-norcoclaurine 6-O-methyltransferase, cytochrome P45072A1, and copper amine oxidase). The data suggested that the expression pattern of HupA-biosynthetic genes was consistent with them in transcriptome sequencing in different tissue of H. serrata. This study identified that GAPDHB and HisH2A provides the reliable normalization for analyzing the HupA biosynthetic gene expression in different tissues of H. serrata on the transcriptional level.
Collapse
Affiliation(s)
- Yanping Fu
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Fei Niu
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Hui Jia
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Yanli Wang
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Bin Guo
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Yahui Wei
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|
10
|
Liu J, Wan J, Du W, Wang D, Wen C, Wei Y, Ouyang Z. In Vivo Functional Verification of Four Related Genes Involved in the 1-Deoxynojirimycin Biosynthetic Pathway in Mulberry Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10989-10998. [PMID: 34516110 DOI: 10.1021/acs.jafc.1c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The alkaloid 1-deoxynojirimycin (DNJ) is one of the major bioactive compounds in mulberry leaves (Morus alba L.). Previously, we discovered four key genes involved in the pathway from lysine to piperidine in the biosynthesis of DNJ in mulberry leaves, MaLDC (MG727866), MaCAO (MH205733), MaSDR1 (MT989445), and MaSDR2 (MT989446), which encoded lysine decarboxylase, copper amine oxidase, and short-chain dehydrogenase/reductase 1 and 2, respectively. However, the in vivo functions of these four genes have not been verified yet. Here, these four genes were successfully cloned and used for the establishment of C58C1 Agrobacterium rhizogenes mediated overexpression genetic transformation systems and GV3101 Agrobacterium-mediated virus-induced gene silencing transformation systems in order to verify the influence of these four genes on the biosynthetic content of DNJ in mulberry leaves. The results showed that the content of DNJ increased after the four genes were overexpressed. When these four genes were silenced, the gene expression was blocked, which affected the biosynthesis of DNJ, and the DNJ content decreased. The above results indicated that these four genes participated in DNJ biosynthesis. This study provided a foundation for further elucidating the regulatory mechanisms of DNJ biosynthesis in mulberry leaves.
Collapse
Affiliation(s)
- Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jingqiong Wan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wenmin Du
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Chongwei Wen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
11
|
A metabolic regulon reveals early and late acting enzymes in neuroactive Lycopodium alkaloid biosynthesis. Proc Natl Acad Sci U S A 2021; 118:2102949118. [PMID: 34112718 DOI: 10.1073/pnas.2102949118] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plants synthesize many diverse small molecules that affect function of the mammalian central nervous system, making them crucial sources of therapeutics for neurological disorders. A notable portion of neuroactive phytochemicals are lysine-derived alkaloids, but the mechanisms by which plants produce these compounds have remained largely unexplored. To better understand how plants synthesize these metabolites, we focused on biosynthesis of the Lycopodium alkaloids that are produced by club mosses, a clade of plants used traditionally as herbal medicines. Hundreds of Lycopodium alkaloids have been described, including huperzine A (HupA), an acetylcholine esterase inhibitor that has generated interest as a treatment for the symptoms of Alzheimer's disease. Through combined metabolomic profiling and transcriptomics, we have identified a developmentally controlled set of biosynthetic genes, or potential regulon, for the Lycopodium alkaloids. The discovery of this putative regulon facilitated the biosynthetic reconstitution and functional characterization of six enzymes that act in the initiation and conclusion of HupA biosynthesis. This includes a type III polyketide synthase that catalyzes a crucial imine-polyketide condensation, as well as three Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD) enzymes that catalyze transformations (pyridone ring-forming desaturation, piperidine ring cleavage, and redox-neutral isomerization) within downstream HupA biosynthesis. Our results expand the diversity of known chemical transformations catalyzed by 2OGDs and provide mechanistic insight into the function of noncanonical type III PKS enzymes that generate plant alkaloid scaffolds. These data offer insight into the chemical logic of Lys-derived alkaloid biosynthesis and demonstrate the tightly coordinated coexpression of secondary metabolic genes for the biosynthesis of medicinal alkaloids.
