1
|
Sharma A, Dubey R, Asati V, Baweja GS, Gupta S, Asati V. Assessment of structural and activity-related contributions of various PIM-1 kinase inhibitors in the treatment of leukemia and prostate cancer. Mol Divers 2024:10.1007/s11030-023-10795-4. [PMID: 38642309 DOI: 10.1007/s11030-023-10795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 04/22/2024]
Abstract
One of the most perilous illnesses in the world is cancer. The cancer may be associated with the mutation of different genes inside the body. The PIM kinase, also known as the serine/threonine kinase, plays a critical role in the biology of different kinds of cancer. They are widely distributed and associated with several biological processes, including cell division, proliferation, and death. Aberration of PIM-1 kinase is found in varieties of cancer. Prostate cancer and leukemia can both be effectively treated with PIM-1 kinase inhibitors. There are several potent compounds that have been explored in this review based on heterocyclic compounds for the treatment of prostate cancer and leukemia that have strong effects on the suppression of PIM-1 kinase. The present review summarizes the PIM-1 kinase pathway, their inhibitors under clinical trial, related patents, and SAR studies of several monocyclic, bicyclic, and polycyclic compounds. The study related to their molecular interactions with receptors is also included in the present manuscript. The study may be beneficial to scientists for the development of novel compounds as PIM-1 inhibitors in the treatment of prostate cancer and leukemia.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikas Asati
- Department of Medical Oncology, Sri Aurobindo Medical College and PG Institute, Indore, MP, India
| | - Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
2
|
Ye T, Shan P, Zhang H. Progress in the discovery and development of small molecule methuosis inducers. RSC Med Chem 2023; 14:1400-1409. [PMID: 37593581 PMCID: PMC10429883 DOI: 10.1039/d3md00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
Current cancer chemotherapies rely mainly on the induction of apoptosis of tumor cells, while drug resistance arising from conventional chemicals has always been a big challenge. In recent years, more and more new types of cell deaths including methuosis have been extensively investigated and recognized as potential alternative targets for future cancer treatment. Methuosis is usually caused by excessive accumulation of macropinosomes owing to ectopic activation of macropinocytosis, which can be triggered by external stimuli such as chemical agents. Increasing reports demonstrate that many small molecule compounds could specifically induce methuosis in tumor cells while showing little or no effect on normal cells. This finding raises the possibility of targeting tumor cell methuosis as an effective strategy for the prevention of cancer. Based on fast-growing studies lately, we herein provide a comprehensive overview on the overall research progress of small molecule methuosis inducers. Promisingly, previous efforts and experiences will facilitate the development of next-generation anticancer therapies.
Collapse
Affiliation(s)
- Tao Ye
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao Shandong 266031 P.R. China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
3
|
Geng H, Chen F, Zhao Y, Guo B, Tang L, Yang YY. Protecting-Group-Free Synthesis of Meridianin A-G and Derivatives and Its Antibiofilm Evaluation. J Org Chem 2023; 88:3927-3934. [PMID: 36815756 DOI: 10.1021/acs.joc.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, a protecting-group-free protocol was developed to realize a time and step economy diversification of the Meridianin alkaloid. A broad range of substituents are tolerated to deliver the products in moderate to high yields, and the first synthesis of Meridianin B was achieved. The simplicity of this protocol enables the rapid construction of a Meridianin derivative library for antibiofilm evaluation. Preliminary results reveal that Meridianin derivatives were capable of inhibiting the Acinetobacter baumannii biofilm and lowering the antibiotic MIC synergistically.
Collapse
Affiliation(s)
- Huidan Geng
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Fei Chen
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
4
|
Kruppa M, Müller TJJ. A Survey on the Synthesis of Variolins, Meridianins, and Meriolins-Naturally Occurring Marine (aza)Indole Alkaloids and Their Semisynthetic Derivatives. Molecules 2023; 28:molecules28030947. [PMID: 36770618 PMCID: PMC9920529 DOI: 10.3390/molecules28030947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Marine natural products are a source of essential significance due to a plethora of highly diverse biological properties. The naturally occurring (aza)indole alkaloids variolin B (1), meridianins (2), and their synthetic hybrids meriolins (3) exhibit potent kinase inhibitory activities and have aroused considerable interest in the past two decades. Therefore, the immense demand for versatile synthetic accesses to these structures has considerably increased. This review surveys the synthetic pathways to these naturally occurring alkaloids and their semisynthetic derivatives.
