1
|
Chen Y, Teng Y, Xu P, Wang S. The Role of Citrullination Modification in CD4 + T Cells in the Pathogenesis of Immune-Related Diseases. Biomolecules 2024; 14:400. [PMID: 38672418 PMCID: PMC11047979 DOI: 10.3390/biom14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The post-translational modifications (PTMs) of proteins play a crucial role in increasing the functional diversity of proteins and are associated with the pathogenesis of various diseases. This review focuses on a less explored PTM called citrullination, which involves the conversion of arginine to citrulline. This process is catalyzed by peptidyl arginine deiminases (PADs). Different members of the PAD family have distinct tissue distribution patterns and functions. Citrullination is a post-translational modification of native proteins that can alter their structure and convert them into autoantigens; thus, it mediates the occurrence of autoimmune diseases. CD4+ T cells, including Th1, Th2, and Th17 cells, are important immune cells involved in mediating autoimmune diseases, allergic reactions, and tumor immunity. PADs can induce citrullination in CD4+ T cells, suggesting a role for citrullination in CD4+ T cell subset differentiation and function. Understanding the role of citrullination in CD4+ T cells may provide insights into immune-related diseases and inflammatory processes.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Teng
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People’s Hospital of Suzhou, Suzhou 215505, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Geng H, An Q, Zhang Y, Huang Y, Wang L, Wang Y. Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases. Mol Neurobiol 2023; 60:6748-6756. [PMID: 37480499 DOI: 10.1007/s12035-023-03489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
The deimination or citrullination of arginine residues in the polypeptide chain by peptidylarginine deiminase 4 alters the charge state of the polypeptide chain and affects the function of proteins. It is one of the main ways of protein post-translational modifications to regulate its function. Peptidylarginine deiminase 4 is widely expressed in multiple tissues and organs of the body, especially the central nervous system, and regulates the normal development of organisms. The abnormal expression and activation of peptidylarginine deiminase 4 is an important pathological mechanism for the occurrence and development of central nervous system diseases such as multiple sclerosis, Alzheimer's disease, cerebral ischemia reperfusion injury, and glioblastoma.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Qihang An
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Yanshuo Zhang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Yunhang Huang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
| | - Yanming Wang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
3
|
Roy Chowdhury D, Ghosh R, Debnath S, Bhaumik S. Potential peptidyl arginine deiminase type 4 inhibitors from Morinda citrifolia: a structure-based drug design approach. In Silico Pharmacol 2023; 11:13. [PMID: 37153695 PMCID: PMC10154455 DOI: 10.1007/s40203-023-00147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
The World Health Organization estimates that more than 23 million individuals worldwide suffer from rheumatoid arthritis (RA), a chronic systemic autoimmune disease and experts predict that the number of RA patients may double by 2030. A substantial portion of RA patients do not respond effectively to the treatment that are already available therefore there is an urgent need of innovative new drugs. Over the past several years, Peptidyl Arginine Deiminase Type 4 (PAD4) receptors have become potential therapeutic targets for the treatment of RA. The main objective of the present study is to identify potential PAD4 inhibitors from edible fruits Morinda citrifolia. Structure based virtual screening (VS) of 60 compounds from M. citrifolia were performed to identify PAD4 inhibitors. The virtual screening of compounds resulted ten hits having XP-Glide score greater than the co-ligand (XPGS: - 8.341 kcal/mol). Three hits NF_15, NF_34, and NF_35 exhibited admirable MM-GBSA dG binding energy - 52.577, - 46.777, and - 60.711 kcal/mol, respectively. These three compounds were chosen for 100 ns molecular dynamics (MD) simulations in order to evaluate the stability and interactions. The protein-ligand complex with the highest level of stability was revealed to be NF_35. Therefore, M. citrifolia fruits may be beneficial in the treatment and prevention of rheumatoid arthritis since it contains potential hits. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00147-3.