Collapse
|
12
|
Liu J, Wan J, Wang D, Wen C, Wei Y, Ouyang Z. Comparative Transcriptome Analysis of Key Reductase Genes Involved in the 1-Deoxynojirimycin Biosynthetic Pathway in Mulberry Leaves and Cloning, Prokaryotic Expression, and Functional Analysis of MaSDR1 and MaSDR2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12345-12357. [PMID: 33085468 DOI: 10.1021/acs.jafc.0c04832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The alkaloid 1-deoxynojirimycin (DNJ) is the main bioactive ingredient in the hypoglycemic action of mulberry leaves (Morus alba L.). Our previous research clarified the upstream pathway from lysine to Δ1-piperideine in the biosynthesis of DNJ in mulberry leaves, but the pathway and related reductase genes from Δ1-piperideine to piperidine are still unclear. Here, a comparative transcriptome was used to analyze the transcriptome data of two samples (July and November) of mulberry leaves with significant differences in the content of DNJ and screen-related reductase genes. Results showed that expression levels of MaSDR1 and MaSDR2 were significantly and positively correlated with the content of DNJ (P < 0.05) in different seasons. MaSDR1 (GenBank accession no. MT989445) and MaSDR2 (GenBank accession no. MT989446) were successfully cloned and used for prokaryotic expression and functional analysis in vitro. MaSDR1 and MaSDR2 could catalyze the reaction of Δ1-piperideine with the coenzyme NADPH to generate piperidine. The kinetic parameters of MaSDR1 and MaSDR2 indicated that MaSDR2 had a higher binding ability to Δ1-piperideine than MaSDR1. This study provided insights into the biosynthesis of DNJ in mulberry leaves.
Collapse
Affiliation(s)
- Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jingqiong Wan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Chongwei Wen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
13
|
Wang J, Zhang ZK, Jiang FF, Qi BW, Ding N, Hnin SYY, Liu X, Li J, Wang XH, Tu PF, Abe I, Morita H, Shi SP. Deciphering the Biosynthetic Mechanism of Pelletierine in Lycopodium Alkaloid Biosynthesis. Org Lett 2020; 22:8725-8729. [PMID: 33104367 DOI: 10.1021/acs.orglett.0c03339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pelletierine, a proposed building block of Lycopodium alkaloids (LAs), was demonstrated to be synthesized via the non-enzymatic Mannich-like condensation of Δ1-piperideine and 3-oxoglutaric acid produced by two new type III PKSs (HsPKS4 and PcPKS1) characterized from Huperzia serrata and Phlegmariurus cryptomerianus, respectively. The findings provide new insights for further understanding the biosynthesis of LAs such as huperzine A.
Collapse
Affiliation(s)
- Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze-Kun Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fang-Fang Jiang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo-Wen Qi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ning Ding
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Saw Yu Yu Hnin
- Institute of Natural Medicine, University of Toyama, Sugitani-2630, Toyama 930-0194, Japan
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Hui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, Sugitani-2630, Toyama 930-0194, Japan
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
14
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
15
|
Wu XD, Li XN, Peng LY, Zhao QS. Huperserratines A and B, Two Macrocyclic Lycopodium Alkaloids with an Unusual Skeleton from Huperzia serrata. J Org Chem 2020; 85:6803-6807. [PMID: 32295348 DOI: 10.1021/acs.joc.0c00623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Huperserratines A (1) and B (2), two Lycopodium alkaloids with an unprecedented 5-aza-bicyclo[10.4.0]hexadecane skeleton and an oxime function, were isolated from Huperzia serrata. Their structures including absolute configurations were determined by extensive NMR spectroscopic and X-ray diffraction analysis. Compounds 1 and 2 were the first examples of macrocyclic Lycopodium alkaloids with an aza-12-membered ring. A plausible biogenetic pathway of these compounds was also proposed. Compound 1 exhibited moderate anti-HIV-1 activity with an EC50 of 52.91 μg/mL and a therapy index greater than 3.78.