Collapse
|
5
|
Xiao L. A Review: Meridianins and Meridianins Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248714. [PMID: 36557848 PMCID: PMC9781522 DOI: 10.3390/molecules27248714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Meridianins are a family of indole alkaloids derived from Antarctic tunicates with extensive pharmacological activities. A series of meridianin derivatives had been synthesized by drug researchers. This article reviews the extraction and purification methods, biological activities and pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing their structure for the improvement of the ADMET properties are provided.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
6
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Reddy Peddi S, Kundenapally R, Kanth Sivan S, Somadi G, Manga V. A pragmatic pharmacophore informatics strategy to discover new potent inhibitors against pim-3. Struct Chem 2022. [DOI: 10.1007/s11224-022-01949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Walhekar V, Bagul C, Kumar D, Muthal A, Achaiah G, Kulkarni R. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochim Biophys Acta Rev Cancer 2022; 1877:188725. [DOI: 10.1016/j.bbcan.2022.188725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022]
|
9
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
10
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Mir RH, Mohi-ud-din R, Wani TU, Dar MO, Shah AJ, Lone B, Pooja C, Masoodi MH. Indole: A Privileged Heterocyclic Moiety in the Management of Cancer. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208142108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic are a class of compounds that are intricately entwined into life processes.
Almost more than 90% of marketed drugs carry heterocycles. Synthetic chemistry, in
turn, allocates a cornucopia of heterocycles. Among the heterocycles, indole, a bicyclic structure
consisting of a six-membered benzene ring fused to a five-membered pyrrole ring with
numerous pharmacophores that generate a library of various lead molecules. Due to its profound
pharmacological profile, indole got wider attention around the globe to explore it fully
in the interest of mankind. The current review covers recent advancements on indole in the
design of various anti-cancer agents acting by targeting various enzymes or receptors, including
(HDACs), sirtuins, PIM kinases, DNA topoisomerases, and σ receptors.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-ud-din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abdul Jaleel Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Bashir Lone
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Chawla Pooja
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
12
|
Hong VS, Jeong S, Yun Y, Choo H, Won J, Lee J. 1,3,
4‐Oxadiazole
‐2(
3
H
)‐thione Analogs as
PIM
Kinase Inhibitors. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Victor Sukbong Hong
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Seungik Jeong
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Yanghwan Yun
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Hyeonseong Choo
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Jongin Won
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Jinho Lee
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| |
Collapse
|
13
|
Baek HS, Min HJ, Hong VS, Kwon TK, Park JW, Lee J, Kim S. Anti-Inflammatory Effects of the Novel PIM Kinase Inhibitor KMU-470 in RAW 264.7 Cells through the TLR4-NF-κB-NLRP3 Pathway. Int J Mol Sci 2020; 21:ijms21145138. [PMID: 32698512 PMCID: PMC7403980 DOI: 10.3390/ijms21145138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
PIM kinases, a small family of serine/threonine kinases, are important intermediates in the cytokine signaling pathway of inflammatory disease. In this study, we investigated whether the novel PIM kinase inhibitor KMU-470, a derivative of indolin-2-one, inhibits lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. We demonstrated that KMU-470 suppressed the production of nitric oxide and inducible nitric oxide synthases that are induced by LPS in RAW 264.7 cells. Furthermore, KMU-470 inhibited LPS-induced up-regulation of TLR4 and MyD88, as well as the phosphorylation of IκB kinase and NF-κB in RAW 264.7 cells. Additionally, KMU-470 suppressed LPS-induced up-regulation at the transcriptional level of various pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6. Notably, KMU-470 inhibited LPS-induced up-regulation of a major component of the inflammasome complex, NLRP3, in RAW 264.7 cells. Importantly, PIM-1 siRNA transfection attenuated up-regulation of NLRP3 and pro-IL-1β in LPS-treated RAW 264.7 cells. Taken together, these findings indicate that PIM-1 plays a key role in inflammatory signaling and that KMU-470 is a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (H.S.B.); (H.J.M.); (T.K.K.); (J.W.P.)
| | - Hyeon Ji Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (H.S.B.); (H.J.M.); (T.K.K.); (J.W.P.)
| | | | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (H.S.B.); (H.J.M.); (T.K.K.); (J.W.P.)