Collapse
Affiliation(s)
| | - Rajat Ghosh
- Department of Pharmacy, Tripura University, Suryamani Nagar, Agartala, Tripura 799022 India
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, 799114 India
| | - Samhita Bhaumik
- Department of Chemistry, Womens College, Agartala, Tripura 799001 India
| |
Collapse
|
4
|
Guo Z, Shi L, Wang B, He G, Wang Y, Chen G. Synthesis of reversible PAD4 inhibitors via copper-catalyzed C−H arylation of benzimidazole. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9409-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Song S, Yu Y. Progression on Citrullination of Proteins in Gastrointestinal Cancers. Front Oncol 2019; 9:15. [PMID: 30740359 PMCID: PMC6357933 DOI: 10.3389/fonc.2019.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023] Open
Abstract
The citrullination modification (Cit) of proteins has received increasing attention in recent years. This kind of protein modification was first discovered in autoimmune diseases such as rheumatoid arthritis. The citrullination modification process is catalyzed by the peptidyl arginine deiminases (PADIs) family. A well-known citrullination of histone involves the key mechanism of neutrophil extracellular traps (NETs) of inflammation in the peripheral blood. Further studies revealed that citrullination modification of proteins also involves in carcinogenesis in human being. Citrullinated proteins disturbed the stability of proteins and caused DNA damages. There is increasing evidence that citrullinated proteins can be used as potential targets for cancer diagnosis or treatment. This review introduces the concept of citrullination modification of proteins, substrate proteins, examining methods and biological significances.
Collapse
Affiliation(s)
- Shuzheng Song
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai, China
| | - Yingyan Yu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai, China
| |
Collapse
|
6
|
Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme. Int J Mol Sci 2018; 20:ijms20010103. [PMID: 30597867 PMCID: PMC6337164 DOI: 10.3390/ijms20010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.
Collapse
|
7
|
Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:567-572. [PMID: 28472221 DOI: 10.1093/abbs/gmx042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Peptidylarginine deiminase 4 (PADI4), a new histone modification enzyme, which converts both arginine and monomethyl-arginine to citrulline, has gained massive attention in recent years as a potential regulator of gene transcription. Recent studies have shown that arginine residues R2, R8, R17, and R26 in the H3 tail and R3 in the H4 tail can be deiminated by PADI4. This kind of histone post-translational modification has the potential to antagonize histone methylation and coordinate with histone deacetylation to regulate gene transcription. PADI4 also deiminates non-histone proteins, such as p300, NPM1, ING4, RPS2, and DNMT3A. PADI4 has been shown to involve in cell apoptosis and differentiation. Moreover, PADI4 can interact with tumor suppressor p53 and regulate the transcriptional activity of p53. Dysregulation of PADI4 is implicated in a variety of diseases, including rheumatoid arthritis, tumor development, and multiple sclerosis. A wide variety of PADI4 inhibitors have been identified. Further understanding of PADI4 functions may lead to novel diagnostic and therapeutic approaches in these diseases. This review summarizes the recent progress in the study of the regulation mechanism of PADI4 on gene transcription and the major physiological functions of PADI4 in human diseases.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Lianqing Wang
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Peiqing Zhao
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| |
Collapse
|
8
|
Lange S, Gallagher M, Kholia S, Kosgodage US, Hristova M, Hardy J, Inal JM. Peptidylarginine Deiminases-Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release? Int J Mol Sci 2017; 18:ijms18061196. [PMID: 28587234 PMCID: PMC5486019 DOI: 10.3390/ijms18061196] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Exosomes and microvesicles (EMVs) are lipid bilayer-enclosed structures released from cells and participate in cell-to-cell communication via transport of biological molecules. EMVs play important roles in various pathologies, including cancer and neurodegeneration. The regulation of EMV biogenesis is thus of great importance and novel ways for manipulating their release from cells have recently been highlighted. One of the pathways involved in EMV shedding is driven by peptidylarginine deiminase (PAD) mediated post-translational protein deimination, which is calcium-dependent and affects cytoskeletal rearrangement amongst other things. Increased PAD expression is observed in various cancers and neurodegeneration and may contribute to increased EMV shedding and disease progression. Here, we review the roles of PADs and EMVs in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Biomedical Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK.
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark Gallagher
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Sharad Kholia
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Mariya Hristova
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1N 6HX, UK.
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
9
|
Sarswat A, Wasilewski E, Chakka SK, Bello AM, Caprariello AV, Muthuramu CM, Stys PK, Dunn SE, Kotra LP. Inhibitors of protein arginine deiminases and their efficacy in animal models of multiple sclerosis. Bioorg Med Chem 2017; 25:2643-2656. [PMID: 28341402 DOI: 10.1016/j.bmc.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Protein arginine deiminases (PAD) are implicated in a variety of inflammatory and neurodegenerative diseases including multiple sclerosis (MS). Following the discovery of an in silico hit containing hydantoin and a piperidine moiety, we hypothesized that a 2-carbon linker on the hydantoin would be necessary for a 5-membered heterocycle for optimal PAD inhibitory activity. We designed thirteen compounds as potential inhibitors of PAD2 and PAD4 enzymes-two important PAD enzymes implicated in MS. Two compounds, one with an imidazole moiety (22) and the other with a tetrazole moiety (24) showed good inhibition of PAD isozymes in vitro and in the EAE mouse model of MS in vivo. Further experiments suggested that compound 22, a non-covalent inhibitor of PAD2 and PAD4, exhibits dose-dependent efficacy in the EAE mouse model and in the cuprizone-mediated demyelination model.
