1
|
Xu C, Wu S, Liu P, Huang Y, Chen Y, Ding G, Jia S. Computational identification and analysis of CNP0269688 as a natural product inhibitor disrupting the interaction between the HIV matrix domain and tRNA. Front Chem 2024; 12:1450339. [PMID: 39286001 PMCID: PMC11403411 DOI: 10.3389/fchem.2024.1450339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Our research is dedicated to combating HIV by targeting its Matrix (MA) domain, which is crucial for viral assembly and replication. This strategy specifically aims to interrupt early-stage infection and deter drug resistance by focusing on this essential domain. Due to the MA domain's conservation across different HIV strains, our approach promises broad-spectrum efficacy, which is particularly crucial in regions marked by significant genetic diversity and resistance issues. In our study, we introduce CNP0269688, a natural product that exhibits high affinity for the HIV-1 Matrix. Through detailed molecular dynamics simulations, we have assessed the compound's structural stability and interaction dynamics, particularly its potential to hinder Protein-tRNA interactions. This analysis lays the groundwork for future experimental investigations. Our efforts are steps toward enhancing HIV treatment, reducing viral transmission, and curbing drug resistance, with the ultimate aim of controlling and eradicating the pandemic, thereby contributing significantly to public health and scientific advancement.
Collapse
Affiliation(s)
- Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songtao Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengju Liu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Huang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchao Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Kobayakawa T, Yokoyama M, Tsuji K, Fujino M, Kurakami M, Onishi T, Boku S, Ishii T, Miura Y, Shinohara K, Kishihara Y, Ohashi N, Kotani O, Murakami T, Sato H, Tamamura H. Low-molecular-weight anti-HIV-1 agents targeting HIV-1 capsid proteins. RSC Adv 2023; 13:2156-2167. [PMID: 36712613 PMCID: PMC9834766 DOI: 10.1039/d2ra06837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The HIV-1 capsid is a shell that encapsulates viral RNA, and forms a conical structure by assembling oligomers of capsid (CA) proteins. Since the CA proteins are highly conserved among many strains of HIV-1, the inhibition of the CA function could be an appropriate goal for suppression of HIV-1 replication, but to date, no drug targeting CA has been developed. Hydrophobic interactions between two CA molecules through Trp184 and Met185 in the protein are known to be indispensable for conformational stabilization of the CA multimer. In our previous study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site was synthesized and found to have significant anti-HIV-1 activity. In the present study, molecules with different scaffolds based on a dipeptide mimic of Trp184 and Met185 have been designed and synthesized. Their significant anti-HIV activity and their advantages compared to the previous compounds were examined. The present results should be useful in the design of novel CA-targeting anti-HIV agents.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases Shinjuku-ku Tokyo 162-8640 Japan
| | - Masaki Kurakami
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takato Onishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Sayaka Boku
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yutaro Miura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Kouki Shinohara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yuki Kishihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Nami Ohashi
- Showa Pharmaceutical University Machida 194-8543 Tokyo Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases Shinjuku-ku Tokyo 162-8640 Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
3
|
Kobayakawa T, Yokoyama M, Tsuji K, Fujino M, Kurakami M, Boku S, Nakayama M, Kaneko M, Ohashi N, Kotani O, Murakami T, Sato H, Tamamura H. Small-Molecule Anti-HIV-1 Agents Based on HIV-1 Capsid Proteins. Biomolecules 2021; 11:biom11020208. [PMID: 33546092 PMCID: PMC7913237 DOI: 10.3390/biom11020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
The capsid of human immunodeficiency virus type 1 (HIV-1) is a shell that encloses viral RNA and is highly conserved among many strains of the virus. It forms a conical structure by assembling oligomers of capsid (CA) proteins. CA dysfunction is expected to be an important target of suppression of HIV-1 replication, and it is important to understand a new mechanism that could lead to the CA dysfunction. A drug targeting CA however, has not been developed to date. Hydrophobic interactions between two CA molecules via Trp184/Met185 in CA were recently reported to be important for stabilization of the multimeric structure of CA. In the present study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site, was synthesized and its significant anti-HIV-1 activity was confirmed. Structure activity relationship (SAR) studies of its derivatives were performed and provided results that are expected to be useful in the future design and development of novel anti-HIV agents targeting CA.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Masaki Kurakami