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (H.S.B.); (H.J.M.); (T.K.K.); (J.W.P.)
| | - Jinho Lee
- Department of Chemistry, Keimyung University, Daegu 42601, Korea;
- Correspondence: (J.L.); (S.K.); Tel.: +82-53-580-5183 (J.L.); +82-53-258-7359 (S.K.); Fax: +82-050-4154-2213 (J.L.); +82-53-258-7355 (S.K.)
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (H.S.B.); (H.J.M.); (T.K.K.); (J.W.P.)
- Institute of Medical Science, Keimyung University, Daegu 42601, Korea
- Correspondence: (J.L.); (S.K.); Tel.: +82-53-580-5183 (J.L.); +82-53-258-7359 (S.K.); Fax: +82-050-4154-2213 (J.L.); +82-53-258-7355 (S.K.)
| |
Collapse
|
14
|
Kalaki Z, Asadollahi-Baboli M. Molecular docking-based classification and systematic QSAR analysis of indoles as Pim kinase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:399-419. [PMID: 32319325 DOI: 10.1080/1062936x.2020.1751277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Pim kinase enzyme has an essential role in the treatment of prostate, colon and acute myeloid leukaemia cancers. The indoles inhibitors were docked in the enzyme's active pocket in order to survey the inhibition mechanism and extract the ligands' conformations. The docking outcome shows that the active inhibitors have strong van der Waals interactions with residues of Ile185, Leu44, Leu120 and Leu174, hydrogen bonds with residues of Asp128, Arg122 and Glu171 and π-π interaction with the residue of Phe49. The sum of these interactions is ~80 kcal mol-1 contributing ~90% of total binding free energies. Using docking-based molecular descriptors, the unsupervised and supervised classifications were successfully carried out with the accuracy of 0.82 and 0.95, respectively, to categorize the active/inactive Pim kinase inhibitors. The vigorous quantitative assessment was performed using different machine learning techniques. The constructed QSAR model [(r 2 cal, r 2 p, r 2 m and Q 2 LOO) > 0.80 and (SE cal, SEp and SE LOO) < 0.22] indicates that the molecular descriptors of nN, RDF20v and E1v can describe both the inhibition activities and the inhibition mechanism. The adequate evaluations of the molecular docking, classifications and QSAR analysis show that the current approaches can be used as valuable tools to design more effective new Pim kinase inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Z Kalaki
- Department of Chemistry, Faculty of Science, Babol Noshirvani University of Technology , Babol, Iran
| | - M Asadollahi-Baboli
- Department of Chemistry, Faculty of Science, Babol Noshirvani University of Technology , Babol, Iran
| |
Collapse
|
15
|
3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Struct Chem 2020. [DOI: 10.1007/s11224-020-01503-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Peddi SR, Peddi SR, Sivan S, Veerati R, Manga V. Integrated molecular docking, 3D QSAR and molecular dynamics simulation studies on indole derivatives for designing new Pim-1 inhibitors. J Recept Signal Transduct Res 2020; 40:1-14. [DOI: 10.1080/10799893.2020.1713809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sudhir Reddy Peddi
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Saikiran Reddy Peddi
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Sreekanth Sivan
- Department of Chemistry, Nizam College, Osmania University, Hyderabad
| | - Radhika Veerati
- Department of Chemistry, S R Engineering College, Ananthasagar, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
17
|
Indole: A privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 2019; 183:111691. [DOI: 10.1016/j.ejmech.2019.111691] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
|
18
|