Collapse
Affiliation(s)
- Xing-De Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Li-Yan Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
16
|
Kang X, Liu C, Shen P, Hu L, Lin R, Ling J, Xiong X, Xie B, Liu D. Genomic Characterization Provides New Insights Into the Biosynthesis of the Secondary Metabolite Huperzine a in the Endophyte Colletotrichum gloeosporioides Cg01. Front Microbiol 2019; 9:3237. [PMID: 30671042 PMCID: PMC6331491 DOI: 10.3389/fmicb.2018.03237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023] Open
Abstract
A reliable source of Huperzine A (HupA) meets an urgent need due to its wide use in Alzheimer's disease treatment. In this study, we sequenced and characterized the whole genomes of two HupA-producing endophytes, Penicillium polonicum hy4 and Colletotrichum gloeosporioides Cg01, to clarify the mechanism of HupA biosynthesis. The whole genomes of hy4 and Cg01 were 33.92 and 55.77 Mb, respectively. We compared the differentially expressed genes (DEGs) between the induced group (with added extracts of Huperzia serrata) and a control group. We focused on DEGs with similar expression patterns in hy4 and Cg01. The DEGs identified in GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were primarily located in carbon and nitrogen metabolism and nucleolus, ribosome, and rRNA processing. Furthermore, we analyzed the gene expression for HupA biosynthesis genes proposed in plants, which include lysine decarboxylase (LDC), copper amine oxidase (CAO), polyketides synthases (PKS), etc. Two LDCs, one CAO, and three PKSs in Cg01 were selected as prime candidates for further validation. We found that single candidate biosynthesis-gene knock-out did not influence the HupA production, while both LDC gene knock-out led to increased HupA production. These results reveal that HupA biosynthesis in endophytes might differ from that proposed in plants, and imply that the HupA-biosynthesis genes in endophytic fungi might co-evolve with the plant machinery rather than being acquired through horizontal gene transfer (HGT). Moreover, we analyzed the function of the differentially expressed epigenetic modification genes. HupA production of the histone acetyltransferase (HAT) deletion mutant ΔCgSAS-2 was not changed, while that of the histone methyltransferase (HMT) and histone deacetylase (HDAC) deletion mutants ΔCgClr4, ΔCgClr3, and ΔCgSir2-6 was reduced. Recovery of HupA-biosynthetic ability can be achieved by retro-complementation, demonstrating that HMT and HDACs associated with histone modification are involved in the regulation of HupA biosynthesis in endophytic fungi. This is the first report on epigenetic modification in high value secondary metabolite- producing endophytes. These findings shed new light on HupA biosynthesis and regulation in HupA-producing endophytes and are crucial for industrial production of HupA from fungi.
Collapse
Affiliation(s)
- Xincong Kang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Chichuan Liu
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengyuan Shen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Liqin Hu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Runmao Lin
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingyao Xiong
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China,*Correspondence: Dongbo Liu
| |
Collapse
|
17
|
Wang D, Zhao L, Wang D, Liu J, Yu X, Wei Y, Ouyang Z. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry ( Morus alba L.). PeerJ 2018; 6:e5443. [PMID: 30155358 PMCID: PMC6109587 DOI: 10.7717/peerj.5443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Mulberry (Morus alba L.) represents one of the most commonly utilized plants in traditional medicine and as a nutritional plant used worldwide. The polyhydroxylated alkaloid 1-deoxynojirimycin (DNJ) is the major bioactive compounds of mulberry in treating diabetes. However, the DNJ content in mulberry is very low. Therefore, identification of key genes involved in DNJ alkaloid biosynthesis will provide a basis for the further analysis of its biosynthetic pathway and ultimately for the realization of synthetic biological production. Here, two cDNA libraries of mulberry leaf samples with different DNJ contents were constructed. Approximately 16 Gb raw RNA-Seq data was generated and de novo assembled into 112,481 transcripts, with an average length of 766 bp and an N50 value of 1,392. Subsequently, all unigenes were annotated based on nine public databases; 11,318 transcripts were found to be significantly differentially regulated. A total of 38 unique candidate genes were identified as being involved in DNJ alkaloid biosynthesis in mulberry, and nine unique genes had significantly different expression. Three key transcripts of DNJ biosynthesis were identified and further characterized using RT-PCR; they were assigned to lysine decarboxylase and primary-amine oxidase genes. Five CYP450 transcripts and two methyltransferase transcripts were significantly associated with DNJ content. Overall, the biosynthetic pathway of DNJ alkaloid was preliminarily speculated.