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Sayaka Boku
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Miyuki Nakayama
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| |
Collapse
|
4
|
Tsuji K, Wang R, Kobayakawa T, Owusu KBA, Fujino M, Kaneko M, Yamamoto N, Murakami T, Tamamura H. Potent leads based on CA-19L, an anti-HIV active HIV-1 capsid fragment. Bioorg Med Chem 2020; 30:115923. [PMID: 33316719 DOI: 10.1016/j.bmc.2020.115923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
Several anti-HIV-1 peptides have previously been found among overlapping fragment peptide libraries that contain an octa-arginyl moiety and cover the whole sequence of an HIV-1 capsid (CA) protein. Several derivatives based on a potent CA fragment peptide CA-19L have been synthesized. CA-19L overlaps with the Helix 9 region of the CA protein, which could be important for oligomerization of the CA proteins. Derivatives of CA-19L in which several amino acid residues were added to the N- and C-termini according to the natural CA sequence, were synthesized and their anti-HIV activity was evaluated. Some potent compounds were found, and these potential new anti-HIV agents are expected to be useful as new tools for elucidation of CA functions.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kofi Baffour-Awuah Owusu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan.
| |
Collapse
|
5
|
Monje-Galvan V, Voth GA. Binding mechanism of the matrix domain of HIV-1 gag on lipid membranes. eLife 2020; 9:58621. [PMID: 32808928 PMCID: PMC7476761 DOI: 10.7554/elife.58621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Specific protein-lipid interactions are critical for viral assembly. We present a molecular dynamics simulation study on the binding mechanism of the membrane targeting domain of HIV-1 Gag protein. The matrix (MA) domain drives Gag onto the plasma membrane through electrostatic interactions at its highly-basic-region (HBR), located near the myristoylated (Myr) N-terminus of the protein. Our study suggests Myr insertion is involved in the sorting of membrane lipids around the protein-binding site to prepare it for viral assembly. Our realistic membrane models confirm interactions with PIP2 and PS lipids are highly favored around the HBR and are strong enough to keep the protein bound even without Myr insertion. We characterized Myr insertion events from microsecond trajectories and examined the membrane response upon initial membrane targeting by MA. Insertion events only occur with one of the membrane models, showing a combination of surface charge and internal membrane structure modulate this process.
Collapse
Affiliation(s)
- Viviana Monje-Galvan
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, United States
| |
Collapse
|
6
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
7
|
Tsuji K, Owusu KBA, Kobayakawa T, Wang R, Fujino M, Kaneko M, Yamamoto N, Murakami T, Tamamura H. Exploratory studies on CA-15L, an anti-HIV active HIV-1 capsid fragment. Bioorg Med Chem 2020; 28:115488. [PMID: 32305183 DOI: 10.1016/j.bmc.2020.115488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/04/2023]
Abstract
Utilizing overlapping fragment peptide libraries covering the whole sequence of an HIV-1 capsid (CA) protein with the addition of an octa-arginyl moiety, we had previously found several peptides with anti-HIV-1 activity. Herein, among these potent CA fragment peptides, CA-15L was examined because this peptide sequence overlaps with Helix 7, a helix region of the CA protein, which may be important for oligomerization of the CA proteins. A CA-15L surrogate with hydrophilic residues, and its derivatives, in which amino acid sequences are shifted toward the C-terminus by one or more residues, were synthesized and their anti-HIV activity was evaluated. In addition, its derivatives with substitution for the Ser149 residue were synthesized and their anti-HIV activity was evaluated because Ser149 might be phosphorylated in the step of degradation of CA protein oligomers. Several active compounds were found and might become new anti-HIV agents and new tools for elucidation of CA functions.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kofi Baffour-Awuah Owusu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan.
