1
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Knapp K, