1
|
Shinoda K, Suganami A, Moriya Y, Yamashita M, Tanaka T, Suzuki AS, Suito H, Akutsu Y, Saito K, Shinozaki Y, Isojima K, Nakamura N, Miyauchi Y, Shirasawa H, Matsubara H, Okamoto Y, Nakayama T, Tamura Y. Indocyanine green conjugated phototheranostic nanoparticle for photodiagnosis and photodynamic reaciton. Photodiagnosis Photodyn Ther 2022; 39:103041. [PMID: 35914696 DOI: 10.1016/j.pdpdt.2022.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phototheranostics represents a highly promising paradigm for cancer therapy, although selecting an appropriate optical imager and sensitizer for clinical use remains challenging. METHODS Liposomally formulated phospholipid-conjugated indocyanine green, denoted as LP-iDOPE, was developed as phototheranostic nanoparticle and its cancer imaging-mediated photodynamic reaction, defined as the immune response induced by photodynamic and photothermal effects, was evaluated with a near-infrared (NIR)-light emitting diode (LED) light irradiator. RESULTS Using in vivo NIR fluorescence imaging, we demonstrated that LP-iDOPE was selectively delivered to tumor sites with high accumulation and a long half-life. Following low-intensity NIR-LED light irradiation on the tumor region of LP-iDOPE accumulated, effector CD8+ T cells were activated at the secondary lymphoid organs, migrated, and subsequently released cytokines including interferon-γ and tumor necrosis factor-α, resulting in effective tumor regression. CONCLUSIONS Our anti-cancer strategy based on tumor-specific LP-iDOPE accumulation and low-intensity NIR-LED light irradiation to the tumor regions, i.e., photodynamic reaction, represents a promising approach to noninvasive cancer therapy.
Collapse
Affiliation(s)
- Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Yasumitsu Moriya
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masamichi Yamashita
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Tsutomu Tanaka
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Akane S Suzuki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kengo Saito
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|
2
|
Okamoto Y, Ishizuka M, Sumiyama F, Kosaka H, Suganami A, Tamura Y, Sekimoto M, Kaibori M. Inhibitory Effects and Gene Expression Analysis of Chemotherapeutic Photodynamic Therapy by using a Liposomally Formulated Indocyanine Green Derivative. Photodiagnosis Photodyn Ther 2022; 39:102961. [PMID: 35700912 DOI: 10.1016/j.pdpdt.2022.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) utilizes the enhanced permeability retention effect of photosensitizers and is less invasive and more selective than traditional chemotherapy. We constructed a chemotherapeutic PDT (chemo-PDT) nanoscale drug delivery system using a liposomally formulated indocyanine green derivative (ICG-Lipo) that encapsulated carboplatin and docetaxel (ICG-Lipo-C&D). METHODS The antitumor effect of chemo-PDT mediated by ICG-Lipo-C&D was evaluated in a murine colon 26 CDF1 mouse model. Gene expression in tumor tissues was analyzed by RNA sequencing. RESULTS Chemo-PDT using ICG-Lipo-C&D demonstrated an even stronger PDT-enhancing effect than did ICG-Lipo due to the synergistic effect of carboplatin and docetaxel. In addition, gene expression analysis showed that PDT with ICG-Lipo-C&D increased the expression of immune-related genes and decreased the expression of cytoskeleton-related genes. CONCLUSIONS Chemo-PDT using ICG-Lipo as a photosensitizer as well as a drug delivery system with an enhanced permeability retention effect may be a promising cancer therapy.
Collapse
Affiliation(s)
- Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Mariko Ishizuka
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan.
| |
Collapse
|
3
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
4
|
Yamashita M, Mayama M, Suganami A, Azuma K, Tsuka T, Ito N, Imagawa T, Tamura Y, Okamoto Y. Photohyperthermal therapy using liposomally formulated indocyanine green for feline nasal lymphoma: A case report. Mol Clin Oncol 2020; 13:37. [PMID: 32793349 DOI: 10.3892/mco.2020.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/05/2020] [Indexed: 11/06/2022] Open
Abstract
Our previous research has focused on the development of a novel cancer therapy by using photohyperthermal therapy (PHT) with indocyanine green (ICG) as an optical sensitizer. ICG-Lipo is a liposomally formulated ICG derivative in which ICG is tagged with an octadeca-alkyl chain to incorporate into liposome bilayers, and contains antitumor drugs such as carboplatin and paclitaxel within the inner membrane space. The present study reported a case of feline nasal lymphoma that was treated with combination therapy of PHT with ICG-Lipo. An antitumour effect was observed, and the patient entered remission. Complications from the radiation treatment included skin burns and bleeding from the irradiated hard palate. Serious side effects related to the drugs were not observed. This report suggested that PHT using ICG-Lipo enabled efficient and safe treatment of lymphoma, and that treatment with a liposomal drug delivery system was enhanced by PHT.