Cho H, Yadav AK, Do Y, Heo M, Bishop-Bailey D, Lee J, Jang BC. Anti‑survival and pro‑apoptotic effects of meridianin C derivatives on MV4‑11 human acute myeloid leukemia cells. Int J Oncol 2019; 56:368-378. [PMID: 31789392 DOI: 10.3892/ijo.2019.4925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Meridianin C is a marine natural product with anticancer activity. Several meridianin C derivatives (compounds 7a‑j) were recently synthesized, and their inhibitory effects on pro‑viral integration site for Moloney murine leukemia virus (PIM) kinases, as well as their antiproliferative effects on human leukemia cells, were reported. However, the anti‑leukemic effects and mechanisms of action of meridianin C and its derivatives remain largely unknown. The aim of the present study was to investigate the effects of meridianin C and its derivatives on MV4‑11 human acute myeloid leukemia cell growth. The parent compound meridianin C did not markedly affect the viability and survival of MV4‑11 cells. By contrast, MV4‑11 cell viability and survival were reduced by meridianin C derivatives, with compound 7a achieving the most prominent reduction. Compound 7a notably inhibited the expression and activity of PIM kinases, as evidenced by reduced B‑cell lymphoma‑2 (Bcl‑2)‑associated death promoter phosphorylation at Ser112. However, meridianin C also suppressed PIM kinase expression and activity, and the pan‑PIM kinase inhibitor AZD1208 only slightly suppressed the survival of MV4‑11 cells. Thus, the anti‑survival effect of compound 7a on MV4‑11 cells was unrelated to PIM kinase inhibition. Moreover, compound 7a induced apoptosis, caspase‑9 and ‑3 activation and poly(ADP‑ribose) polymerase (PARP) cleavage, but did not affect death receptor (DR)‑4 or DR‑5 expression in MV4‑11 cells. Compound 7a also induced the generation of cleaved Bcl‑2, and the downregulation of myeloid cell leukemia (Mcl)‑1 and X‑linked inhibitor of apoptosis (XIAP) in MV4‑11 cells. Furthermore, compound 7a increased eukaryotic initiation factor (eIF)‑2α phosphorylation and decreased S6 phosphorylation, whereas GRP‑78 expression was unaffected. Importantly, treatment with a pan‑caspase inhibitor (z‑VAD‑fmk) significantly attenuated compound 7a‑induced apoptosis, caspase‑9 and ‑3 activation, PARP cleavage, generation of cleaved Bcl‑2 and downregulation of Mcl‑1 and XIAP in MV4‑11 cells. Collectively, these findings demonstrated the strong anti‑survival and pro‑apoptotic effects of compound 7a on MV4‑11 cells through regulation of caspase‑9 and ‑3, Bcl‑2, Mcl‑1, XIAP, eIF‑2α and S6 molecules.
Collapse
Affiliation(s)
- Hyorim Cho
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Youngrok Do
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Mihwa Heo
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW 10TU, United Kingdom
| | - Jinho Lee
- Department of Chemistry, College of Life Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
19
|
PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem 2019; 172:95-108. [PMID: 30954777 DOI: 10.1016/j.ejmech.2019.03.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The PIM kinase, also known as serine/threonine kinase plays an important role in cancer biology and is found in three different isoforms namely PIM-1, PIM-2, and PIM-3. They are extensively distributed and are implicated in a variety of biological processes, including cell proliferation, cell differentiation, and apoptosis. They act as weak oncogene and whenever expressed in exacerbating forms are responsible for different types of human cancer. Recently, different isoforms of PIM kinase have been identified as a clinical biomarker and potential therapeutic target for personalized treatment of advanced cancer. The inhibition of PIM kinase has become a scientific interest and some inhibitors have been developed and/or are under different phases of clinical trials. Several medicinally privileged heterocyclic ring scaffolds such as pyrrole, pyrimidine, thiazolidine, benzofuran, indole, triazole, oxadiazole, and quinoline derivatives have been synthesized and evaluated for their PIM inhibitory activity. This review comprehensively focuses on pharmacological implications of PIM kinases in oncogenesis, structural insights of PIM inhibitors and their structure-activity relationships (SARs).