Collapse
Affiliation(s)
- Dujun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Oceanology and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Li Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaofeng Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Wang D, Zhao L, Jiang J, Liu J, Wang D, Yu X, Wei Y, Ouyang Z. Cloning, expression, and functional analysis of lysine decarboxylase in mulberry (Morus alba L.). Protein Expr Purif 2018; 151:30-37. [PMID: 29894803 DOI: 10.1016/j.pep.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023]
Abstract
1-Deoxynojirimycin (DNJ) is the main bioactive compound of Morus alba L.. DNJ has pharmacological effects, including blood sugar level regulation and antiviral activity. In this study, the mulberry lysine decarboxylase gene (MaLDC), which is involved in the biosynthesis of DNJ alkaloids, was cloned, expressed, and functionally verified. MaLDC was induced and expressed in Escherichia coli BL21 (DE3). The recombinant soluble MaLDC protein had a relative molecular mass of 24.0 kDa. The protein was purified by Ni-NTA separation. The results showed that MaLDC protein could catalyze lysine decarboxylation to produce cadaverine. The Km and Vmax values were 19.2 μM and 3.31 μM/min, respectively. Quantitative real-time reverse transcription polymerase chain reaction revealed that MaLDC expression was positively correlated with DNJ content (P < 0.001), indicating that the MaLDC could encode a functional protein involved in the biosynthesis of DNJ alkaloid in mulberry. Our results provided a foundation for further studies of the enzymatic properties of LDC and established a basis for the analysis of key enzymes involved in the biosynthetic pathway of mulberry DNJ alkaloid.
Collapse
Affiliation(s)
- Dujun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Li Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiayi Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaofeng Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
19
|
Wu S, Fan Z, Xiao Y. Comprehensive relative quantitative metabolomics analysis of lycopodium alkaloids in different tissues of Huperzia serrata. Synth Syst Biotechnol 2017; 3:44-55. [PMID: 29911198 PMCID: PMC5884255 DOI: 10.1016/j.synbio.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022] Open
Abstract
Qian ceng Ta, the whole plant of Huperzia serrata, is an important landscape and medicinal herbs and contains abundant bioactive lycopodium alkaloids. Although the structures of more than 100 lycopodium alkaloids in Huperzia serrata have been isolated and identified, the content and distribution of these alkaloids in different tissues are still unclear. In current study, an ultra-performance liquid chromatography-mass spectrometry based comprehensive metabolomics strategy was developed, including the extraction, separation, identification, and statistical analysis. The results showed that different types lycopodium alkaloids could be separated at different time-windows, which was helpful for further metabolite identification. Peak4388 and peak3954 were metabolite biomarkers for the different tissues according to the principle component analysis and partial least squares-discriminant analysis model. A computational tool based in-house database was also built up and used for putative identification. Of the 2354 true peaks after four-step filtration, 118 peaks were putatively identified as lycopodium alkaloids by using in-house database, and four of which was identified by authentic standards. Alternatively, another computational software was used to predict the fragmentation pattern, to dereplicate the structure of identified peaks, and identified the peak3585 to N-methylhuperzine A. The integration of both computational tools could be used for more metabolites identification.
Collapse
Key Words
- CAO, copper amine oxidase
- Different tissues
- HPLC-MS, high-performance liquid chromatography-mass spectrometry
- HupA, huperzine A
- HupB, huperzine B
- Huperzia serrata
- IS, internal standard
- In-silico fragmentations prediction
- L/ODC, Lysine/Ornithine decarboxylase
- Lycop C, lycoposerramine C
- Lycop D, lycoposerramine D
- Metabolite identification
- Metabolomics
- PCA, principle component analysis
- PLS-DA, partial least squares-discriminant analysis
- UPLC-MS, ultra-performance liquid chromatography-mass spectrometry
- m/z, mass over charge
- tR, retention time
Collapse
Affiliation(s)
- Shiwen Wu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Fan
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100039, China.,CAS-JIC Centre of Excellence in Plant and Microbial Sciences, Shanghai, 200032, China
| |
Collapse
|
20
|
Zhang X, Wang Z, Jan S, Yang Q, Wang M. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026. Sci Rep 2017; 7:2766. [PMID: 28584293 PMCID: PMC5459845 DOI: 10.1038/s41598-017-02834-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.