Collapse
Affiliation(s)
- Masamichi Yamashita
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | | | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Azuma
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Takeshi Tsuka
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Tomohiro Imagawa
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
5
|
Jogdand A, Alvi SB, Rajalakshmi PS, Rengan AK. NIR-dye based mucoadhesive nanosystem for photothermal therapy in breast cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111901. [PMID: 32480202 DOI: 10.1016/j.jphotobiol.2020.111901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the leading causes of mortality in women, worldwide. The average survival rate of patients suffering from advanced breast cancer is about 27% for five years. Photothermal therapy employing biodegradable nanoparticle are extensively researched for enhanced anticancer therapy in breast cancer treatment. In the current study, we report a chitosan based mucoadherant and biodegradable niosome nanoparticle entrapping near infrared (NIR) dye (IR 806) for the treatment of breast cancer. Niosome entrapping IR 806 (NioIR) showed encapsulation efficacy of about 56 ± 2%. The prepared nanoparticles (NioIR) were further coated with chitosan (NioIR-C) to impart mucoadhesive property to the nanosystem. NioIR-C showed minimal degradation following NIR laser irradiation, thus enhancing its photothermal stability. They also exhibited efficient photothermal transduction, when compared with IR 806 dye. NioIR-C were biocompatible when treated with normal cell lines (NIH 3T3 and L929) and showed cytotoxicity towards breast cancer cell lines (MCF-7 and MDA-MB 231). When triggered with NIR laser, NioIR-C showed photothermal cell death (approximately 93%). The presence of chitosan coating on NioIR led to mucoadherence potential that further enhances the therapeutic effect on breast cancer cells when compared with IR 806 dye and NioIR. Thus NioIR-C can be a promising nanosystem for effective treatment of breast cancer using photothermal therapy.
Collapse
Affiliation(s)
- Anil Jogdand
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Syed Baseeruddin Alvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - P S Rajalakshmi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
6
|
Yoshida K, Saito K, Omura M, Tamura K, Yamaguchi T. Ultrasound assessment of translation of microbubbles driven by acoustic radiation force in a channel filled with stationary fluid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2335. [PMID: 31672000 DOI: 10.1121/1.5128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
In this report, a method is proposed to quantify the translation of ultrasound contrast agent (UCA) microbubbles driven by acoustic radiation for the detection of channels filled with stationary fluid. The authors subjected UCA microbubbles in a channel with diameters of 0.1 and 0.5 mm to ultrasound pulses with a center frequency of 14.4 MHz. The translational velocity of the UCA microbubbles increased with the sound pressure and pulse repetition frequency (PRF) of the transmitted ultrasound. The mean translational velocity reached 0.75 mm/s at a negative peak sound pressure of 2.76 MPa and a PRF of 2 kHz. This trend agreed with the theoretical prediction, which indicated that the translational velocity was proportional to the square of the sound pressure and the PRF. Furthermore, an experiment was carried out with a phantom that mimics tissue and found that the proposed method aided in detection of the channel, even in the case of a low contrast-echo to tissue-echo ratio. The authors expect to develop the proposed method into a technique for detecting lymph vessels.
Collapse
Affiliation(s)
- Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Katsuya Saito
- Graduate School of Science and Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masaaki Omura
- Graduate School of Science and Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuki Tamura
- Institute for Medical Photonics Research, Hamamatsu University of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 461-3125, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
7
|
Shibata S, Shinozaki N, Suganami A, Ikegami S, Kinoshita Y, Hasegawa R, Kentaro H, Okamoto Y, Aoki I, Tamura Y, Iwadate Y. Photo-immune therapy with liposomally formulated phospholipid-conjugated indocyanine green induces specific antitumor responses with heat shock protein-70 expression in a glioblastoma model. Oncotarget 2019; 10:175-183. [PMID: 30719212 PMCID: PMC6349435 DOI: 10.18632/oncotarget.26544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, and infiltrates into the surrounding normal brain tissue. Induction of a tumor-specific immune response is one of the best methods to obtain tumor-specific cytotoxicity. Photodynamic therapy (PDT) is known to effectively induce an antitumor immune response. We have developed a clinically translatable nanoparticle, liposomally formulated phospholipid-conjugated indocyanine green (LP-iDOPE), applicable for PDT. This nanoparticle accumulates in tumor tissues by the enhanced permeability and retention effect, and releases heat and singlet oxygen to injure cancer cells when activated by near infrared (NIR) light. We assessed the effectiveness of the LP-iDOPE system in brain using the rat 9L glioblastoma model. Treatment with LP-iDOPE and NIR irradiation resulted in significant tumor growth suppression and prolongation of survival. Histopathological examination showed induction of both apoptosis and necrosis and accumulation of CD8+ T-cells and macrophages/microglia accompanied by marked expressions of heat shock protein-70 (HSP70), which was not induced by mild hyperthermia alone at 45° C or an interleukin-2-mediated immune reaction. Notably, the efficacy was lost in immunocompromised nude rats. These results collectively show that the novel nanoparticle LP-iDOPE in combination with NIR irradiation can efficiently induce a tumor-specific immune reaction for malignant gliomas possibly by inducing HSP70 expression which is known to activate antigen-presenting cells through toll-like receptor signaling.
