4
|
Ghanavatkar CW, Mishra VR, Sekar N. Benzothiazole-pyridone and benzothiazole-pyrazole clubbed emissive azo dyes and dyeing application on polyester fabric: UPF, biological, photophysical and fastness properties with correlative computational assessments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118064. [PMID: 31955124 DOI: 10.1016/j.saa.2020.118064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Positional isomers of benzothiazole-pyridone and benzothiazole-pyrazole containing disperse azo dyes are reported. These heterocyclic azo dyes are decorated with 'separate ESIPT core' and show emission in seven solvents of different polarity. After application on polyester fabric, "very good to excellent" light and washing fastness properties were observed. Thermal stability of 'dyed fabric' was analysed by sublimation fastness test- and found 'very good to excellent' ratings at 210 °C. Ultraviolet Protection Factor (UPF) analysis of four 'dyed fabric' indicates the blocking 96-97% of UV radiation. Dyes were found effective on gram positive and negative bacteria by agar diffusion method and all the 'dyed fabrics' also showed more than 92% or 94% reduction of S. aureus or K. pneumoniae respectively by 'AATCC 100' method. Structures of the dyes were optimized using Density Functional Theory (DFT) to deduce stable tautomeric form. Calculated HOMO-LUMO gap is then compared with antibacterial activities. Electrophilicity index and lightfastness property were also compared and found to have very good correlation.
Collapse
Affiliation(s)
- Chaitannya W Ghanavatkar
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Virendra R Mishra
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
5
|
Zhao Z, Dai X, Li C, Wang X, Tian J, Feng Y, Xie J, Ma C, Nie Z, Fan P, Qian M, He X, Wu S, Zhang Y, Zheng X. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur J Med Chem 2019; 186:111893. [PMID: 31761383 PMCID: PMC7115706 DOI: 10.1016/j.ejmech.2019.111893] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
The pyrazolone structural motif is a critical element of drugs aimed at different biological end-points. Medicinal chemistry researches have synthesized drug-like pyrazolone candidates with several medicinal features including antimicrobial, antitumor, CNS (central nervous system) effect, anti-inflammatory activities and so on. Meanwhile, SAR (Structure-Activity Relationship) investigations have drawn attentions among medicinal chemists, along with a plenty of analogues have been derived for multiple targets. In this review, we comprehensively summarize the biological activity and SAR for pyrazolone analogues, wishing to give an overall retrospect and prospect on the pyrazolone derivatives. The pyrazolone structural motif is a critical element of drugs aimed at different biological end-points. The pyrazolone analogues have been carried out to drug-like candidates with broad range of medicinal properties. This review wishes to give an overall retrospect and prospect on the pyrazolone derivatives.
Collapse
Affiliation(s)
- Zefeng Zhao
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xufen Dai
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Chenyang Li
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xiao Wang
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Jiale Tian
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Ying Feng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Jing Xie
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Cong Ma
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Zhuang Nie
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Peinan Fan
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Shaoping Wu
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China.
| | - Yongmin Zhang
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| |
Collapse
|