Collapse
|
20
|
Wang X, Blackaby W, Allen V, Chan GKY, Chang JH, Chiang PC, Diène C, Drummond J, Do S, Fan E, Harstad EB, Hodges A, Hu H, Jia W, Kofie W, Kolesnikov A, Lyssikatos JP, Ly J, Matteucci M, Moffat JG, Munugalavadla V, Murray J, Nash D, Noland CL, Del Rosario G, Ross L, Rouse C, Sharpe A, Slaga D, Sun M, Tsui V, Wallweber H, Yu SF, Ebens AJ. Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma. J Med Chem 2019; 62:2140-2153. [DOI: 10.1021/acs.jmedchem.8b01857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wesley Blackaby
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Vivienne Allen
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Grace Ka Yan Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-Chang Chiang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Coura Diène
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Fan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric B. Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alastair Hodges
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wei Jia
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William Kofie
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph P. Lyssikatos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mizio Matteucci
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - John G. Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Nash
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Cameron L. Noland
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoff Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanne Ross
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig Rouse
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Andrew Sharpe
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Minghua Sun
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
21
|
Wang HL, Andrews KL, Booker SK, Canon J, Cee VJ, Chavez F, Chen Y, Eastwood H, Guerrero N, Herberich B, Hickman D, Lanman BA, Laszlo J, Lee MR, Lipford JR, Mattson B, Mohr C, Nguyen Y, Norman MH, Pettus LH, Powers D, Reed AB, Rex K, Sastri C, Tamayo N, Wang P, Winston JT, Wu B, Wu Q, Wu T, Wurz RP, Xu Y, Zhou Y, Tasker AS. Discovery of ( R)-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- b]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3 H)-one, a Potent and Selective Pim-1/2 Kinase Inhibitor for Hematological Malignancies. J Med Chem 2019; 62:1523-1540. [PMID: 30624936 DOI: 10.1021/acs.jmedchem.8b01733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties. Compound 28 demonstrated on-target Pim activity in an in vivo pharmacodynamic assay with significant inhibition of BAD phosphorylation in KMS-12-BM multiple myeloma tumors for 16 h postdose. In a 2-week mouse xenograft model, daily dosing of compound 28 resulted in 33% tumor regression at 100 mg/kg.
Collapse
|
22
|
Yadav AK, Kumar V, Bailey DB, Jang BC. AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Int J Mol Sci 2019; 20:ijms20020363. [PMID: 30654529 PMCID: PMC6359068 DOI: 10.3390/ijms20020363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Vinoth Kumar
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - David Bishop Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| |
Collapse
|
23
|
Park N, Park Y, Ramalingam M, Yadav AK, Cho H, Hong VS, More KN, Bae J, Bishop‐Bailey D, Kano J, Noguchi M, Jang I, Lee K, Lee J, Choi J, Jang B. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J Cell Mol Med 2018; 22:5833-5846. [PMID: 30246484 PMCID: PMC6237585 DOI: 10.1111/jcmm.13854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Meridianin C is a marine natural product known for its anti-cancer activity. At present, the anti-tumour effects of meridianin C on oral squamous cell carcinoma are unknown. Here, we investigated the effect of meridianin C on the proliferation of four different human tongue cancer cells, YD-8, YD-10B, YD-38 and HSC-3. Among the cells tested, meridianin C most strongly reduced the growth of YD-10B cells; the most aggressive and tumorigenic of the cell lines tested. Strikingly, meridianin C induced a significant accumulation of macropinosomes in the YD-10B cells; confirmed by the microscopic and TEM analysis as well as the entry of FITC-dextran, which was sensitive to the macropinocytosis inhibitor amiloride. SEM data also revealed abundant long and thin membrane extensions that resemble lamellipodia on the surface of YD-10B cells treated with meridianin C, pointing out that meridianin C-induced macropinosomes was the result of macropinocytosis. In addition, meridianin C reduced cellular levels of Dickkopf-related protein-3 (DKK-3), a known negative regulator of macropinocytosis. A role for DKK-3 in regulating macropinocytosis in the YD-10B cells was confirmed by siRNA knockdown of endogenous DKK-3, which led to a partial accumulation of vacuoles and a reduction in cell proliferation, and by exogenous DKK-3 overexpression, which resulted in a considerable inhibition of the meridianin C-induced vacuole formation and decrease in cell survival. In summary, this is the first study reporting meridianin C has novel anti-proliferative effects via macropinocytosis in the highly tumorigenic YD-10B cell line and the effects are mediated in part through down-regulation of DKK-3.
