1
|
Li Y, Kong X, Chu X, Fu H, Feng X, Zhao C, Deng Y, Ge J. Targeting NAD Metabolism: Rational Design, Synthesis and In Vitro Evaluation of NAMPT/PARP1 Dual-Target Inhibitors as Anti-Breast Cancer Agents. Molecules 2024; 29:2836. [PMID: 38930900 PMCID: PMC11206297 DOI: 10.3390/molecules29122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The malignancy of breast cancer poses a global challenge, with existing treatments often falling short of desired efficacy. Extensive research has underscored the effectiveness of targeting the metabolism of nicotinamide adenine dinucleotide (NAD), a pivotal molecule crucial for cancer cell survival and growth, as a promising anticancer strategy. Within mammalian cells, sustaining optimal NAD concentrations relies on two key enzymes, namely nicotinamide phosphoribosyltransferase (NAMPT) and poly(ADP-ribose) polymer 1 (PARP1). Recent studies have accentuated the potential benefits of combining NAMPT inhibitors and PARP1 inhibitors to enhance therapeutic outcomes, particularly in breast cancer. In this study, we designed and synthesized eleven novel NAMPT/PARP1 dual-target inhibitors. Among them, compound DDY02 exhibited acceptable inhibitory activities against both NAMPT and PARP1, with IC50 values of 0.01 and 0.05 µM, respectively. Moreover, in vitro evaluations revealed that treatment with DDY02 resulted in proliferation inhibition, NAD depletion, DNA damage, apoptosis, and migration inhibition in MDA-MB-468 cells. These results posit DDY02, by targeting NAD metabolism through inhibiting both NAMPT and PARP1, as a promising lead compound for the development of breast cancer therapy.
Collapse
Affiliation(s)
- Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianxiu Kong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchi Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanru Deng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Zayed MF. Quinazoline Derivatives as Targeted Chemotherapeutic Agents. Cureus 2024; 16:e60662. [PMID: 38899242 PMCID: PMC11186210 DOI: 10.7759/cureus.60662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Most of the current chemotherapeutic medications are extremely toxic, exhibit little selectivity, and contribute to the emergence of treatment resistance. Consequently, the discovery of targeted chemotherapy drugs with high selectivity and low side effects is necessary for cancer treatment. The quinazoline system has a broad range and a long history of biological activities. Numerous quinazoline derivatives have been used to treat different types of cancer by working on various molecular targets. This review presents various chemical information, including molecular structure, design, and biological activity of some reported quinazolines that function by inhibiting four types of important molecular targets: dihydrofolate reductase, breast cancer resistant protein, poly-(ADP-ribose)-polymerase, and tubulin polymerization.
Collapse
Affiliation(s)
- Mohamed F Zayed
- Pharmaceutical Sciences, Fakeeh College for Medical Sciences, Jeddah, SAU
| |
Collapse
|
3
|
Guleria M, Kumar A, Singh AK, Kumar P. Synthesis and In Silico Studies of Quinazolinones as PARP-1 Inhibitors. Comb Chem High Throughput Screen 2024; 27:1329-1343. [PMID: 37691193 DOI: 10.2174/1386207326666230905153443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Cancer is a leading threat to humankind, accounting for nearly one million deaths in 2018, and the expected number of cancer-related deaths in 2040 is more than 16 million. The most common causes of cancer deaths are lung, colorectal, stomach, liver and breast cancer, while the highest number of new cancer cases belong to lung, breast, colorectal, prostate, stomach and liver cancer. INTRODUCTION PARP-1 is an enzyme that plays an important role in DNA repair, cell propagation/survival and death due to its influence on numerous biological processes. Quinazolinones represent an important scaffold in medicinal chemistry and have a broad spectrum of biological activities. METHODS In this study, we have synthesized quinazolinones by reaction of 2-aminobenzamide and substituted aldehydes. Molecular docking studies of synthesized compounds were performed for their PARP-1 binding affinities using Schrodinger 2016 software. In silico ADME studies were also performed for the synthesized compounds using the QikProp tool of Schrodinger software. RESULTS Results of molecular docking studies indicated that synthesized quinazolinones had a good affinity towards active site of PARP-1 and compound 4 had the best docking score (-10.343). Results of ADME studies indicated the drug-like properties of synthesized compounds, which make them suitable drug candidates. CONCLUSION All the synthesized compounds have a better docking score than niraparib (-9.05). Further, the synthesized compounds have a favorable ADME profile. Therefore, they may serve as important leads in discovering PARP-1 inhibitors.