| |
Collapse
|
8
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
9
|
Qualley DF, Cooper SE, Ross JL, Olson ED, Cantara WA, Musier-Forsyth K. Solution Conformation of Bovine Leukemia Virus Gag Suggests an Elongated Structure. J Mol Biol 2019; 431:1203-1216. [PMID: 30731090 PMCID: PMC6424597 DOI: 10.1016/j.jmb.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Bovine leukemia virus (BLV) is a deltaretrovirus that infects domestic cattle. The structural protein Gag, found in all retroviruses, is a polyprotein comprising three major functional domains: matrix (MA), capsid (CA), and nucleocapsid (NC). Previous studies have shown that both mature BLV MA and NC are able to bind to nucleic acids; however, the viral assembly process and packaging of viral genomic RNA requires full-length Gag to produce infectious particles. Compared to lentiviruses, little is known about the structure of the Gag polyprotein of deltaretroviruses. In this work, structural models of full-length BLV Gag and Gag lacking the MA domain were generated based on previous structural data of individual domains, homology modeling, and flexible fitting to SAXS data using molecular dynamics. The models were used in molecular dynamic simulations to determine the relative mobility of the protein backbone. Functional annealing assays revealed the role of MA in the nucleic acid chaperone activity of BLV Gag. Our results show that full-length BLV Gag has an elongated rod-shaped structure that is relatively rigid, with the exception of the linker between the MA and CA domains. Deletion of the MA domain maintains the elongated structure but alters the rate of BLV Gag-facilitated annealing of two complementary nucleic acids. These data are consistent with a role for the MA domain of retroviral Gag proteins in modulating nucleic acid binding and chaperone activity. IMPORTANCE: BLV is a retrovirus that is found worldwide in domestic cattle. Since BLV infection has serious implications for agriculture, and given its similarities to human retroviruses such as HTLV-1, the development of an effective treatment would have numerous benefits. The Gag polyprotein exists in all retroviruses and is a key player in viral assembly. However, the full-length structure of Gag from any virus has yet to be elucidated at high resolution. This study provides structural data for BLV Gag and could be a starting point for modeling Gag-small molecule interactions with the ultimate goal of developing of a new class of pharmaceuticals.
Collapse
Affiliation(s)
- Dominic F Qualley
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA 30149, USA.
| | - Sarah E Cooper
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA 30149, USA
| | - James L Ross
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA 30149, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
11
|
Xu JP, Francis AC, Meuser ME, Mankowski M, Ptak RG, Rashad AA, Melikyan GB, Cocklin S. Exploring Modifications of an HIV-1 Capsid Inhibitor: Design, Synthesis, and Mechanism of Action. JOURNAL OF DRUG DESIGN AND RESEARCH 2018; 5:1070. [PMID: 30393786 PMCID: PMC6214487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent efforts by both academic and pharmaceutical researchers have focused on the HIV-1 capsid (CA) protein as a new therapeutic target. An interprotomer pocket within the hexamer configuration of the CA, which is also a binding site for key host dependency factors, is the target of the most widely studied CA inhibitor compound PF-3450074 (PF-74). Despite its popularity, PF-74 suffers from properties that limit its usefulness as a lead, most notably it's extremely poor metabolic stability. To minimize unfavorable qualities, we investigated bioisosteric modification of the PF-74 scaffold as a first step in redeveloping this compound. Using a field-based bioisostere identification method, coupled with biochemical and biological assessment, we have created four new compounds that inhibit HIV-1 infection and that bind to the assembled CA hexamer. Detailed mechanism of action studies indicates that the modifications alter the manner in which these new compounds affect HIV-1 capsid core stability, as compared to the parental compound. Further investigations are underway to redevelop these compounds to optimize potency and drug-like characteristics and to deeply define the mechanism of action.
