1
|
Effects of Heat Stress and Exogenous Salicylic Acid on Secondary Metabolites Biosynthesis in Pleurotus ostreatus (Jacq.) P. Kumm. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060915. [PMID: 35743946 PMCID: PMC9225297 DOI: 10.3390/life12060915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022]
Abstract
Pleurotus ostreatus (Jacq.) P. Kumm has high medicinal value, but few studies exist on regulating secondary metabolite biosynthesis. Environmental factors play a substantial role in the accumulation of microbial secondary metabolites. In this study, the effects of heat stress (24 h) and salicylic acid (0.05 mmol/L) treatment on the secondary metabolism of P. ostreatus were analyzed by metabolome, transcriptome, and gene differential expression analysis. Metabolome and transcriptome analyses showed that salicylic acid significantly increased the accumulation of antibiotics and polyketones, while heat stress increased the accumulation of flavonoids, polyketones, terpenoids, and polysaccharides. The content and the biosynthetic genes expression of heparin were markedly increased by heat stress, and the former was increased by 4565.54-fold. This study provides a reference for future studies on secondary metabolite accumulation in edible fungi.
Collapse
|
2
|
Li S, Santos Bury PD, Huang F, Guo J, Sun G, Reva A, Huang C, Jian X, Li Y, Zhou J, Deng Z, Leeper FJ, Leadlay PF, Dias MVB, Sun Y. Mechanistic Insights into Dideoxygenation in Gentamicin Biosynthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Priscila Dos Santos Bury
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Junhong Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Anna Reva
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Chuan Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyun Jian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Marcio V. B. Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Zhang Q, Chi H, Wu L, Deng Z, Yu Y. Two Cryptic Self‐Resistance Mechanisms in
Streptomyces tenebrarius
Reveal Insights into the Biosynthesis of Apramycin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Hao‐Tian Chi
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Linrui Wu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| |
Collapse
|
4
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
5
|
Zhou S, Chen X, Ni X, Liu Y, Zhang H, Dong M, Xia H. Pyridoxal-5'-phosphate-dependent enzyme GenB3 Catalyzes C-3',4'-dideoxygenation in gentamicin biosynthesis. Microb Cell Fact 2021; 20:65. [PMID: 33750386 PMCID: PMC7941887 DOI: 10.1186/s12934-021-01558-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background The C-3′,4′-dideoxygenation structure in gentamicin can prevent deactivation by aminoglycoside 3′-phosphotransferase (APH(3′)) in drug-resistant pathogens. However, the enzyme catalyzing the dideoxygenation step in the gentamicin biosynthesis pathway remains unknown. Results Here, we report that GenP catalyzes 3′ phosphorylation of the gentamicin biosynthesis intermediates JI-20A, JI-20Ba, and JI-20B. We further demonstrate that the pyridoxal-5′-phosphate (PLP)-dependent enzyme GenB3 uses these phosphorylated substrates to form 3′,4′-dideoxy-4′,5′-ene-6′-oxo products. The following C-6′-transamination and the GenB4-catalyzed reduction of 4′,5′-olefin lead to the formation of gentamicin C. To the best of our knowledge, GenB3 is the first PLP-dependent enzyme catalyzing dideoxygenation in aminoglycoside biosynthesis. Conclusions This discovery solves a long-standing puzzle in gentamicin biosynthesis and enriches our knowledge of the chemistry of PLP-dependent enzymes. Interestingly, these results demonstrate that to evade APH(3′) deactivation by pathogens, the gentamicin producers evolved a smart strategy, which utilized their own APH(3′) to activate hydroxyls as leaving groups for the 3′,4′-dideoxygenation in gentamicin biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01558-7.
Collapse
Affiliation(s)
- Shaotong Zhou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Xiaotang Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Yu Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Hui Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Huanzhang Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, 117004, China.