Collapse
Affiliation(s)
- Maneesh Guleria
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Sigh Punjab Technical University, Bathinda, 151001, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
4
|
Syam YM, Anwar MM, Abd El-Karim SS, Elokely KM, Abdelwahed SH. New Quinoxaline-Based Derivatives as PARP-1 Inhibitors: Design, Synthesis, Antiproliferative, and Computational Studies. Molecules 2022; 27:molecules27154924. [PMID: 35956876 PMCID: PMC9370283 DOI: 10.3390/molecules27154924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the PARP-1 suppression impact of IC50 values in the nanomolar range, compounds 8a, 5 were the most promising suppressors, producing IC50 values of 2.31 and 3.05 nM compared to Olaparib with IC50 of 4.40 nM. Compounds 4, 10b, and 11b showed a mild decrease in the potency of the IC50 range of 6.35–8.73 nM. Furthermore, compounds 4, 5, 8a, 10b, and 11b were evaluated as in vitro antiproliferative agents against the mutant BRCA1 (MDA-MB-436, breast cancer) compared to Olaparib as a positive control. Compound 5 exhibited the most significant potency of IC50; 2.57 µM, whereas the IC50 value of Olaparib was 8.90 µM. In addition, the examined derivatives displayed a promising safety profile against the normal WI-38 cell line. Cell cycle, apoptosis, and autophagy analyses were carried out in the MDA-MB-436 cell line for compound 5, which exhibited cell growth arrest at the G2/M phase, in addition to induction of programmed apoptosis and an increase in the autophagic process. Molecular docking of the compounds 4, 5, 8a, 10b, and 11b into the active site of PARP-1 was carried out to determine their modes of interaction. In addition, an in silico ADMET study was performed. The results evidenced that compound 5 could serve as a new framework for discovering new potent anticancer agents targeting the PARP-1 enzyme.
Collapse
Affiliation(s)
- Yasmin M. Syam
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; (M.M.A.); (S.S.A.E.-K.)
- Correspondence: (Y.M.S.); (S.H.A.)
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; (M.M.A.); (S.S.A.E.-K.)
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; (M.M.A.); (S.S.A.E.-K.)
| | - Khaled M. Elokely
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (Y.M.S.); (S.H.A.)
| |
Collapse
|
5
|
Kumar Pandey S, Yadava U, Upadhyay A, Sharma ML. Synthesis, biological evaluation and molecular docking studies of novel quinazolinones as antitubercular and antimicrobial agents. Bioorg Chem 2021; 108:104611. [PMID: 33484939 DOI: 10.1016/j.bioorg.2020.104611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023]
Abstract
In the present study, a series of novel quinazolinone hybrids, viz. triazepino-quinazolinones 4, thiazolo-triazolo-quinazolinones 7 and triazolo-quinazolinones 8 have been synthesized from the key intermediate 3-(substituted phenyl)-2-hydrazinoquinazolin-4(3H)-ones 3. All the newly synthesized compounds were characterized by means of spectral (IR, 1H NMR, 13C NMR) and elemental analysis. The target compounds were biologically screened for their in vitro antimicrobial and antitubercular activities against pathogenic strain. The results of bioassay demonstrated that some of the compounds exhibited pronounced antimicrobial activity comparable to that of standard drugs tested under similar conditions. Compounds 4c, 4e, 7e and 8b showed relatively very good inhibitory activity against pathogenic bacteria with minimum inhibitory concentration (MIC) of 2.6 μg/mL, 5.2 μg/mL, while the rest of the compounds showed moderate activity. Compounds 4c and 8b were found to be nearly equipotent with ciprofloxacin against P. aeruginosa with MIC 5.2 μg/mL, while compound 8b was more potent against pathogenic bacteria S. aureus. It is very remarkable that four compounds, 4c, 4e, 7e and 8b showed pronounced antifungal activity against selected pathogenic fungi, A. niger, C. albicans with MIC 2.6 μg/mL and 5.2 μg/mL. The antitubercular activity of synthesized compounds reveal that compound 8b showed better activity than the other compounds with a MIC of 5.2 μg/mL against M. tuberculosis (H37Rv). Molecular docking studies of the compounds were performed to rationalize the inhibitory properties of these compounds and results showed that these compounds have good binding energy and better binding affinity within the active pocket, thus these compounds may be considered as potent inhibitors towards selective targets.