Collapse
Affiliation(s)
- Jimmy P. Xu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | | | - Megan E. Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | - Marie Mankowski
- Department of Infectious Disease Research, Southern Research Institute, USA
| | - Roger G. Ptak
- Department of Infectious Disease Research, Southern Research Institute, USA
| | - Adel A. Rashad
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | | | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| |
Collapse
|
12
|
Mizuguchi T, Ohashi N, Matsumoto D, Hashimoto C, Nomura W, Yamamoto N, Murakami T, Tamamura H. Development of anti-HIV peptides based on a viral capsid protein. Biopolymers 2017; 108. [PMID: 27428649 DOI: 10.1002/bip.22920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
Peptide inhibitors with cell permeability targeting an HIV-1 capsid (CA) protein might make therapeutic by regulating HIV-1 replication. Overlapping fragment peptide libraries covering the whole sequence of an HIV-1 CA protein have been synthesized with the addition of an octa-arginyl moiety to increase their cell permeability. Amongst these peptides, several compounds which inhibit the HIV-1 replication cycle have been found. Conjugation of cell-penetrating functions such as an octa-arginyl group to individual peptides in combination with the addition of chloroquine in cell-based anti-HIV assays was previously proven to be a useful assay method with which to search for active peptides. Anti-HIV assays have been performed in the presence or absence of chloroquine and found that most of compounds have higher anti-HIV activity in the presence, rather than in the absence of chloroquine. Some potent seeds as anti-HIV agents might naturally lie hidden in CA proteins, and could become useful leads to HIV inhibitors.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Daichi Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
13
|
Kamal A, Nekkanti S, Shankaraiah N, Sathish M. Future of Drug Discovery. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017:609-629. [DOI: 10.1007/978-3-319-48683-3_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
14
|
Liang H, Ruan H, Ouyang Q, Lai L. Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine. Sci Rep 2016; 6:36767. [PMID: 27833111 PMCID: PMC5105066 DOI: 10.1038/srep36767] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
Though many studies have been performed to elucidate molecular mechanism of traditional Chinese medicines (TCMs) by identifying protein-compound interactions, no systematic analysis at herb level was reported. TCMs are prescribed by herbs and all compounds from a certain herb should be considered as a whole, thus studies at herb level may provide comprehensive understanding of TCMs. Here, we proposed a computational strategy to study molecular mechanism of TCM at herb level and used it to analyze a TCM anti-HIV formula. Herb-target network analysis was carried out between 17 HIV-related proteins and SH formula as well as three control groups based on systematic docking. Inhibitory herbs were identified and active compounds enrichment was found to contribute to the therapeutic effectiveness of herbs. Our study demonstrates that computational analysis of TCMs at herb level can catch the rationale of TCM formulation and serve as guidance for novel TCM formula design.
Collapse
Affiliation(s)
- Hao Liang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hao Ruan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Ouyang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Spearman P. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors. Curr Top Med Chem 2016; 16:1154-66. [PMID: 26329615 DOI: 10.2174/1568026615666150902102143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023]
Abstract
HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way.
Collapse
Affiliation(s)
- Paul Spearman
- Department of Pediatrics; Pediatric Infectious Diseases, Emory University, 2015 Uppergate Drive, Atlanta, GA 30322.
| |
Collapse
|
16
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
17
|
Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorg Med Chem Lett 2015; 24:5439-45. [PMID: 25454268 DOI: 10.1016/j.bmcl.2014.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
Abstract
With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.
