1
|
St. Onge C, Pagare PP, Zheng Y, Arriaga M, Stevens DL, Mendez RE, Poklis JL, Halquist MS, Selley DE, Dewey WL, Banks ML, Zhang Y. Systematic Structure-Activity Relationship Study of Nalfurafine Analogues toward Development of Potentially Nonaddictive Pain Management Treatments. J Med Chem 2024; 67:9552-9574. [PMID: 38814086 PMCID: PMC11181328 DOI: 10.1021/acs.jmedchem.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Despite the availability of numerous pain medications, the current array of Food and Drug Administration-approved options falls short in adequately addressing pain states for numerous patients and consequently worsens the opioid crisis. Thus, it is imperative for basic research to develop novel and nonaddictive pain medications. Toward addressing this clinical goal, nalfurafine (NLF) was chosen as a lead and its structure-activity relationship (SAR) systematically studied through design, syntheses, and in vivo characterization of 24 analogues. Two analogues, 21 and 23, showed longer durations of action than NLF in a warm-water tail immersion assay, produced in vivo effects primarily mediated by KOR and DOR, penetrated the blood-brain barrier, and did not function as reinforcers. Additionally, 21 produced fewer sedative effects than NLF. Taken together, these results aid the understanding of NLF SAR and provide insights for future endeavors in developing novel nonaddictive therapeutics to treat pain.
Collapse
Affiliation(s)
- Celsey
M. St. Onge
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Piyusha P. Pagare
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Yi Zheng
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Michelle Arriaga
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Rolando E. Mendez
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Justin L. Poklis
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Matthew S. Halquist
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
- Institute
for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia 23298, United States
| |
Collapse
|
2
|
Li M, Stevens DL, Arriaga M, Townsend EA, Mendez RE, Blajkevch NA, Selley DE, Banks ML, Negus SS, Dewey WL, Zhang Y. Characterization of a Potential KOR/DOR Dual Agonist with No Apparent Abuse Liability via a Complementary Structure-Activity Relationship Study on Nalfurafine Analogues. ACS Chem Neurosci 2022; 13:3608-3628. [PMID: 36449691 PMCID: PMC10243363 DOI: 10.1021/acschemneuro.2c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Discovery of analgesics void of abuse liability is critical to battle the opioid crisis in the United States. Among many strategies to achieve this goal, targeting more than one opioid receptor seems promising to minimize this unwanted side effect while achieving a reasonable therapeutic profile. In the process of understanding the structure-activity relationship of nalfurafine, we identified a potential analgesic agent, NMF, as a dual kappa opioid receptor/delta opioid receptor agonist with minimum abuse liability. Further characterizations, including primary in vitro ADMET studies (hERG toxicity, plasma protein binding, permeability, and hepatic metabolism), and in vivo pharmacodynamic and toxicity profiling (time course, abuse liability, tolerance, withdrawal, respiratory depression, body weight, and locomotor activity) further confirmed NMF as a promising drug candidate for future development.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - David L. Stevens
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Rolando E. Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nadejda A. Blajkevch
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - William L. Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
3
|
Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022; 27:molecules27207065. [PMID: 36296658 PMCID: PMC9611050 DOI: 10.3390/molecules27207065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.
Collapse
|
4
|
Huang B, Gunta R, Wang H, Li M, Cao D, Mendez RE, Gillespie JC, Chen C, Huang LHM, Liu-Chen LY, Selley DE, Zhang Y. Verifying the role of 3-hydroxy of 17-cyclopropylmethyl-4,5α-epoxy-3,14β-dihydroxy-6β-[(4'-pyridyl) carboxamido]morphinan derivatives via their binding affinity and selectivity profiles on opioid receptors. Bioorg Chem 2021; 109:104702. [PMID: 33631465 DOI: 10.1016/j.bioorg.2021.104702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
In the present study, the role of 3-hydroxy group of a series of epoxymorphinan derivatives in their binding affinity and selectivity profiles toward the opioid receptors (ORs) has been investigated. It was found that the 3-hydroxy group was crucial for the binding affinity of these derivatives for all three ORs due to the fact that all the analogues 1a-e exhibited significantly higher binding affinities compared to their counterpart 3-dehydroxy ones 6a-e. Meanwhile most compounds carrying the 3-hydroxy group possessed similar selectivity profiles for the kappa opioid receptor over the mu opioid receptor as their corresponding 3-dehydroxy derivatives. [35S]-GTPγS functional assay results indicated that the 3-hydroxy group of these epoxymorphinan derivatives was important for maintaining their potency on the ORs with various effects. Further molecular modeling studies helped comprehend the remarkably different binding affinity and functional profiles between compound 1c (NCP) and its 3-dehydroxy analogue 6c.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Rama Gunta