Collapse
Affiliation(s)
- Sarvesh Kumar Pandey
- Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur-273009, UP, India.
| | - Umesh Yadava
- Department of Physics, D.D.U. Gorakhpur University, Gorakhpur-273009, UP, India
| | - Anjali Upadhyay
- Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur-273009, UP, India
| | - M L Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur- 44618, Kathmandu, Nepal
| |
Collapse
|
6
|
Bansal R, Malhotra A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur J Med Chem 2020; 211:113016. [PMID: 33243532 DOI: 10.1016/j.ejmech.2020.113016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023]
Abstract
Presently cancer is a grave health issue with predominance beyond restrictions. It can affect any organ of the body. Most of the available chemotherapeutic drugs are highly toxic, not much selective and eventually lead to the development of resistance. Therefore, a target specific palliative approach for the treatment of cancer is required. Remarkable advancements in science have illuminated various molecular pathways responsible for cancer. This has resulted in abundant opportunities to develop targeted anticancer agents. Quinazoline nucleus is a privileged scaffold with significant diversified pharmacological activities. Numerous established anticancer quinazoline derivatives constitute a new class of chemotherapeutic agents which are found to act by inhibiting various protein kinases as well as other molecular targets. A recent update on various quinazoline derivatives acting on different types of molecular targets for the treatment of cancer has been compiled in this review. Brief SAR studies of quinazoline derivatives acting through different mechanisms of action have been highlighted. The comprehensive medicinal chemistry aspects of these agents in this review provide a panoramic view to the biologists as well as medicinal chemists working in this area and would assist them in their efforts to design and synthesize novel quinazoline based anticancer compounds.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India.
| | - Anjleena Malhotra
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
7
|
Vahedi N, Mohammadhosseini M, Nekoei M. QSAR Study of PARP Inhibitors by GA-MLR, GA-SVM and GA-ANN Approaches. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999200518083359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The poly(ADP-ribose) polymerases (PARP) is a nuclear enzyme superfamily
present in eukaryotes.
Methods:
In the present report, some efficient linear and non-linear methods including multiple linear
regression (MLR), support vector machine (SVM) and artificial neural networks (ANN) were successfully
used to develop and establish quantitative structure-activity relationship (QSAR) models
capable of predicting pEC50 values of tetrahydropyridopyridazinone derivatives as effective PARP
inhibitors. Principal component analysis (PCA) was used to a rational division of the whole data set
and selection of the training and test sets. A genetic algorithm (GA) variable selection method was
employed to select the optimal subset of descriptors that have the most significant contributions to
the overall inhibitory activity from the large pool of calculated descriptors.
Results:
The accuracy and predictability of the proposed models were further confirmed using crossvalidation,
validation through an external test set and Y-randomization (chance correlations) approaches.
Moreover, an exhaustive statistical comparison was performed on the outputs of the proposed
models. The results revealed that non-linear modeling approaches, including SVM and ANN
could provide much more prediction capabilities.
Conclusion:
Among the constructed models and in terms of root mean square error of predictions
(RMSEP), cross-validation coefficients (Q2 LOO and Q2 LGO), as well as R2 and F-statistical value for
the training set, the predictive power of the GA-SVM approach was better. However, compared with
MLR and SVM, the statistical parameters for the test set were more proper using the GA-ANN model.