Collapse
|
18
|
Mizuguchi T, Ohashi N, Nomura W, Komoriya M, Hashimoto C, Yamamoto N, Murakami T, Tamamura H. Anti-HIV screening for cell-penetrating peptides using chloroquine and identification of anti-HIV peptides derived from matrix proteins. Bioorg Med Chem 2015; 23:4423-4427. [PMID: 26094944 DOI: 10.1016/j.bmc.2015.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022]
Abstract
Previously, compounds which inhibit the HIV-1 replication cycle were found in overlapping peptide libraries covering the whole sequence of an HIV-1 matrix (MA) protein constructed with the addition of an octa-arginyl group. The two top lead compounds are sequential fragments MA-8L and MA-9L. In the present study, the addition of chloroquine in cell-based anti-HIV assays was proven to be an efficient method with which to find anti-HIV compounds among several peptides conjugated by cell-penetrating signals such as an octa-arginyl group: the conjugation of an octa-arginyl group to individual peptides contained in whole proteins in combination with the addition of chloroquine in cells is a useful assay method to search active peptides. To find more potent fragment peptides, individual peptides between MA-8L and MA-9L, having the same peptide chain length but with sequences shifted by one amino acid residue, were synthesized in this paper and their anti-HIV activity was evaluated with an anti-HIV assay using chloroquine. As a result, the peptides in the C-terminal side of the series, which are relatively close to MA-9L, showed more potent inhibitory activity against both X4-HIV-1 and R5-HIV-1 than the peptides in the N-terminal side.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Mao Komoriya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
19
|
Vlach J, Saad JS. Structural and molecular determinants of HIV-1 Gag binding to the plasma membrane. Front Microbiol 2015; 6:232. [PMID: 25852680 PMCID: PMC4367181 DOI: 10.3389/fmicb.2015.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023] Open
Abstract
Targeting of the Gag polyprotein to the plasma membrane (PM) for assembly is a critical event in the late phase of immunodeficiency virus type-1 (HIV-1) infection. Gag binding to the PM is mediated by interactions between the myristoylated matrix (MA) domain and PM lipids. Despite the extensive biochemical and in vitro studies of Gag and MA binding to membranes over the last two decades, the discovery of the role of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in Gag binding to the PM has sparked a string of studies aimed at elucidating the molecular mechanism of retroviral Gag–PM binding. Electrostatic interactions between a highly conserved basic region of MA and acidic phospholipids have long been thought to be the main driving force for Gag–membrane interactions. However, recent studies suggest that the mechanism is rather complex since other factors such as the hydrophobicity of the membrane interior represented by the acyl chains and cholesterol also play important roles. Here we summarize the current understanding of HIV-1 Gag–membrane interactions at the molecular and structural levels and briefly discuss the underlying forces governing interactions of other retroviral MA proteins with the PM.
Collapse
Affiliation(s)
- Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
20
|
Tedbury PR, Freed EO. HIV-1 gag: an emerging target for antiretroviral therapy. Curr Top Microbiol Immunol 2015; 389:171-201. [PMID: 25731773 DOI: 10.1007/82_2015_436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The advances made in the treatment of HIV-1 infection represent a major success of modern biomedical research, prolonging healthy life and reducing virus transmission. There remain, however, many challenges relating primarily to side effects of long-term therapy and the ever-present danger of the emergence of drug-resistant strains. To counter these threats, there is a continuing need for new and better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle. The most successful current drugs target the viral enzymes: protease (PR), reverse transcriptase (RT), and integrase (IN). In this review, we outline the advances made in targeting the Gag protein and its mature products, particularly capsid and nucleocapsid, and highlight possible targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, 21702-1201, USA
| | | |
Collapse
|
21
|
Kortagere S, Xu JP, Mankowski MK, Ptak RG, Cocklin S. Structure-activity relationships of a novel capsid targeted inhibitor of HIV-1 replication. J Chem Inf Model 2014; 54:3080-90. [PMID: 25302989 PMCID: PMC4245176 DOI: 10.1021/ci500437r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Despite the considerable successes
of highly active antiretroviral
therapy (HAART) for the treatment of HIV/AIDS, cumulative drug toxicities
and the development of multidrug-resistant virus necessitate the search
for new classes of antiretroviral agents with novel modes of action.