Collapse
Affiliation(s)
- Nam‐Sook Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Yu‐Kyoung Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Mahesh Ramalingam
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Anil Kumar Yadav
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Hyo‐Rim Cho
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Victor Sukbong Hong
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Kunal N. More
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Jae‐Hoon Bae
- Department of PhysiologyCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | | | - Junko Kano
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Masayuki Noguchi
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Ik‐Soon Jang
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Kyung‐Bok Lee
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Jinho Lee
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Jong‐Soon Choi
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Byeong‐Churl Jang
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| |
Collapse
|
24
|
More KN, Hong VS, Lee A, Park J, Kim S, Lee J. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg Med Chem Lett 2018; 28:2513-2517. [DOI: 10.1016/j.bmcl.2018.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
|
25
|
Watters DJ. Ascidian Toxins with Potential for Drug Development. Mar Drugs 2018; 16:E162. [PMID: 29757250 PMCID: PMC5983293 DOI: 10.3390/md16050162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Ascidians (tunicates) are invertebrate chordates, and prolific producers of a wide variety of biologically active secondary metabolites from cyclic peptides to aromatic alkaloids. Several of these compounds have properties which make them candidates for potential new drugs to treat diseases such as cancer. Many of these natural products are not produced by the ascidians themselves, rather by their associated symbionts. This review will focus mainly on the mechanism of action of important classes of cytotoxic molecules isolated from ascidians. These toxins affect DNA transcription, protein translation, drug efflux pumps, signaling pathways and the cytoskeleton. Two ascidian compounds have already found applications in the treatment of cancer and others are being investigated for their potential in cancer, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Dianne J Watters
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
26
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
27
|
Park YK, Obiang-Obounou BW, Lee KB, Choi JS, Jang BC. AZD1208, a pan-Pim kinase inhibitor, inhibits adipogenesis and induces lipolysis in 3T3-L1 adipocytes. J Cell Mol Med 2018; 22:2488-2497. [PMID: 29441719 PMCID: PMC5867077 DOI: 10.1111/jcmm.13559] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
The proviral integration moloney murine leukaemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, are involved in the control of cell growth, metabolism and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. AZD1208 is a pan-Pim kinase inhibitor and is known for its anti-cancer activity. In this study, we investigated the effect of AZD1208 on adipogenesis and lipolysis in 3T3-L1 cells, a murine preadipocyte cell line. AZD1208 markedly suppressed lipid accumulation and reduced triglyceride contents in differentiating 3T3-L1 cells, suggesting the drug's anti-adipogenic effect. On mechanistic levels, AZD1208 reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Remarkably, AZD1208 increased cAMP-activated protein kinase (AMPK) and LKB-1 phosphorylation while decreased intracellular ATP contents in differentiating 3T3-L1 cells. Furthermore, in differentiated 3T3-L1 adipocytes, AZD1208 also partially promoted lipolysis and enhanced the phosphorylation of hormone-sensitive lipase (HSL), a key lipolytic enzyme, indicating the drug's HSL-dependent lipolysis. In summary, the findings show that AZD1208 has anti-adipogenic and lipolytic effects on 3T3-L1 adipocytes. These effects are mediated by the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3, AMPK and HSL.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| | | | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea
| | - Jong-Soon Choi
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
28
|
Deoxynucleosides with benzimidazoles as aglycone moiety are potent anticancer agents. Eur J Pharmacol 2018; 820:146-155. [DOI: 10.1016/j.ejphar.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
29
|