Collapse
Affiliation(s)
- Nafiseh Vahedi
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehdi Nekoei
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
8
|
Shipilovskikh SA, Rubtsov AE. One-Pot Synthesis of Thieno[3,2- e]pyrrolo[1,2- a]pyrimidine Derivative Scaffold: A Valuable Source of PARP-1 Inhibitors. J Org Chem 2019; 84:15788-15796. [PMID: 31769674 DOI: 10.1021/acs.joc.9b00711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new, efficient, and versatile one-pot cascade reaction of diverse Gewald's aminothiophenes, 2-hydroxy-4-oxobut-2-enoic acid, and derivatives of cyanoacetic acid catalyzed by Et3N is presented. It enables direct synthesis of diverse 1-(2-oxoethylidene)-2-oxothieno[3,2-e]pyrrolo[1,2-a]pyrimidine in good to excellent yields. The reaction exhibits a broad substrate scope and also presents an opportunity for further modification of the structure. The method offers a convenient practical alternative to the known procedures. The synthesized thieno[3,2-e]pyrrolo[1,2-a]pyrimidine scaffold is an important structural motif of new poly(ADP-ribose) polymerase (PARP) inhibitors, playing a useful role in multiple pharmacological applications.
Collapse
Affiliation(s)
- Sergei A Shipilovskikh
- Department of Chemistry , Perm State University , Bukireva 15 , Perm 614990 , Russia.,Institute of Chemical Technology , Ural Federal University , Mira 19 , Yekaterinburg 620002 , Russia
| | - Aleksandr E Rubtsov
- Department of Chemistry , Perm State University , Bukireva 15 , Perm 614990 , Russia
| |
Collapse
|
9
|
Xu Z, Li C, Zhou Q, Deng Z, Tong Z, Tse MK, Zhu G. Synthesis, Cytotoxicity, and Mechanistic Investigation of Platinum(IV) Anticancer Complexes Conjugated with Poly(ADP-ribose) Polymerase Inhibitors. Inorg Chem 2019; 58:16279-16291. [PMID: 31738050 DOI: 10.1021/acs.inorgchem.9b02839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many clinical trials using combinations of platinum drugs and PARP-1 inhibitors (PARPi) have been carried out, with the hope that such combinations will lead to enhanced therapeutic outcomes against tumors. Herein, we obtained seven potential PARPi with structural diversity and then conjugated them with cisplatin-based platinum(IV) complexes. Both the synthesized PARPi ligands and PARPi-Pt conjugates [PARPi-Pt(IV)] show inhibitory effects against PARP-1's catalytic activity. The PARPi-Pt(IV) conjugates are cytotoxic in a panel of human cancer cell lines, and the leading ones display the ability to overcome cisplatin resistance. A mechanistic investigation reveals that the representative PARPi-Pt(IV) conjugates efficiently enter cells, bind to genomic DNA, disturb cell cycle distribution, and induce apoptotic cell death in both cisplatin-sensitive and -resistant cells. Our study provides a strategy to improve the cytotoxicity of platinum(IV)-based anticancer complexes and overcome cisplatin resistance by using a small-molecule anticancer complex that simultaneously damages DNA and inhibits PARP.
Collapse
Affiliation(s)
- Zoufeng Xu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Cai Li
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Qiyuan Zhou
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Zhiqin Deng
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Zixuan Tong
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| |
Collapse
|
10
|
Lu H, Bai L, Zhou Y, Lu Y, Jiang Z, Shi J. Recent Study of Dual HDAC/PARP Inhibitor for the Treatment of Tumor. Curr Top Med Chem 2019; 19:1041-1050. [PMID: 31161991 DOI: 10.2174/1568026619666190603092407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
The occurrence and development of tumors are closely related to epigenetic instability which modulates gene expression through DNA methylation, histone modification, chromatin remodeling, and RNA-related silencing. Histone deacetylase (HDAC) and poly (ADP-ribose) polymerase (PARP) are targets of epigenetic regulation. Over the years, a large number of studies have shown that HDAC inhibitors and PARP inhibitors have synergistic effects in the treatment of tumors, and there are reports of related dual HDAC/PARP inhibitors. This review will give a brief summary of the synergistic mechanisms of HDAC inhibitors and PARP inhibitors and introduce the design of the first dual HDAC/PARP inhibitor, which may guide the design of more dual HDAC/PARP inhibitors for the treatment of tumors.