The HIV-1 capsid (CA) protein has been structurally and functionally
characterized as a druggable target. We have recently designed a novel
small molecule inhibitor I-XW-053 using the hybrid structure based
method to block the interface between CA N-terminal domains (NTD–NTD
interface) with micromolar affinity. In an effort to optimize and
improve the efficacy of I-XW-053, we have developed the structure
activity relationship of I-XW-053 compound series using ligand efficiency
methods. Fifty-six analogues of I-XW-053 were designed that could
be subclassified into four different core domains based on their ligand
efficiency values computed as the ratio of binding efficiency (BEI)
and surface efficiency (SEI) indices. Compound 34 belonging
to subcore-3 showed an 11-fold improvement over I-XW-053 in blocking
HIV-1 replication in primary human peripheral blood mononuclear cells
(PBMCs). Surface plasmon resonance experiments confirmed the binding
of compound 34 to purified HIV-1 CA protein. Molecular
docking studies on compound 34 and I-XW-053 to HIV-1
CA protein suggested that they both bind to NTD–NTD interface
region but with different binding modes, which was further validated
using site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology & Immunology and ‡Department of Biochemistry & Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
22
|
Li G, Verheyen J, Rhee SY, Voet A, Vandamme AM, Theys K. Functional conservation of HIV-1 Gag: implications for rational drug design. Retrovirology 2013; 10:126. [PMID: 24176092 PMCID: PMC4228425 DOI: 10.1186/1742-4690-10-126] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
Background HIV-1 replication can be successfully blocked by targeting gag gene products, offering a promising strategy for new drug classes that complement current HIV-1 treatment options. However, naturally occurring polymorphisms at drug binding sites can severely compromise HIV-1 susceptibility to gag inhibitors in clinical and experimental studies. Therefore, a comprehensive understanding of gag natural diversity is needed. Findings We analyzed the degree of functional conservation in 10862 full-length gag sequences across 8 major HIV-1 subtypes and identified the impact of natural variation on known drug binding positions targeted by more than 20 gag inhibitors published to date. Complete conservation across all subtypes was detected in 147 (29%) out of 500 gag positions, with the highest level of conservation observed in capsid protein. Almost half (41%) of the 136 known drug binding positions were completely conserved, but all inhibitors were confronted with naturally occurring polymorphisms in their binding sites, some of which correlated with HIV-1 subtype. Integration of sequence and structural information revealed one drug binding pocket with minimal genetic variability, which is situated at the N-terminal domain of the capsid protein. Conclusions This first large-scale analysis of full-length HIV-1 gag provided a detailed mapping of natural diversity across major subtypes and highlighted the considerable variation in current drug binding sites. Our results contribute to the optimization of gag inhibitors in rational drug design, given that drug binding sites should ideally be conserved across all HIV-1 subtypes.
Collapse
Affiliation(s)
- Guangdi Li
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Zentner I, Sierra LJ, Fraser AK, Maciunas L, Mankowski MK, Vinnik A, Fedichev P, Ptak RG, Martín-García J, Cocklin S. Identification of a small-molecule inhibitor of HIV-1 assembly that targets the phosphatidylinositol (4,5)-bisphosphate binding site of the HIV-1 matrix protein. ChemMedChem 2013; 8:426-32. [PMID: 23361947 DOI: 10.1002/cmdc.201200577] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 12/22/2022]
Abstract
The development of drug resistance remains a critical problem for current HIV-1 antiviral therapies, creating a need for new inhibitors of HIV-1 replication. We previously reported on a novel anti-HIV-1 compound, N(2)-(phenoxyacetyl)-N-[4-(1-piperidinylcarbonyl)benzyl]glycinamide (14), that binds to the highly conserved phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) binding pocket of the HIV-1 matrix (MA) protein. In this study, we re-evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV-1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2-(4-{[3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl]methyl})-1-piperazinyl)-N-(4-methylphenyl)acetamide (7), 3-(2-ethoxyphenyl)-5-[[4-(4-nitrophenyl)piperazin-1-yl]methyl]-1,2,4-oxadiazole (17), and N-[4-ethoxy-3-(1-piperidinylsulfonyl)phenyl]-2-(imidazo[2,1-b][1,3]thiazol-6-yl)acetamide (18), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV-1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P(2) for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P(2) binding site of MA decreased the antiviral effect of compound 7. Additionally, compound 7 displays a broadly neutralizing anti-HIV activity, with IC(50) values of 7.5-15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Isaac Zentner
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|