| |
Collapse
|
6
|
Zhang Q, Chi H, Wu L, Deng Z, Yu Y. Two Cryptic Self‐Resistance Mechanisms in
Streptomyces tenebrarius
Reveal Insights into the Biosynthesis of Apramycin. Angew Chem Int Ed Engl 2021; 60:8990-8996. [DOI: 10.1002/anie.202100687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Hao‐Tian Chi
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Linrui Wu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| |
Collapse
|
7
|
Chen X, Zhang H, Zhou S, Bi M, Qi S, Gao H, Ni X, Xia H. The bifunctional enzyme, GenB4, catalyzes the last step of gentamicin 3',4'-di-deoxygenation via reduction and transamination activities. Microb Cell Fact 2020; 19:62. [PMID: 32156271 PMCID: PMC7063804 DOI: 10.1186/s12934-020-01317-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/25/2020] [Indexed: 12/02/2022] Open
Abstract
Background New semi-synthetic aminoglycoside antibiotics generally use chemical modifications to avoid inactivity from pathogens. One of the most used modifications is 3′,4′-di-deoxygenation, which imitates the structure of gentamicin. However, the mechanism of di-deoxygenation has not been clearly elucidated. Results Here, we report that the bifunctional enzyme, GenB4, catalyzes the last step of gentamicin 3′,4′-di-deoxygenation via reduction and transamination activities. Following disruption of genB4 in wild-type M. echinospora, its products accumulated in 6′-deamino-6′-oxoverdamicin (1), verdamicin C2a (2), and its epimer, verdamicin C2 (3). Following disruption of genB4 in M. echinospora ΔgenK, its products accumulated in sisomicin (4) and 6′-N-methylsisomicin (5, G-52). Following in vitro catalytic reactions, GenB4 transformed sisomicin (4) to gentamicin C1a (9) and transformed verdamicin C2a (2) and its epimer, verdamicin C2 (3), to gentamicin C2a (11) and gentamicin C2 (12), respectively. Conclusion This finding indicated that in addition to its transamination activity, GenB4 exhibits specific 4′,5′ double-bond reducing activity and is responsible for the last step of gentamicin 3′,4′-di-deoxygenation. Taken together, we propose three new intermediates that may refine and supplement the specific biosynthetic pathway of gentamicin C components and lay the foundation for the complete elucidation of di-deoxygenation mechanisms.
Collapse
Affiliation(s)
- Xiaotang Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Hui Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Shaotong Zhou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Mingjun Bi
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Shizhou Qi
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| | - Huanzhang Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Ban YH, Song MC, Park JW, Yoon YJ. Minor components of aminoglycosides: recent advances in their biosynthesis and therapeutic potential. Nat Prod Rep 2020; 37:301-311. [DOI: 10.1039/c9np00041k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Highlight covers the recent advances in the biosynthetic pathways of aminoglycosides including their minor components, together with the therapeutic potential for minor aminoglycoside components and semi-synthetic aminoglycosides.
Collapse
Affiliation(s)
- Yeon Hee Ban
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Je Won Park
- School of Biosystems and Biomedical Sciences
- Korea University
- Seoul 02841
- Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| |
Collapse
|
9
|
Exclusive Production of Gentamicin C1a from Micromonospora purpurea by Metabolic Engineering. Antibiotics (Basel) 2019; 8:antibiotics8040267. [PMID: 31847403 PMCID: PMC6963548 DOI: 10.3390/antibiotics8040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Gentamicin C1a is an important precursor to the synthesis of etimicin, a potent antibiotic. Wild type Micromonospora purpurea Gb1008 produces gentamicin C1a, besides four other gentamicin C components: C1, C2, C2a, and C2b. While the previously reported engineered strain M. purpurea GK1101 can produce relatively high titers of C1a by blocking the genK pathway, a small amount of undesirable C2b is still being synthesized in cells. Gene genL (orf6255) is reported to be responsible for converting C1a to C2b and C2 to C1 in Micromonospora echinospora ATCC15835. In this work, we identify the genL that is also responsible for the same methylation in Micromonospora purpurea. Based on M. purpurea GK1101, we construct a new strain with genL inactivated and show that no C2b is produced in this strain. Therefore, we successfully engineer a strain of M. purpurea that solely produces gentamicin C1a. This strain can potentially be used in the industrial production of C1a for the synthesis of etimicin.
Collapse
|
10
|
Chang Y, Chai B, Ding Y, He M, Zheng L, Teng Y, Deng Z, Yu Y, Liu T. Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS. Metab Eng Commun 2019; 9:e00096. [PMID: 31720212 PMCID: PMC6838515 DOI: 10.1016/j.mec.2019.e00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
In pharmaceutical industry, isepamicin is mainly manufactured from gentamicin B, which is produced by Micromonospora echinospora as a minor component of the gentamicin complex. Improvement of gentamicin B production through metabolic engineering is therefore important to satisfy the increasing demand for isepamicin. We hypothesized that gentamicin B was generated from gentamicin JI-20A via deamination of the C2’ amino group. Using kanJ and kanK as the gene probes, we identified the putative deamination-related genes, genR and genS, through genome mining of the gentamicin B producing strain M. echinospora CCTCC M 2018898. Interestingly, genR and genS constitute a gene cassette located approximately 28.7 kb away from the gentamicin gene cluster. Gene knockout of genR and genS almost abolished the production of gentamicin B in the mutant strain, suggesting that these two genes, which are responsible for the last steps in gentamicin B biosynthesis, constitute the missing part of the known gentamicin biosynthetic pathway. Based on these finding, we successfully constructed a gentamicin B high-yielding strain (798 mg/L), in which an overexpression cassette of genR and genS was introduced. Our work fills the missing piece to solve the puzzle of gentamicin B biosynthesis and may inspire future metabolic engineering efforts to generate gentamycin B high-yielding strains that could eventually satisfy the need for industrial manufacturing of isepamicin. Two missing genes in the biosynthetic pathway of gentamicin B were found. CRISPR/Cas9 was applied successfully to delete genes in Micromonospora echinospora. Overexpression of genR/S cassette improved gentamicin B titer by 64% in current industrial strain.