Collapse
Affiliation(s)
- Sayaka Shibata
- National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Natsuki Shinozaki
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shiro Ikegami
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Kinoshita
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Ichio Aoki
- National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Linsley CS, Zhu M, Quach VY, Wu BM. Preparation of photothermal palmitic acid/cholesterol liposomes. J Biomed Mater Res B Appl Biomater 2018; 107:1384-1392. [PMID: 30281908 DOI: 10.1002/jbm.b.34230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 01/28/2023]
Abstract
Indocyanine green (ICG) is the only FDA-approved near-infrared dye and it is currently used clinically for diagnostic applications. However, there is significant interest in using ICG for triggered drug delivery applications and heat ablation therapy. Unfortunately, free ICG has a short half-life in vivo and is rapidly cleared from circulation. Liposomes have been frequently used to improve ICG's stability and overall time of effectiveness in vivo, but they have limited stability due to the susceptibility of phospholipids to hydrolysis and oxidation. In this study, nonphospholipid liposomes were used to encapsulate ICG, and the resulting liposomes were characterized for size, encapsulation efficiency, stability, and photothermal response. Using the thin-film hydration method, an ICG encapsulation efficiency of 54% was achieved, and the liposomes were stable for up to 12 weeks, with detectable levels of encapsulated ICG up to week 4. Additionally, ICG-loaded liposomes were capable of rapidly producing a significant photothermal response upon exposure to near-infrared light, and this photothermal response was able to induce changes in the mechanical properties of thermally responsive hydrogels. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1384-1392, 2019.
Collapse
Affiliation(s)
- Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Max Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Viola Y Quach
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.,Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Lajunen T, Nurmi R, Wilbie D, Ruoslahti T, Johansson NG, Korhonen O, Rog T, Bunker A, Ruponen M, Urtti A. The effect of light sensitizer localization on the stability of indocyanine green liposomes. J Control Release 2018; 284:213-223. [DOI: 10.1016/j.jconrel.2018.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
10
|
Centelles MN, Wright M, So PW, Amrahli M, Xu XY, Stebbing J, Miller AD, Gedroyc W, Thanou M. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: Using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J Control Release 2018; 280:87-98. [DOI: 10.1016/j.jconrel.2018.04.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022]
|
11
|
Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E360. [PMID: 29882932 PMCID: PMC6027497 DOI: 10.3390/nano8060360] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.
Collapse
Affiliation(s)
- Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
12
|
Piskorz J, Mlynarczyk DT, Szczolko W, Konopka K, Düzgüneş N, Mielcarek J. Liposomal formulations of magnesium sulfanyl tribenzoporphyrazines for the photodynamic therapy of cancer. J Inorg Biochem 2018; 184:34-41. [PMID: 29679798 DOI: 10.1016/j.jinorgbio.2018.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/22/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy of cancer comprises the activation of photosensitizer molecules delivered to cancer cells, to generate reactive oxygen species that mediate cytotoxicity. In this study, previously synthesized dendritic magnesium tribenzoporphyrazines were incorporated into four types of liposomes containing either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as the zwitterionic lipids. The addition of either l-α-phosphatidyl-dl-glycerol (PG) or 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) imparted a negative or positive charge, respectively. Novel formulations were tested in oral squamous cell carcinoma cell lines (CAL 27, HSC-3) as well as cervical adenocarcinoma cells (HeLa). Positively charged DOTAP:POPC liposomes were the most effective carriers for all tested tribenzoporphyrazines. Calculated IC50 values for DOTAP:POPC liposomes indicated that the incorporation of tribenzoporphyrazines into these liposomes can improve photocytotoxicity up to 50-fold compared to the free forms of macrocycles. Oral cancer cells (CAL 27 and HSC-3) were more sensitive to liposomal photodynamic treatment than HeLa cells.