Collapse
Affiliation(s)
- Amit Sarswat
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ewa Wasilewski
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada
| | - Sai K Chakka
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Angelica M Bello
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada
| | - Andrew V Caprariello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Chithra M Muthuramu
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shannon E Dunn
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Immunology, University of Toronto, and Women's College Research Institute, Toronto, Ontario, M5S 1B2, Canada
| | - Lakshmi P Kotra
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
10
|
Zhao J, Yang L, Tang Y, Yang Y, Yin Y. Supramolecular Chemistry-Assisted Electrochemical Method for the Assay of Endogenous Peptidylarginine Deiminases Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:152-158. [PMID: 27958698 DOI: 10.1021/acsami.6b13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptidylarginine deiminase 4 (PAD4) is the only isoform of PADs located within the cell nucleus, which has been known to be related to several human diseases. In this work, we have proposed an electrochemical method for the assay of endogenous PAD4 activities as well as the studies of PAD4 inhibitors by making use of the supramolecular chemistry-assisted signal labeling. Specifically, peptide probes P1 and P2, which separately contain cysteine residues and tripeptides FGG (Phe-Gly-Gly), can be self-assembled onto the surface of the gold electrode and silver nanoparticles, respectively. In the meantime, the peptide probes can be connected together through cucurbit[8]uril-mediated host-guest interaction. Nevertheless, after trypsin-catalyzed digestion, FGG at the N-terminal of P1 will be removed from the electrode surface, thereby inhibiting the connection of P1 and P2. Since PAD4 catalyzes the citrullination of arginine residue within P1, trypsin-catalyzed digestion of P1 can be prohibited by the addition of PAD4. Consequently, an obvious change of the electrochemical response can be obtained from the silver nanoparticles (AgNPs) immobilized on the electrode surface. Experimental results have shown that our method can display an improved sensitivity and specificity for both PAD4 assay and inhibitor screening, which may effectively trace endogenous PAD4 and the inhibitors in the cancer cells. Therefore, our method may have great potential for the diagnosis and treatment of PAD4-related diseases in the future.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Lili Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Yucai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, P. R. China
| |
Collapse
|
11
|
Amin B, Voelter W. Human Deiminases: Isoforms, Substrate Specificities, Kinetics, and Detection. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 106:203-240. [PMID: 28762090 DOI: 10.1007/978-3-319-59542-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptidylarginine deiminase (PAD) enzymes are of enormous interest in biomedicine. They catalyze the conversion of a positively-charged guanidinium at an arginine side chain into a neutral ureido group. As a result of this conversion, proteins acquire the non-ribosomally encoded amino acid "citrulline". This imposes critical influences on the structure and function of the target molecules. In multiple sclerosis, myelin hyper-citrullination promotes demyelination by reducing its compaction and triggers auto-antibody production. Immune responses to citrulline-containing proteins play a central role in the pathogenesis of autoimmune diseases. Moreover, auto-antibodies, specific to citrullinated proteins, such as collagen type I and II and filaggrin, are early detectable in rheumatoid arthritis, serving as diagnostic markers of the disease. Despite their significance, little is understood about the role in demyelinating disorders, diversified cancers, and auto-immune diseases. To impart their biological and pathological effects, it is crucial to better understand the reaction mechanism, kinetic properties, substrate selection, and specificities of peptidylarginine deiminase isoforms.Many aspects of PAD biochemistry and physiology have been ignored in past, but, herein is presented a comprehensive survey to improve our current understandings of the underlying mechanism and regulation of PAD enzymes.
Collapse
Affiliation(s)
- Bushra Amin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, PA, USA.