Collapse
Affiliation(s)
- Haiying Lu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanping Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongping Lu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Elmasry GF, Aly EE, Awadallah FM, El-Moghazy SM. Design and synthesis of novel PARP-1 inhibitors based on pyridopyridazinone scaffold. Bioorg Chem 2019; 87:655-666. [DOI: 10.1016/j.bioorg.2019.03.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
12
|
Hie B, Cho H, Berger B. Realizing private and practical pharmacological collaboration. Science 2018; 362:347-350. [PMID: 30337410 DOI: 10.1126/science.aat4807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Although combining data from multiple entities could power life-saving breakthroughs, open sharing of pharmacological data is generally not viable because of data privacy and intellectual property concerns. To this end, we leverage modern cryptographic tools to introduce a computational protocol for securely training a predictive model of drug-target interactions (DTIs) on a pooled dataset that overcomes barriers to data sharing by provably ensuring the confidentiality of all underlying drugs, targets, and observed interactions. Our protocol runs within days on a real dataset of more than 1 million interactions and is more accurate than state-of-the-art DTI prediction methods. Using our protocol, we discover previously unidentified DTIs that we experimentally validated via targeted assays. Our work lays a foundation for more effective and cooperative biomedical research.
Collapse
Affiliation(s)
- Brian Hie
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Hyunghoon Cho
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. .,Department of Mathematics, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Kamada Y, Yakabu H, Ichiba T, Tamanaha A, Shimoji M, Kato M, Norimoto C, Yamashiro R, Miyagi I, Sakudo A, Tanaka Y. Castalagin and vescalagin purified from leaves of Syzygium samarangense (Blume) Merrill & L.M. Perry: Dual inhibitory activity against PARP1 and DNA topoisomerase II. Fitoterapia 2018; 129:94-101. [DOI: 10.1016/j.fitote.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
|
14
|
Kumara HK, Suhas R, Suyoga Vardhan DM, Shobha M, Channe Gowda D. A correlation study of biological activity and molecular docking of Asp and Glu linked bis-hydrazones of quinazolinones. RSC Adv 2018; 8:10644-10653. [PMID: 35540474 PMCID: PMC9078910 DOI: 10.1039/c8ra00531a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
Abstract
The present investigation involves the synthesis and spectroscopic and biological activity studies of the bis-hydrazones of quinazolinones derived from aspartic acid and glutamic acid. The antioxidant activities of the compounds were evaluated using DPPH, DMPD and ABTS radical scavenging assays whose results revealed that the IC50 of compounds 6, 7, 11, 12, 20, 21, 25 and 26 was lower than those of the standard references. The anti-inflammatory activity was evaluated with a haemolysis assay using a human blood erythrocytes suspension and the results demonstrated that compounds 8, 9, 13, 14, 22, 23, 27 and 28 were excellent anti-inflammatory agents. In addition, the antibacterial and antifungal activities against various clinical pathogens of human origin revealed that compounds 7, 9, 12, 14, 21, 23, 26 and 28 possessed potent antimicrobial properties. Furthermore, to understand the correlation between biological activity and drug-receptor interaction, molecular docking was performed on the active sites of tyrosine kinase (PDB ID: 2HCK), cyclooxygenase-2 (PDB ID: 1CX2) and glucosamine-6-phosphate (GlcN-6-P) synthase (PDB ID: 2VF5) which showed good binding profiles with the targets that can potentially hold the title compounds. The correlation study revealed that compounds containing EDGs (-OH, -OCH3) were excellent antioxidants, compounds with EWGs (-Cl, -NO2) exhibited good anti-inflammatory activity and compounds bearing -OH and -NO2 groups were very good antimicrobials.