Collapse
Affiliation(s)
- Jaroslaw Piskorz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Dariusz T Mlynarczyk
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Wojciech Szczolko
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Krystyna Konopka
- Department of Biomedical Sciences, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA
| | - Jadwiga Mielcarek
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
13
|
Sun Q, You Q, Wang J, Liu L, Wang Y, Song Y, Cheng Y, Wang S, Tan F, Li N. Theranostic Nanoplatform: Triple-Modal Imaging-Guided Synergistic Cancer Therapy Based on Liposome-Conjugated Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1963-1975. [PMID: 29276824 DOI: 10.1021/acsami.7b13651] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have long since been investigated to provide a versatile drug-delivery platform due to their multitudinous merits. Presently, gadolinium (Gd), a T1 magnetic resonance imaging (MRI) contrast agent, was doped into MSNs as a newly emerging theranostic nanocomposite, which has received much research attention. However, it is still concerned about the dispersibility and drug leakage of MSNs. Hence, in this project, we constructed an near-infrared (NIR) irradiation-triggered, triple-modal imaging-guided nanoplatform based on doxorubicin (DOX)@Gd-doped MSNs, conjugating with indocyanine green (ICG)-loaded thermosensitive liposomes (designated as DOX@GdMSNs-ICG-TSLs). In this platform, ICG could contribute to both photodynamic therapy and photothermal therapy effects; meanwhile, it could also give play to near-infrared fluorescence imaging (NIRFI) as well as photoacoustic imaging (PAI). Consequently, NIRFI and PAI from ICG combined with the MRI function of Gd, devoted to triple-modal imaging with success. At the same time, folic acid-modified thermosensitive liposomes were explored to be coated onto the surface of DOX@GdMSNs, to solve the DOX leakage as well as improve cellular uptake. Under NIR irradiation, ICG could generate heat, thus leading to the rupture of ICG-TSLs and the release of DOX. Accordingly, the multifunctional nanocomposite appeared to be a promising meritorious theranostic nanoplatform to pave a way for treating cancer.
Collapse
Affiliation(s)
- Qi Sun
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Qing You
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Jinping Wang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Li Liu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Yidan Wang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Yilin Song
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Yu Cheng
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| |
Collapse
|
14
|
Xing J, Liu D, Zhou G, Li Y, Wang P, Hu K, Gu N, Ji M. Liposomally formulated phospholipid-conjugated novel near-infrared fluorescence probe for particle size effect on cellular uptake and biodistribution in vivo. Colloids Surf B Biointerfaces 2017; 160:265-271. [PMID: 28946061 DOI: 10.1016/j.colsurfb.2017.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 11/30/2022]
Abstract
Lipid based nanoparticles (LBNs) with excellent biocompatibility and versatility have received much attention from the drug delivery community recently. A detailed understanding of in vitro and vivo fate of LBNs is important for developing different types of LBNs with improved selectivity and low cytotoxicity. We developed a novel near-infrared (NIR) probe with high fluorescence, designated as DSPE-ir623 (iDSPE). Then, we prepared iDSPE-embeded liposomes (iLPs) with two different hydrodynamic sizes (∼100nm and ∼400nm) to evaluate the effect of particle size on cellular uptake and biodistribution of nanoliposomes in vivo. These iLPs were proved to exhibit good monodispersity, excellent fluorescence and stability. In vitro cell uptake tests demonstrated that iLPs-1 (∼100nm) were taken up more by HT-29 cells than iLPs-2 (∼400nm). Notably, the fluorescence of iLPs can be employed for real-time monitoring of the subcellular locating and its metabolic distribution in vivo. Near-infrared imaging in vivo illustrated that iLPs-1 was mainly accumulated in the tumor tissues, while iLPs-2 was accumulated in liver and spleen. The results indicated that the size of iLPs play an important role in the regulation of intracellular trafficking and biodistribution of liposomes, which also provide a new insight into the development of more effective LBNs. Hence, iDSPE might be a promising tool for the reliable tracing of different types of LBNs.
Collapse
Affiliation(s)
- Jing Xing
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Dong Liu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Gaoxin Zhou
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Yuan Li
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Basic Medical Science, Nanjing Medical University, Nanjing 210000, China
| | - Ning Gu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China.