Collapse
Affiliation(s)
- Xiangmei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Zhangqian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, People's Republic of China
| | - Saad Jan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Qian Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Mo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
21
|
Xu B, Lei L, Zhu X, Zhou Y, Xiao Y. Identification and characterization of L-lysine decarboxylase from Huperzia serrata and its role in the metabolic pathway of lycopodium alkaloid. PHYTOCHEMISTRY 2017; 136:23-30. [PMID: 28089246 DOI: 10.1016/j.phytochem.2016.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Lysine decarboxylation is the first biosynthetic step of Huperzine A (HupA). Six cDNAs encoding lysine decarboxylases (LDCs) were cloned from Huperzia serrata by degenerate PCR and rapid amplification of cDNA ends (RACE). One HsLDC isoform was functionally characterized as lysine decarboxylase. The HsLDC exhibited greatest catalytic efficiency (kcat/Km, 2.11 s-1 mM-1) toward L-lysine in vitro among all reported plant-LDCs. Moreover, transient expression of the HsLDC in tobacco leaves specifically increased cadaverine content from zero to 0.75 mg per gram of dry mass. Additionally, a convenient and reliable method used to detect the two catalytic products was developed. With the novel method, the enzymatic products of HsLDC and HsCAO, namely cadaverine and 5-aminopentanal, respectively, were detected simultaneously both in assay with purified enzymes and in transgenic tobacco leaves. This work not only provides direct evidence of the first two-step in biosynthetic pathway of HupA in Huperzia serrata and paves the way for further elucidation of the pathway, but also enables engineering heterologous production of HupA.
Collapse
Affiliation(s)
- Baofu Xu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Lei
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaocen Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100039, China; CAS-JIC Centre of Excellence in Plant and Microbial Sciences, China.
| |
Collapse
|
22
|
Yang M, You W, Wu S, Fan Z, Xu B, Zhu M, Li X, Xiao Y. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A. BMC Genomics 2017; 18:245. [PMID: 28330463 PMCID: PMC5361696 DOI: 10.1186/s12864-017-3615-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Huperzia serrata (H. serrata) is an economically important traditional Chinese herb with the notably medicinal value. As a representative member of the Lycopodiaceae family, the H. serrata produces various types of effectively bioactive lycopodium alkaloids, especially the huperzine A (HupA) which is a promising drug for Alzheimer's disease. Despite their medicinal importance, the public genomic and transcriptomic resources are very limited and the biosynthesis of HupA is largely unknown. Previous studies on comparison of 454-ESTs from H. serrata and Phlegmariurus carinatus predicted putative genes involved in lycopodium alkaloid biosynthesis, such as lysine decarboxylase like (LDC-like) protein and some CYP450s. However, these gene annotations were not carried out with further biochemical characterizations. To understand the biosynthesis of HupA and its regulation in H. serrata, a global transcriptome analysis on H. Serrata tissues was performed. RESULTS In this study, we used the Illumina Highseq4000 platform to generate a substantial RNA sequencing dataset of H. serrata. A total of 40.1 Gb clean data was generated from four different tissues: root, stem, leaf, and sporangia and assembled into 181,141 unigenes. The total length, average length, N50 and GC content of unigenes were 219,520,611 bp, 1,211 bp, 2,488 bp and 42.51%, respectively. Among them, 105,516 unigenes (58.25%) were annotated by seven public databases (NR, NT, Swiss-Prot, KEGG, COG, Interpro, GO), and 54 GO terms and 3,391 transcription factors (TFs) were functionally classified, respectively. KEGG pathway analysis revealed that 72,230 unigenes were classified into 21 functional pathways. Three types of candidate enzymes, LDC, CAO and PKS, responsible for the biosynthesis of precursors of HupA were all identified in the transcripts. Four hundred and fifty-seven CYP450 genes in H. serrata were also analyzed and compared with tissue-specific gene expression. Moreover, two key classes of CYP450 genes BBE and SLS, with 23 members in total, for modification of the lycopodium alkaloid scaffold in the late two stages of biosynthesis of HupA were further evaluated. CONCLUSION This study is the first report of global transcriptome analysis on all tissues of H. serrata, and critical genes involved in the biosynthesis of precursors and scaffold modifications of HupA were discovered and predicted. The transcriptome data from this work not only could provide an important resource for further investigating on metabolic pathways in H. serrata, but also shed light on synthetic biology study of HupA.