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, BW, Germany
| |
Collapse
|
12
|
Abstract
The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Paul R. Thompson
- Department
of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program
in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
13
|
Anderson R, Meyer PWA, Ally MMTM, Tikly M. Smoking and Air Pollution as Pro-Inflammatory Triggers for the Development of Rheumatoid Arthritis. Nicotine Tob Res 2016; 18:1556-65. [PMID: 26957528 DOI: 10.1093/ntr/ntw030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Smoking is now well recognized not only as a risk factor for rheumatoid arthritis (RA), but also as a determinant of disease activity, severity, response to therapy, and possibly mortality. METHODS Studies, mostly recent, which have provided significant insights into the molecular and cellular mechanisms which underpin the pathogenesis of smoking-related RA, as well as the possible involvement of other types of outdoor and indoor pollution form the basis of this review. RESULTS Smoking initiates chronic inflammatory events in the lungs. These, in turn, promote the release of the enzymes, peptidylarginine deiminases 2 and 4 from smoke-activated, resident and infiltrating pulmonary phagocytes. Peptidylarginine deiminases mediate conversion of various endogenous proteins to putative citrullinated autoantigens. In genetically susceptible individuals, these autoantigens trigger the production of anti-citrullinated peptide, pathogenic autoantibodies, an event which precedes the development of RA. CONCLUSIONS An increasing body of evidence has linked chronic inflammatory events in the lungs of smokers, to the production of anti-citrullinated peptide autoantibodies and development of RA. Creation of awareness of the associated risks, assessment of smoking status and implementation of compelling antismoking strategies must be included in the routine clinical management of patients presenting with suspected RA. IMPLICATIONS Chronic inflammatory mechanisms operative in the lungs of smokers lead to the production of anti-citrullinated protein antibodies which, in turn, drive the development of RA. These mechanistic insights not only reinforce the association between smoking and risk for RA, but also the necessity to increase the level of awareness in those at highest risk.
Collapse
Affiliation(s)
- Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa;
| | - Pieter W A Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Mahmood M T M Ally
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mohammed Tikly
- Division of Rheumatology, Chris Hani Baragwanath Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Nel JG, Theron AJ, Durandt C, Tintinger GR, Pool R, Mitchell TJ, Feldman C, Anderson R. Pneumolysin activates neutrophil extracellular trap formation. Clin Exp Immunol 2016; 184:358-67. [PMID: 26749379 DOI: 10.1111/cei.12766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection.
Collapse
Affiliation(s)
| | - A J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service.,South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| | - C Durandt
- South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| | - G R Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - R Pool
- Department of Haematology
| | - T J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - C Feldman
- Division of Pulmonology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg and Charlotte Maxeke Academic Hospital, Johannesburg, South Africa
| | - R Anderson
- South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| |
Collapse
|
15
|
Lange S. Peptidylarginine Deiminases as Drug Targets in Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurol 2016; 7:22. [PMID: 26941709 PMCID: PMC4761975 DOI: 10.3389/fneur.2016.00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/09/2016] [Indexed: 12/17/2022] Open
Abstract
Oxygen deprivation and infection are major causes of perinatal brain injury leading to cerebral palsy and other neurological disabilities. The identification of novel key factors mediating white and gray matter damage are crucial to allow better understanding of the specific contribution of different cell types to the injury processes and pathways for clinical intervention. Recent studies in the Rice-Vannucci mouse model of neonatal hypoxic ischemia (HI) have highlighted novel roles for calcium-regulated peptidylarginine deiminases (PADs) and demonstrated neuroprotective effects of pharmacological PAD inhibition following HI and synergistic infection mimicked by lipopolysaccharide stimulation.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Pharmacology, UCL School of Pharmacy, London, UK; Department of Biomedical Sciences, University of Westminster, London, UK
| |
Collapse
|
16
|
Nel JG, Theron AJ, Pool R, Durandt C, Tintinger GR, Anderson R. Neutrophil extracellular traps and their role in health and disease. S AFR J SCI 2016. [DOI: 10.17159/sajs.2016/20150072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.
Collapse
|
17
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
18
|
Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol 2014; 171:4981-5010. [PMID: 25060293 PMCID: PMC4253452 DOI: 10.1111/bph.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy.
Collapse
Affiliation(s)
- David F Tough
- Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Epinova DPU, Stevenage, UK
| | | | | | | | | |
Collapse
|
19
|
Trabocchi A, Pala N, Krimmelbein I, Menchi G, Guarna A, Sechi M, Dreker T, Scozzafava A, Supuran CT, Carta F. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors. J Enzyme Inhib Med Chem 2014; 30:466-71. [DOI: 10.3109/14756366.2014.947976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Synthesis of sulfonamides with effective inhibitory action against Porphyromonas gingivalis γ-carbonic anhydrase. Bioorg Med Chem Lett 2014; 24:4006-10. [DOI: 10.1016/j.bmcl.2014.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 01/24/2023]
|
21
|
Abstract
Rheumatic disease is a large spectrum of heterogeneous conditions affecting the loco-motor system including joints, muscles, connective tissues, and soft tissues around the joints and bones. Many rheumatic diseases have an element of autoimmunity including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Aberrant epigenetic regulation of gene expression is emerging as a major factor within rheumatic disease, and indicates potential new therapeutic avenues of approach to these debilitating conditions. Understanding the precise role of epigenetics in the development and treatment of rheumatic diseases particularly those which have an associated autoimmune element may be important for the long-term management of such conditions.