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China.
| |
Collapse
|
15
|
Xing J, Liu D, Zhou G, Li Y, Wang P, Hu K, Gu N, Ji M. Liposomally formulated phospholipid-conjugated novel near-infrared fluorescence probe for particle size effect on cellular uptake and biodistribution in vivo. Colloids Surf B Biointerfaces 2017; 161:588-596. [PMID: 29154213 DOI: 10.1016/j.colsurfb.2017.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipid based nanoparticles (LBNs) with excellent biocompatibility and versatility have received much attention from the drug delivery community recently. A detailed understanding of in vitro and vivo fate of LBNs is important for developing different types of LBNs with improved selectivity and low cytotoxicity. We developed a novel near-infrared (NIR) probe with high fluorescence, designated as DSPE-ir623 (iDSPE). Then, we prepared iDSPE-embeded liposomes (iLPs) with two different hydrodynamic sizes (∼100nm and ∼400nm) to evaluate the effect of particle size on cellular uptake and biodistribution of nanoliposomes in vivo. These iLPs were proved to exhibit good monodispersity, excellent fluorescence and stability. In vitro cell uptake tests demonstrated that iLPs-1 (∼100nm) were taken up more by HT-29 cells than iLPs-2 (∼400nm). Notably, the fluorescence of iLPs can be employed for real-time monitoring of the subcellular locating and its metabolic distribution in vivo. Near-infrared imaging in vivo illustrated that iLPs-1 was mainly accumulated in the tumor tissues, while iLPs-2 was accumulated in liver and spleen. The results indicated that the size of iLPs play an important role in the regulation of intracellular trafficking and biodistribution of liposomes, which also provide a new insight into the development of more effective LBNs. Hence, iDSPE might be a promising tool for the reliable tracing of different types of LBNs.
Collapse
Affiliation(s)
- Jing Xing
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Dong Liu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Gaoxin Zhou
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Yuan Li
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Basic Medical Science, Nanjing Medical University, Nanjing 210000, China
| | - Ning Gu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China.
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, China.
| |
Collapse
|
16
|
Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal Indocyanine Green for Enhanced Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5683-5691. [PMID: 28152314 DOI: 10.1021/acsami.6b16801] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we engineered liposomal indocyanine green (ICG) to maximize its photothermal effects while maintaining the fluorescence intensity. Various liposomal formulations of ICG were prepared by varying the lipid composition and the molar ratio between total lipid and ICG, and their photothermal characteristics were evaluated under near-infrared irradiation. We showed that the ICG dispersity in the liposomal membrane and its physical interaction with phospholipids were the main factors determining the photothermal conversion efficiency. In phototherapeutic studies, the optimized formulation of liposomal ICG showed greater anticancer effects in a mouse tumor model compared with other liposomal formulations and the free form of ICG. Furthermore, we utilized liposomal ICG to visualize the metastatic lymph node around the primary tumor under fluorescence imaging guidance and ablate the lymph node with the enhanced photothermal effect, indicating the potential for selective treatment of metastatic lymph node.
Collapse
Affiliation(s)
- Hwan-Jun Yoon
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Hye-Seong Lee
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ji-Young Lim
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
He CF, Wang SH, Yu YJ, Shen HY, Zhao Y, Gao HL, Wang H, Li LL, Liu HY. Advances in biodegradable nanomaterials for photothermal therapy of cancer. Cancer Biol Med 2016; 13:299-312. [PMID: 27807498 PMCID: PMC5069834 DOI: 10.20892/j.issn.2095-3941.2016.0052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/30/2016] [Indexed: 12/25/2022] Open
Abstract
Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the toxicity issues derived from the fact that nanomaterials are trapped and retained in the reticuloendothelial systems limit their biomedical application. Developing biodegradable photothermal agents is the most practical route to address these concerns. In addition to the physicochemical properties of nanomaterials, various internal and external stimuli play key roles on nanomaterials uptake, transport, and clearance. In this review, we summarized novel nanoplatforms for photothermal therapy; these nanoplatforms can elicit stimuli-triggered degradation. We focused on the recent innovative designs endowed with biodegradable photothermal agents under different stimuli, including enzyme, pH, and near-infrared (NIR) laser.
Collapse
Affiliation(s)
- Chao-Feng He
- School of Material Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun-Hao Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying-Jie Yu
- Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY 11790, USA
| | - He-Yun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Zhao
- Department of Emergency, Shandong Heze Municipal Hospital, Heze 274031, China
| | - Hui-Ling Gao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Lin-Lin Li
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing 100083, China
| | - Hui-Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 2016; 34:768-789. [PMID: 27090752 DOI: 10.1016/j.biotechadv.2016.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
Indocyanine green (ICG) is a cyanine compound that displays fluorescent properties in the near infrared region. This dye is employed for numerous indications but nowadays its major application field regards tumour diagnosis and treatments. Optical imaging by near infrared fluorescence provides news opportunities for oncologic surgery. The imaging of ICG can be useful for intraoperative identification of several solid tumours and metastases, and sentinel lymph node detection. In addition, ICG can be used as an agent for the destruction of malignant tissue, by virtue of the production of reactive oxygen species and/or induction of a hyperthermia effect under irradiation. Nevertheless, ICG shows several drawbacks, which limit its clinical application. Several formulative strategies have been studied to overcome these problems. The rationale of the development of ICG containing drug delivery systems is to enhance the in vivo stability and biodistribution profile of this dye, allowing tumour accumulation and resulting in better efficacy. In this review, ICG containing nano-sized carriers are classified based on their chemical composition and structure. In addition to nanosystems, different formulations including hydrogel, microsystems and others loaded with ICG will be illustrated. In particular, this report describes the preparation, in vitro characterization and in vivo application of ICG platforms for cancer imaging and treatment. The promising results of all systems confirm their clinical utility but further studies are required prior to evaluating the formulations in human trials.