Chirkova ZV, Filimonov SI, Abramov IG. Synthesis of substituted 3-acyl-1-hydroxyindoles and azoles on their basis. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1849-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Wang X, Kolesnikov A, Tay S, Chan G, Chao Q, Do S, Drummond J, Ebens AJ, Liu N, Ly J, Harstad E, Hu H, Moffat J, Munugalavadla V, Murray J, Slaga D, Tsui V, Volgraf M, Wallweber H, Chang JH. Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability. J Med Chem 2017; 60:4458-4473. [DOI: 10.1021/acs.jmedchem.7b00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Suzanne Tay
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Grace Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qi Chao
- ChemPartner, No. 1 Building, 998 Halei Road,
Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ning Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Volgraf
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
31
|
Chemical Synthesis of Meridianins and Related Derivatives. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-444-63930-1.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
32
|
Park YK, Hong VS, Lee TY, Lee J, Choi JS, Park DS, Park GY, Jang BC. The novel anti-adipogenic effect and mechanisms of action of SGI-1776, a Pim-specific inhibitor, in 3T3-L1 adipocytes. Int J Mol Med 2015; 37:157-64. [PMID: 26719859 DOI: 10.3892/ijmm.2015.2415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
The proviral integration site for moloney murine leukemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, belongs to a family of serine/threonine kinases that are involved in controlling cell growth and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. SGI-1776, an inhibitor of Pim kinases, is widely used to assess the physiological roles of Pim kinases, particularly cell functions. In the present study, we examined the effects of SGI-1776 on adipogenesis. The anti‑adipogenic effect of SGI‑1776 was measured by Oil Red O staining and AdipoRed assays. The effect of SGI‑1776 on the growth of 3T3‑L1 adipocytes was determined by cell count analysis. The effects of SGI‑1776 on the protein and mRNA expression of adipogenesis-related proteins and adipokines in 3T3‑L1 adipocytes were also evaluated by western blot analysis and RT‑PCR, respectively. Notably, SGI-1776 markedly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. On a mechanistic level, SGI-1776 inhibited not only the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ) and fatty acid synthase (FAS), but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3). Moreover, SGI-1776 decreased the expression of adipokines, including the expression of leptin and regulated on activation, normal T cell expressed and secreted (RANTES) during adipocyte differentiation. These findings demonstrate that SGI-1776 inhibits adipogenesis by downregulating the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS and STAT-3.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Victor Sukbong Hong
- Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu 704-701, Republic of Korea
| | - Tae-Yoon Lee
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu 705‑717, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu 704-701, Republic of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Dong-Soon Park
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Gi-Young Park
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| |
Collapse
|
33
|
Vijay JT, Nagalingaiah NK, Nagarakere SC, Suresha G, Kanchugarakoppal RS, Kempegowda M. Concise synthesis of substituted meridianins. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/23312009.2015.1083068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jenifer T.A. Vijay
- Department of Studies in Chemistry, Manasagangothri, University of Mysore, Mysore 570006, India
| | | | - Sandhya C. Nagarakere
- Department of Studies in Chemistry, Manasagangothri, University of Mysore, Mysore 570006, India
| | - G.P. Suresha
- Department of Studies in Chemistry, Manasagangothri, University of Mysore, Mysore 570006, India
| | | | - Mantelingu Kempegowda
- Department of Studies in Chemistry, Manasagangothri, University of Mysore, Mysore 570006, India
| |
Collapse
|
34
|
Wurz RP, Pettus LH, Jackson C, Wu B, Wang HL, Herberich B, Cee V, Lanman BA, Reed AB, Chavez F, Nixey T, Laszlo J, Wang P, Nguyen Y, Sastri C, Guerrero N, Winston J, Lipford JR, Lee MR, Andrews KL, Mohr C, Xu Y, Zhou Y, Reid DL, Tasker AS. The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors. Bioorg Med Chem Lett 2015; 25:847-55. [DOI: 10.1016/j.bmcl.2014.12.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/26/2022]
|
35
|
Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C. Biochem Biophys Res Commun 2014; 452:1078-83. [DOI: 10.1016/j.bbrc.2014.09.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 01/24/2023]
|