Collapse
|
22
|
Slade DJ, Subramanian V, Fuhrmann J, Thompson PR. Chemical and biological methods to detect post-translational modifications of arginine. Biopolymers 2014; 101:133-43. [PMID: 23576281 PMCID: PMC3900596 DOI: 10.1002/bip.22256] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) of protein embedded arginines are increasingly being recognized as playing an important role in both prokaryotic and eukaryotic biology, and it is now clear that these PTMs modulate a number of cellular processes including DNA binding, gene transcription, protein-protein interactions, immune system activation, and proteolysis. There are currently four known enzymatic PTMs of arginine (i.e., citrullination, methylation, phosphorylation, and ADP-ribosylation), and two non-enzymatic PTMs [i.e., carbonylation, advanced glycation end-products (AGEs)]. Enzymatic modification of arginine is tightly controlled during normal cellular function, and can be drastically altered in response to various second messengers and in different disease states. Non-enzymatic arginine modifications are associated with a loss of metabolite regulation during normal human aging. This abnormally large number of modifications to a single amino acid creates a diverse set of structural perturbations that can lead to altered biological responses. While the biological role of methylation has been the most extensively characterized of the arginine PTMs, recent advances have shown that the once obscure modification known as citrullination is involved in the onset and progression of inflammatory diseases and cancer. This review will highlight the reported arginine PTMs and their methods of detection, with a focus on new chemical methods to detect protein citrullination.
Collapse
Affiliation(s)
- Daniel J. Slade
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Venkataraman Subramanian
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jakob Fuhrmann
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Paul R. Thompson
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
23
|
Vullo D, Del Prete S, Osman SM, De Luca V, Scozzafava A, Alothman Z, Supuran CT, Capasso C. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis. Bioorg Med Chem Lett 2013; 24:240-4. [PMID: 24316122 DOI: 10.1016/j.bmcl.2013.11.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
A carbonic anhydrase (CA, EC 4.2.1.1) denominated PgiCA, belonging to the γ-class, from the oral pathogenic bacteria Porphyromonas gingivalis, the main causative agent of periodontitis, was investigated for its inhibition profile with sulfonamides and one sulfamate. Dichlorophenamide, topiramate and many simple aromatic/heterocyclic sulfonamides were ineffective as PgiCA inhibitors whereas the best inhibition was observed with halogenosulfanilamides incorporating heavy halogens, 4-hydroxy- and 4-hydroxyalkyl-benzenesulfonamides, acetazolamide, methazolamide, zonisamide, indisulam, celecoxib, saccharin and hydrochlorothiazide (KIs in the range of 131-380nM). The inhibition profile of PgiCA was very different from that of CAM, hCA I and II or the β-CA from a protozoan parasite (Leishmania donovani chagasii). Identification of potent and possibly selective inhibitors of PgiCA may lead to pharmacological tools useful for understanding the physiological role(s) of this enzyme.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Sonia Del Prete
- Istituto di Biochimica delle Proteine and Institute of Bioscience and Bioresources (IBBR), CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Viviana De Luca
- Istituto di Biochimica delle Proteine and Institute of Bioscience and Bioresources (IBBR), CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Zeid Alothman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy; Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEIROFABA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Clemente Capasso
- Istituto di Biochimica delle Proteine and Institute of Bioscience and Bioresources (IBBR), CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
24
|
Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1126-35. [PMID: 23860259 DOI: 10.1016/j.bbagrm.2013.07.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Peptidylarginine deiminases are a family of enzymes that mediate post-translational modifications of protein arginine residues by deimination or demethylimination to produce citrulline. In vitro, the activity of PADs is dependent on calcium and reductive reagents carrying a free sulfhydryl group. The discovery that PAD4 can target both arginine and methyl-arginine for citrullination about 10years ago renewed our interest in studying this family of enzymes in gene regulation and their physiological functions. The deregulation of PADs is involved in the etiology of multiple human diseases, including cancers and autoimmune disorders. There is a growing effort to develop isoform specific PAD inhibitors for disease treatment. However, the regulation of the activity of PADs in vivo remains largely elusive, and we expect that much will be learned about the role of these enzymes in a normal life cycle and under pathology conditions.
Collapse
|
25
|
Ferretti P, U KP, Vagaska B, Merchant R, Matthews CJ, Marson CM. Discovery of a structurally novel, drug-like and potent inhibitor of peptidylarginine deiminase. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00091e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|