Collapse
Affiliation(s)
- Elena P Porcu
- PhD in Experimental Medicine, Department of Diagnostic, Paediatric, Clinical and Surgical Science, Pavia, Italy
| | - Andrea Salis
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | - Elisabetta Gavini
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | - Giovanna Rassu
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | | | - Paolo Giunchedi
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy.
| |
Collapse
|
19
|
Jin T, Tsuboi S, Komatsuzaki A, Imamura Y, Muranaka Y, Sakata T, Yasuda H. Enhancement of aqueous stability and fluorescence brightness of indocyanine green using small calix[4]arene micelles for near-infrared fluorescence imaging. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00580a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of ICG into calix[4]arene micelles improves its aqueous stability and fluorescence brightness.
Collapse
Affiliation(s)
- Takashi Jin
- Laboratory for Nano-Bio Probes, Quantitative Biology Center (QBiC)
- Riken
- Suita
- Japan
- Immunology Frontier Research Center (IFReC)
| | - Setsuko Tsuboi
- Laboratory for Nano-Bio Probes, Quantitative Biology Center (QBiC)
- Riken
- Suita
- Japan
| | - Akihito Komatsuzaki
- Laboratory for Nano-Bio Probes, Quantitative Biology Center (QBiC)
- Riken
- Suita
- Japan
| | - Yukio Imamura
- Laboratory for Nano-Bio Probes, Quantitative Biology Center (QBiC)
- Riken
- Suita
- Japan
| | - Yoshinori Muranaka
- Research Center for Ultra-High Voltage Electron Microscopy
- Osaka University
- Ibaraki
- Japan
| | - Takao Sakata
- Research Center for Ultra-High Voltage Electron Microscopy
- Osaka University
- Ibaraki
- Japan
| | - Hidehiro Yasuda
- Research Center for Ultra-High Voltage Electron Microscopy
- Osaka University
- Ibaraki
- Japan
| |
Collapse
|
20
|
Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection. Int J Pharm 2015; 496:401-6. [DOI: 10.1016/j.ijpharm.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/22/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022]
|
21
|
Inage K, Sakuma Y, Yamauchi K, Suganami A, Orita S, Kubota G, Oikawa Y, Sainoh T, Sato J, Fujimoto K, Shiga Y, Takahashi K, Ohtori S, Tamura Y. Longitudinal evaluation of local muscle conditions in a rat model of gastrocnemius muscle injury using an in vivo imaging system. J Orthop Res 2015; 33:1034-8. [PMID: 25731883 DOI: 10.1002/jor.22832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 01/15/2015] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the time course of local changes during the acute phase of gastrocnemius muscle strain, in a rat model, using an in vivo imaging system. Thirty-eight, 8-week-old Sprague-Dawley male rats were used in our study. Experimental injury of the right gastrocnemius muscle was achieved using the drop-mass method. After inducing muscle injury, a liposomally formulated indocyanine green derivative (LP-iDOPE, 7 mg/kg) was injected intraperitoneally. We evaluated the muscle injuries using in vivo imaging, histological examinations, and enzyme-linked immunosorbent assays. The fluorescence peaked approximately 18 h after the injury, and decreased thereafter. Histological examinations revealed that repair of the injured tissue occurred between 18 and 24 h after injury. Quantitative analyses for various cytokines demonstrated significant elevations of interleukin-6 and tumor necrosis factor-α at 3 and 18 h post-injury, respectively. The time course of fluorescence intensity, measured using in vivo imaging, demonstrated that the changes in cytokine levels and histopathologic characteristics were consistent. Specifically, these changes reached peaked 18 h post-injury, followed by trends toward recovery.