Collapse
Affiliation(s)
- H K Kumara
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - R Suhas
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - D M Suyoga Vardhan
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - M Shobha
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - D Channe Gowda
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| |
Collapse
|
15
|
Abd El Razik HA, Mroueh M, Faour WH, Shebaby WN, Daher CF, Ashour HMA, Ragab HM. Synthesis of new pyrazolo[3,4-d]pyrimidine derivatives and evaluation of their anti-inflammatory and anticancer activities. Chem Biol Drug Des 2017; 90:83-96. [PMID: 28032452 DOI: 10.1111/cbdd.12929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 01/01/2023]
Abstract
This study reports the synthesis of two series of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to piperazine moiety through different amide linkages. The newly synthesized compounds were evaluated for anticancer activity against four cell lines (MDA-MB-231, MCF-7, SF-268, B16F-10) and cyclooxygenase (COX-2) protein expression inhibition in lipopolysaccharide (LPS)-activated rat monocytes. The results revealed that most of the synthesized compounds showed moderate-to-high cytotoxic activity against at least one cell line, with compound 10b being the most active against all used cell lines (IC50 values 5.5-11 μg/ml) comparable to cisplatin. In addition, six of these compounds (7b, 10a-d, and 12c) demonstrated inhibition of LPS-induced COX-2 protein expression at low concentration (25 μg/ml) as compared to the control non-stimulated cells and showed a COX-2 selectivity index range comparable to diclofenac sodium. The overall results indicate that many of these pyrazolopyrimidine derivatives possess in vitro anti-inflammatory and anticancer activities at varying doses, and the most active compounds will be subjected to in vivo pharmacological evaluation.
Collapse
Affiliation(s)
- Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamad Mroueh
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wissam H Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, School of arts and sciences, Lebanese American University, Byblos, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, School of arts and sciences, Lebanese American University, Byblos, Lebanon
| | - Hayam M A Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Future Med Chem 2016; 9:37-60. [PMID: 27995810 DOI: 10.4155/fmc-2016-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The finding of promising drugs represents a huge challenge in cancer therapeutics, therefore it is important to seek out novel approaches and elucidate essential cellular processes in order to identify potential drug targets. Studies on DNA repair pathway suggested that an enzyme, PARP, which plays a significant role in DNA repair responses, could be targeted in cancer therapy. Hence, the efficacy of PARP inhibitors in cancer therapy has been investigated and has progressed from the laboratory to clinics, with olaparib having already been approved by the US FDA for ovarian cancer treatment. Here, we have discussed the development of PARP inhibitors, strategies to improve their selectivity and efficacy, including innovative combinational and synthetic lethality approaches to identify effective PARP inhibitors in cancer treatment.
Collapse
|
17
|
Yuan Z, Chen J, Li W, Li D, Chen C, Gao C, Jiang Y. PARP inhibitors as antitumor agents: a patent update (2013-2015). Expert Opin Ther Pat 2016; 27:363-382. [PMID: 27841036 DOI: 10.1080/13543776.2017.1259413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION PARP inhibitors have been extensively explored as antitumor agents and have shown potent efficacy both in vitro and in vivo. They can be used in monotherapy under the synthetic lethality concept or in combination with radiotherapy or chemotherapy, inducing a synergistic effect. Areas covered: This review covers relevant efforts in the development of PARP inhibitors with a particular focus on recently patented PARP inhibitors, combination therapy involving PARP inhibitors, tumor responsiveness to PARP inhibitors as detailed in reports made from 2013 - 2015, and PARP drugs in clinical trials and other novel inhibitors that emerged in 2013 - 2015. Expert opinion: Clinical studies and applications of PARP inhibitors as antitumor agents have gained considerable recognition in the last few years. In addition to FDA-approved olaparib, an increasing number of new inhibitors have been designed and synthesized, some of which are under preclinical or clinical evaluation. Novel inhibitors are still required, especially new scaffold compounds or drugs with improved properties, such as higher selectivity, higher potency and lower toxicity. The development of combination therapies involving PARP inhibitors and the exploration of biomarkers to predict outcomes with PARP inhibitors would expand the applications of these inhibitors, allowing more patients to benefit from this promising class of drugs in the future.