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Danni Cao
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States; Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Lan-Hsuan M Huang
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
5
|
Li M, St Onge CM, Zhang Y. Stereoselective syntheses of 3-dehydroxynaltrexamines and N-methyl-3-dehydroxynaltrexamines. Tetrahedron Lett 2020; 61. [PMID: 33100417 DOI: 10.1016/j.tetlet.2020.152379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methodology is presented for the synthesis of 6α/β-3-dehydroxynaltrexamines and 6α/β- N-methyl-3-dehydroxynaltrexamines. A stereoselective route is provided for each target compound while a novel one-pot method for the synthesis of 6 α/β-3-N-methyl-3-dehydroxynaltrexamines is also explored. These results enable the versatile and efficient preparation of key epoxymorphinan intermediates to facilitate future selective opioid ligand discovery and development.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E Leigh St, Richmond, VA, 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E Leigh St, Richmond, VA, 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E Leigh St, Richmond, VA, 23298, USA
| |
Collapse
|
6
|
Nagumo Y, Katoh K, Iio K, Saitoh T, Kutsumura N, Yamamoto N, Ishikawa Y, Irukayama-Tomobe Y, Ogawa Y, Baba T, Tanimura R, Yanagisawa M, Nagase H. Discovery of attenuation effect of orexin 1 receptor to aversion of nalfurafine: Synthesis and evaluation of D-nor-nalfurafine derivatives and analyses of the three active conformations of nalfurafine. Bioorg Med Chem Lett 2020; 30:127360. [PMID: 32738987 DOI: 10.1016/j.bmcl.2020.127360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022]
Abstract
The D-nor-nalfurafine derivatives, which were synthesized by contraction of the six-membered D-ring in nalfurafine (1), had no affinity for orexin 1 receptors (OX1Rs). The 17N-lone electron pair in 1 oriented toward the axial direction, while that of D-nor-derivatives was directed in the equatorial configuration. The axial lone electron pair can form a hydrogen bond with the 14-hydroxy group, which could push the 6-amide side chain toward the downward direction with respect to the C-ring. The resulting conformation would be an active conformation for binding with OX1R. The dual affinities of 1 for OX1R and κ opioid receptor (KOR) led us to elucidate the mechanism by which only 1 showed no aversion but U-50488H. Actually, 1 selectively induced severe aversion in OX1R knockout mice, but not in wild-type mice. These results well support that OX1R suppresses the aversion of 1. This is the elucidation of long period puzzle which 1 showed no aversion in KOR.
Collapse
Affiliation(s)
- Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan
| | - Koki Katoh
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8571, Japan
| | - Keita Iio
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8571, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan
| | - Noriki Kutsumura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8571, Japan
| | - Naoshi Yamamoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan
| | - Yoko Irukayama-Tomobe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan
| | - Yasuhiro Ogawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan
| | - Takeshi Baba
- Pharmaceutical Research Laboratories, Toray Industry Inc, 10-1, Tebiro 6-choume, Kamakura, Kanagawa 248 8555, Japan
| | - Ryuji Tanimura
- Pharmaceutical Research Laboratories, Toray Industry Inc, 10-1, Tebiro 6-choume, Kamakura, Kanagawa 248 8555, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, US
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8575, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305 8571, Japan.
| |
Collapse
|
7
|
Yamamoto N, Ohrui S, Okada T, Yata M, Saitoh T, Kutsumura N, Nagumo Y, Irukayama-Tomobe Y, Ogawa Y, Ishikawa Y, Watanabe Y, Hayakawa D, Gouda H, Yanagisawa M, Nagase H. Essential structure of orexin 1 receptor antagonist YNT-707, Part I: Role of the 4,5-epoxy ring for binding with orexin 1 receptor. Bioorg Med Chem Lett 2017; 27:4176-4179. [DOI: 10.1016/j.bmcl.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
|
8
|
Synthesis of new opioid derivatives with a propellane skeleton and their pharmacologies: Part 5, novel pentacyclic propellane derivatives with a 6-amide side chain. Bioorg Med Chem 2015; 23:6271-9. [DOI: 10.1016/j.bmc.2015.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022]
|
9
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Synthesis of new opioid derivatives with a propellane skeleton and their pharmacologies: Part 3, novel propellane derivatives with pentacyclic skeletons. Bioorg Med Chem Lett 2012; 22:7697-701. [DOI: 10.1016/j.bmcl.2012.09.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 11/21/2022]
|