Collapse
Affiliation(s)
- Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Sakuma
- Department of Orthopaedic Surgery, National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Go Kubota
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Oikawa
- Department of Orthopaedic Surgery, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Takeshi Sainoh
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Sato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Inage K, Sakuma Y, Yamauchi K, Suganami A, Orita S, Kubota G, Oikawa Y, Sainoh T, Sato J, Fujimoto K, Shiga Y, Takahashi K, Ohtori S, Tamura Y. Effect of photodynamic therapy on local muscle treatment in a rat muscle injury model: a controlled trial. J Orthop Surg Res 2015; 10:50. [PMID: 25900267 PMCID: PMC4406025 DOI: 10.1186/s13018-015-0193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Background Muscle injury is common and is thought to account for 10%–50% of all sports-related injuries. The use of rest, ice, compression, and elevation is common in clinical practice, but many treatments over a long period are required to produce a therapeutic effect. We evaluated the utility of photodynamic therapy as a new treatment option for the acute stage of muscle injury. Methods Twenty 8-week-old Sprague-Dawley male rats underwent experimental injury of the right gastrocnemius muscle with a drop-mass method. After muscle injury was induced, a liposomally formulated indocyanine green derivative (7 mg/kg) near-infrared laser irradiation was performed at 18 h after injury. Local time-dependent changes in the treatment (n = 14) and no treatment (n = 14) groups were evaluated with in vivo imaging, histologic examination, and enzyme-linked immunosorbent assay methods. Results In vivo imaging fluorescence values were significantly higher in the no treatment group, whereas interleukin-6 and tumor necrosis factor-α levels were significantly higher in the treatment group at 18 h after injury. Histologic examination results revealed that the treatment group had less bleeding and more degeneration repair processes than the no treatment group at 24 h and 1 week after muscle injury. Conclusions These findings suggest that photodynamic therapy promotes a tissue-repairing effect during the early stage of muscle injury.
Collapse
Affiliation(s)
- Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yoshihiro Sakuma
- Department of Orthopaedic Surgery, National Hospital Organization Chiba Medical Center, 4 Chome-1-2 Tsubakimori, Chiba City, Chiba, Japan.
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, Japan.
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Go Kubota
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yasuhiro Oikawa
- Department of Orthopaedic Surgery, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Chiba City, Chiba, Japan.
| | - Takeshi Sainoh
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Jun Sato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, Japan.
| |
Collapse
|
23
|
Maruyama T, Akutsu Y, Suganami A, Tamura Y, Fujito H, Ouchi T, Akanuma N, Isozaki Y, Takeshita N, Hoshino I, Uesato M, Toyota T, Hayashi H, Matsubara H. Treatment of near-infrared photodynamic therapy using a liposomally formulated indocyanine green derivative for squamous cell carcinoma. PLoS One 2015; 10:e0122849. [PMID: 25850029 PMCID: PMC4388603 DOI: 10.1371/journal.pone.0122849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/20/2015] [Indexed: 12/04/2022] Open
Abstract
Introduction Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. Materials and Methods An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Results Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. Conclusion These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease.
Collapse
Affiliation(s)
- Tetsuro Maruyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- * E-mail:
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiromichi Fujito
- Department of Medical System Engineering, Faculty of Engineering, Chiba University, Chiba, Japan
| | - Tomoki Ouchi
- Division of Nanoscience, Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | - Naoki Akanuma
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuka Isozaki
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuyoshi Takeshita
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Uesato
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Kranz S, Huebsch M, Guellmar A, Voelpel A, Tonndorf-Martini S, Sigusch BW. Antibacterial photodynamic treatment of periodontopathogenic bacteria with indocyanine green and near-infrared laser light enhanced by TroloxTM. Lasers Surg Med 2015; 47:350-60. [DOI: 10.1002/lsm.22336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Stefan Kranz
- Polyclinic for Conservative Dentistry and Periodontology; University Hospital Jena, An der alten Post 4; Jena 07743 Germany
| | - Marie Huebsch
- Polyclinic for Prosthetic Dentistry and Material Science; University Hospital Jena, An der alten Post 4; Jena 07743 Germany
| | - Andre Guellmar
- Polyclinic for Conservative Dentistry and Periodontology; University Hospital Jena, An der alten Post 4; Jena 07743 Germany
| | - Andrea Voelpel
- Polyclinic for Conservative Dentistry and Periodontology; University Hospital Jena, An der alten Post 4; Jena 07743 Germany
| | - Silke Tonndorf-Martini
- Polyclinic for Conservative Dentistry and Periodontology; University Hospital Jena, An der alten Post 4; Jena 07743 Germany
| | - Bernd W. Sigusch
- Polyclinic for Conservative Dentistry and Periodontology; University Hospital Jena, An der alten Post 4; Jena 07743 Germany