Collapse
Affiliation(s)
- Mengquan Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenjing You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shiwen Wu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Fan
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Baofu Xu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mulan Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuan Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. .,CAS-JIC Centre of Excellence in Plant and Microbial Sciences, Shanghai, 200032, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
23
|
Yang H, Peng S, Zhang Z, Yan R, Wang Y, Zhan J, Zhu D. Molecular cloning, expression, and functional analysis of the copper amine oxidase gene in the endophytic fungus Shiraia sp. Slf14 from Huperzia serrata. Protein Expr Purif 2016; 128:8-13. [PMID: 27476120 DOI: 10.1016/j.pep.2016.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Huperzine A (HupA) is a drug used for the treatment of Alzheimer's disease. However, the biosynthesis of this medicinally important compound is not well understood. The HupA biosynthetic pathway is thought to be initiated by the decarboxylation of lysine to form cadaverine, which is then converted to 5-aminopentanal by copper amine oxidase (CAO). In this study, we cloned and expressed an SsCAO gene from a HupA-producing endophytic fungus, Shiraia sp. Slf14. Analysis of the deduced protein amino acid sequence showed that it contained the Asp catalytic base, conserved motif Asn-Tyr-Asp/Glu, and three copper-binding histidines. The cDNA of SsCAO was amplified and expressed in Escherichia coli BL21(DE3), from which a 76 kDa protein was obtained. The activity of this enzyme was tested, which provided more information about the SsCAO gene in the endophytic fungus. Gas Chromatograph-Mass Spectrometry (GC-MS) revealed that this SsCAO could accept cadaverine as a substrate to produce 5-aminopentanal, the precursor of HupA. Phylogenetic tree analysis indicated that the SsCAO from Shiraia sp. Slf14 was closely related to Stemphylium lycopersici CAO. This is the first report on the cloning and expression of a CAO gene from HupA-producing endophytic fungi. Functional characterization of this enzyme provides new insights into the biosynthesis of the HupA an anti-Alzheimer's drug.
Collapse
Affiliation(s)
- Huilin Yang
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, China; Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Silu Peng
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ya Wang
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Du Zhu
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, China; Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
24
|
Zhang G, Wang W, Zhang X, Xia Q, Zhao X, Ahn Y, Ahmed N, Cosoveanu A, Wang M, Wang J, Shu S. De novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A. PLoS One 2015; 10:e0120809. [PMID: 25799531 PMCID: PMC4370467 DOI: 10.1371/journal.pone.0120809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/05/2015] [Indexed: 01/15/2023] Open
Abstract
Huperzine A is important in the treatment of Alzheimer’s disease. There are major challenges for the mass production of huperzine A from plants due to the limited number of huperzine-A-producing plants, as well as the low content of huperzine A in these plants. Various endophytic fungi produce huperzine A. Colletotrichum gloeosporioides ES026 was previously isolated from a huperzine-A-producing plant Huperzia serrata, and this fungus also produces huperzine A. In this study, de novo RNA sequencing of C. gloeosporioides ES026 was carried out with an Illumina HiSeq2000. A total of 4,324,299,051 bp from 50,442,617 high-quality sequence reads of ES026 were obtained. These raw data were assembled into 24,998 unigenes, 40,536,684 residues and 19,790 genes. The majority of the unique sequences were assigned to corresponding putative functions based on BLAST searches of public databases. The molecular functions, biological processes and biochemical pathways of these unique sequences were determined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments. A gene encoding copper amine oxidase (CAO) (unigene 9322) was annotated for the conversion of cadaverine to 5-aminopentanal in the biosynthesis of huperzine A. This gene was also detected in the root, stem and leaf of H. serrata. Furthermore, a close relationship was observed between expression of the CAO gene (unigene 9322) and quantity of crude huperzine A extracted from ES026. Therefore, CAO might be involved in the biosynthesis of huperzine A and it most likely plays a key role in regulating the content of huperzine A in ES026.
Collapse
Affiliation(s)
- Guowei Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenjuan Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangmei Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Xia
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinmei Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Youngjoon Ahn
- College of Agriculture and Life Sciences, Seoul National University, Seoul 151–742, Republic of Korea
| | - Nevin Ahmed
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Department of Plant Protection, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Andreea Cosoveanu
- Phytopathology Unit, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Mo Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jialu Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaohua Shu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|