Collapse
Affiliation(s)
- Yingying Chang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Baozhong Chai
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Yunkun Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Min He
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Linghui Zheng
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Yun Teng
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co, Ltd, Taizhou, 318000, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| |
Collapse
|
11
|
Abstract
Aminoglycosides remain a vital clinical asset. Gentamicin C complex in particular is remarkably potent in treating systemic Gram-negative infections, and semisynthetic gentamicins that combat pathogen resistance or show reduced toxicity remain attractive goals. We report here the roles of clustered genes and enzymes that define a methylation network in gentamicin biosynthesis and also identify a remote gene on the chromosome encoding the essential methyltransferase GenL, which is decisive for the proportions of the five major components present in the gentamicin C complex. This is an important step toward engineered fermentation to produce single components as valuable starting materials for semisynthesis of next-generation aminoglycoside antibiotics. Gentamicin C complex from Micromonospora echinospora remains a globally important antibiotic, and there is revived interest in the semisynthesis of analogs that might show improved therapeutic properties. The complex consists of five components differing in their methylation pattern at one or more sites in the molecule. We show here, using specific gene deletion and chemical complementation, that the gentamicin pathway up to the branch point is defined by the selectivity of the methyltransferases GenN, GenD1, and GenK. Unexpectedly, they comprise a methylation network in which early intermediates are ectopically modified. Using whole-genome sequence, we have also discovered the terminal 6′-N-methyltransfer required to produce gentamicin C2b from C1a or gentamicin C1 from C2, an example of an essential biosynthetic enzyme being located not in the biosynthetic gene cluster but far removed on the chromosome. These findings fully account for the methylation pattern in gentamicins and open the way to production of individual gentamicins by fermentation, as starting materials for semisynthesis.
Collapse
|
12
|
Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017; 24:1479-1489.e4. [DOI: 10.1016/j.chembiol.2017.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/05/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
|
13
|
Zhang C, Luo H, Huang L, Lin S. Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2017; 67:74-84. [PMID: 28755722 DOI: 10.1016/j.hal.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton as for other living organisms, and the preferred form, dissolved inorganic phosphate (DIP), is often quickly depleted in the sunlit layer of the ocean. Phytoplankton have developed mechanisms to utilize organic forms of P (DOP). Hydrolysis of DOP to release DIP by alkaline phosphatase is believed to be the most common mechanism of DOP utilization. Little effort has been made, however, to understand other potential molecular mechanisms of utilizing different types of DOP. This study investigated the bioavailability of glucose-6-phosphate (G6P) and its underlying molecular mechanism in the dinoflagellate Karenia mikimotoi. Suppression Subtraction Hybridization (SSH) was used to identify genes up- and down-regulated during G6P utilization compared to DIP condition. The results showed that G6P supported the growth and yield of K. mikimotoi as efficiently as DIP. Neither DIP release nor AP activity was detected in the cultures grown in G6P medium, however, suggesting direct uptake of G6P. SSH analysis and RT-qPCR results showed evidence of metabolic modifications, particularly that mitochondrial ATP synthase f1gamma subunit and thioredoxin reductase were up-regulated while diphosphatase and pyrophosphatase were down-regulated in the G6P cultures. All the results indicate that K. mikimotoi has developed a mechanism other than alkaline phosphatase to utilize G6P.