| |
Collapse
|
25
|
Shemesh CS, Moshkelani D, Zhang H. Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res 2014; 32:1604-14. [PMID: 25407543 DOI: 10.1007/s11095-014-1560-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE The focus of this research was to formulate and evaluate a theranostic liposomal delivery system using indocyanine green (ICG) as a photosensitizer, triggered by near infrared (NIR) irradiation, for in vivo photodynamic therapy (PDT) of breast cancer. METHODS Cytotoxicity of PDT using liposomal ICG (LPICG) as well as free ICG (FRICG) was evaluated in the human MDA-MB-468 triple-negative breast cancer (TNBC) cell line. NIR irradiation-induced increase in temperature was also monitored both in vitro and in vivo. Quantitative pharmacokinetic profile and fluorescence imaging-based biodistribution patterns of both formulations were obtained using the human TNBC xenograft model in nude mice. Overall safety, tolerability, and long-term anti-tumor efficacy of LPICG versus FRICG-mediated PDT was evaluated. RESULTS Significant loss of cell viability was achieved following photoactivation of LPICG via NIR irradiation. Temperatures of irradiated LPICG increased with increasing concentrations of loaded ICG, which correlated with significant rise of temperature compared to PBS in vivo (p < 0.01). Pharmacokinetic assessment revealed a significant increase in systemic distribution and circulation half-life of LPICG, and NIR fluorescence imaging demonstrated enhanced accumulation of liposomes within the tumor region. Tumor growth in mice treated with LPICG followed by NIR irradiation was significantly reduced compared to those treated with FRICG, saline, and irradiation alone. CONCLUSIONS In vivo photodynamic therapy using LPICG demonstrated targeted biodistribution and superior anti-tumor efficacy in a human TNBC xenograft model compared to FRICG. In addition, this unique delivery system exhibited a promising role in NIR image-guided delivery and real-time biodistribution monitoring of formulation with ICG serving as the fluorescent probe.
Collapse
Affiliation(s)
- Colby S Shemesh
- Drug Delivery Laboratory, Department of Pharmaceutical Sciences College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, USA
| | | | | |
Collapse
|
26
|
Yi X, Wang F, Qin W, Yang X, Yuan J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 2014; 9:1347-65. [PMID: 24648733 PMCID: PMC3956734 DOI: 10.2147/ijn.s60206] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.
Collapse
Affiliation(s)
- Xiaomin Yi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
27
|
Kraft JC, Ho RJY. Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in vivo. Biochemistry 2014; 53:1275-83. [PMID: 24512123 PMCID: PMC3985908 DOI: 10.1021/bi500021j] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Indocyanine green (ICG) is a near-infrared
(NIR) contrast agent
commonly used for in vivo cardiovascular and eye
imaging. For medical diagnosis, ICG is limited by its aqueous instability,
concentration-dependent aggregation, and rapid degradation. To overcome
these limitations, scientists have formulated ICG in various liposomes,
which are spherical lipid membrane vesicles with an aqueous core.
Some encapsulate ICG, while others mix it with liposomes. There is
no clear understanding of lipid–ICG interactions. Therefore,
we investigated lipid–ICG interactions by fluorescence and
photon correlation spectroscopy. These data were used to design stable
and maximally fluorescent liposomal ICG nanoparticles for NIR optical
imaging of the lymphatic system. We found that ICG binds to and is
incorporated completely and stably into the lipid membrane. At a lipid:ICG
molar ratio of 250:1, the maximal fluorescence intensity was detected.
ICG incorporated into liposomes enhanced the fluorescence intensity
that could be detected across 1.5 cm of muscle tissue, while free
ICG only allowed 0.5 cm detection. When administered subcutaneously
in mice, lipid-bound ICG in liposomes exhibited a higher intensity,
NIR image resolution, and enhanced lymph node and lymphatic vessel
visualization. It also reduced the level of fluorescence quenching
due to light exposure and degradation in storage. Lipid-bound ICG
could provide additional medical diagnostic value with NIR optical
imaging for early intervention in cases of lymphatic abnormalities.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington , Seattle, Washington 98195, United States
| | | |
Collapse
|
28
|
Toyota T, Fujito H, Suganami A, Ouchi T, Ooishi A, Aoki A, Onoue K, Muraki Y, Madono T, Fujinami M, Tamura Y, Hayashi H. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives. Bioorg Med Chem 2013; 22:721-7. [PMID: 24393719 DOI: 10.1016/j.bmc.2013.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 12/27/2022]
Abstract
Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hiromichi Fujito
- Department of Medical System Engineering, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoki Ouchi
- Division of Nanoscience, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Aki Ooishi
- Division of Nanoscience, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akira Aoki
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Kazutaka Onoue
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Yutaka Muraki
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Tomoyuki Madono
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Masanori Fujinami
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|