Collapse
Affiliation(s)
- Zigao Yuan
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Jiwei Chen
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Wenlu Li
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Dan Li
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Changjun Chen
- a Department of Chemistry , Tsinghua University , Beijing , P. R. China.,b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Chunmei Gao
- b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,c National & Local United Engineering Lab for Personalized anti-tumor drugs, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China
| | - Yuyang Jiang
- b The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,c National & Local United Engineering Lab for Personalized anti-tumor drugs, the Graduate School at Shenzhen , Tsinghua University , Shenzhen , P. R. China.,d School of Medicine , Tsinghua University , Beijing , P. R. China
| |
Collapse
|
18
|
Inhibition of poly(adenosine diphosphate-ribose) polymerase using quinazolinone nucleus. Appl Microbiol Biotechnol 2016; 100:7799-814. [DOI: 10.1007/s00253-016-7731-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
|
19
|
Wang YQ, Wang PY, Wang YT, Yang GF, Zhang A, Miao ZH. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy. J Med Chem 2016; 59:9575-9598. [PMID: 27416328 DOI: 10.1021/acs.jmedchem.6b00055] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.
Collapse
Affiliation(s)
- Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Ping-Yuan Wang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China.,Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, China
| | - Yu-Ting Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
20
|
Hegde M, Mantelingu K, Pandey M, Pavankumar CS, Rangappa KS, Raghavan SC. Combinatorial Study of a Novel Poly (ADP-ribose) Polymerase Inhibitor and an HDAC Inhibitor, SAHA, in Leukemic Cell Lines. Target Oncol 2016; 11:655-665. [DOI: 10.1007/s11523-016-0441-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Niu M, Gu Y. An in silico protocol for identifying potential poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors from chemical databases. NEW J CHEM 2015. [DOI: 10.1039/c4nj01387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pharmacophore models, steric constriction and docking approaches have been employed in the identification of potential PARP-1 inhibitors from databases.
Collapse
Affiliation(s)
- Miaomiao Niu
- Department of Biomedical Engineering
- School of Life Science and Technology
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
| | - Yueqing Gu
- Department of Biomedical Engineering
- School of Life Science and Technology
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
22
|
Audeh MW. Novel treatment strategies in triple-negative breast cancer: specific role of poly(adenosine diphosphate-ribose) polymerase inhibition. Pharmgenomics Pers Med 2014; 7:307-16. [PMID: 25342917 PMCID: PMC4205934 DOI: 10.2147/pgpm.s39765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inhibitors of the poly(adenosine triphosphate-ribose) polymerase (PARP)-1 enzyme induce synthetic lethality in cancers with ineffective DNA (DNA) repair or homologous repair deficiency, and have shown promising clinical activity in cancers deficient in DNA repair due to germ-line mutation in BRCA1 and BRCA2. The majority of breast cancers arising in carriers of BRCA1 germ-line mutations, as well as half of those in BRCA2 carriers, are classified as triple-negative breast cancer (TNBC). TNBC is a biologically heterogeneous group of breast cancers characterized by the lack of immunohistochemical expression of the ER, PR, or HER2 proteins, and for which the current standard of care in systemic therapy is cytotoxic chemotherapy. Many "sporadic" cases of TNBC appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of TNBC. Significant genetic heterogeneity has been observed within the TNBC cohort, creating challenges for interpretation of prior clinical trial data, and for the design of future clinical trials. Several PARP inhibitors are currently in clinical development in BRCA-mutated breast cancer. The use of PARP inhibitors in TNBC without BRCA mutation will require biomarkers that identify cancers with homologous repair deficiency in order to select patients likely to respond. Beyond mutations in the BRCA genes, dysfunction in other genes that interact with the homologous repair pathway may offer opportunities to induce synthetic lethality when combined with PARP inhibition.
Collapse
Affiliation(s)
- M William Audeh
- Division of Medical Oncology, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|