Collapse
Affiliation(s)
- Chao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Institute of Genetic Engineering, Southern Medical University, Guangzhou, China, Guangdong Province Key Laboratory of Biochip, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hao Luo
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China
| | - Liangmin Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Senjie Lin
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
14
|
Park JW, Ban YH, Nam SJ, Cha SS, Yoon YJ. Biosynthetic pathways of aminoglycosides and their engineering. Curr Opin Biotechnol 2017; 48:33-41. [PMID: 28365471 DOI: 10.1016/j.copbio.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
Despite decades long clinical usage, aminoglycosides still remain a valuable pharmaceutical source for fighting Gram-negative bacterial pathogens, and their newly identified bioactivities are also renewing interest in this old class of antibiotics. As Nature's gift, some aminoglycosides possess natural defensive structural elements that can circumvent drug resistance mechanisms. Thus, a detailed understanding of aminoglycoside biosynthesis will enable us to apply Nature's biosynthetic strategy towards expanding structural diversity in order to produce novel and more robust aminoglycoside analogs. The engineered biosynthesis of novel aminoglycosides is required not only to develop effective therapeutics against the emerging 'superbugs' but also to reinvigorate antibiotic lead discovery in readiness for the emerging post-antibiotic era.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Hee Ban
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
15
|
Ni X, Sun Z, Gu Y, Cui H, Xia H. Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora. Microb Cell Fact 2016; 15:1. [PMID: 26729212 PMCID: PMC4700567 DOI: 10.1186/s12934-015-0402-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023] Open
Abstract
Background Isepamicin is a weakly toxic but highly active aminoglycoside antibiotic derivative of gentamicin B. Gentamicin B is a naturally occurring minor component isolated from Micromonospora echinospora. 2ʹ-NH2-containing gentamicin C complex is a dominant compound produced by wild-type M. echinospora; by contrast, 2ʹ-OH-containing gentamicin B is produced as a minor component. However, the biosynthetic pathway of gentamicin B remains unclear. Considering that gentamicin B shares a unique C2ʹ hydroxyl group with kanamycin A, we aimed to design a new biosynthetic pathway of gentamicin B by combining twelve steps of gentamicin biosynthesis and two steps of kanamycin biosynthesis. Results We blocked the biosynthetic pathway of byproducts and generated a strain overproducing JI-20A, which was used as a precursor of gentamicin B biosynthesis, by disrupting genK and genP. The amount of JI-20A produced in M. echinospora ∆K∆P reached 911 μg/ml, which was 14-fold higher than that of M. echinospora ∆P. The enzymes KanJ and KanK necessary to convert 2ʹ-NH2 into 2ʹ-OH from the kanamycin biosynthetic pathway were heterologously expressed in M. echinospora ΔKΔP to transform JI-20A into gentamicin B. The strain with kanJK under PermE* could produce 80 μg/ml of gentamicin B, which was tenfold higher than that of the wild-type strain. To enhance gentamicin B production, we employed different promoters and gene integration combinations. When a PhrdB promoter was used and kanJ and kanK were integrated in the genome through gene replacement, gentamicin B was generated as the major product with a maximum yield of 880 μg/ml. Conclusion We constructed a new biosynthetic pathway of high-level gentamicin B production; in this pathway, most byproducts were removed. This method also provided novel insights into the biosynthesis of secondary metabolites via the combinatorial biosynthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0402-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| | - Zhenpeng Sun
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| | - Yawen Gu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| | - Hao Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| | - Huanzhang Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
16
|
Gu Y, Ni X, Ren J, Gao H, Wang D, Xia H. Biosynthesis of Epimers C2 and C2a in the Gentamicin C Complex. Chembiochem 2015; 16:1933-1942. [DOI: 10.1002/cbic.201500258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/09/2022]
|
17
|
Guo J, Huang F, Huang C, Duan X, Jian X, Leeper F, Deng Z, Leadlay PF, Sun Y. Specificity and promiscuity at the branch point in gentamicin biosynthesis. ACTA ACUST UNITED AC 2014; 21:608-18. [PMID: 24746560 PMCID: PMC4039129 DOI: 10.1016/j.chembiol.2014.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Abstract
Gentamicin C complex is a mixture of aminoglycoside antibiotics used to treat severe Gram-negative bacterial infections. We report here key features of the late-stage biosynthesis of gentamicins. We show that the intermediate gentamicin X2, a known substrate for C-methylation at C-6' to form G418 catalyzed by the radical SAM-dependent enzyme GenK, may instead undergo oxidation at C-6' to form an aldehyde, catalyzed by the flavin-linked dehydrogenase GenQ. Surprisingly, GenQ acts in both branches of the pathway, likewise oxidizing G418 to an analogous ketone. Amination of these intermediates, catalyzed mainly by aminotransferase GenB1, produces the known intermediates JI-20A and JI-20B, respectively. Other pyridoxal phosphate-dependent enzymes (GenB3 and GenB4) act in enigmatic dehydroxylation steps that convert JI-20A and JI-20B into the gentamicin C complex or (GenB2) catalyze the epimerization of gentamicin C2a into gentamicin C2.
Collapse
Affiliation(s)
- Junhong Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Chuan Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Xiaobo Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Xinyun Jian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Finian Leeper
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China.
| |
Collapse
|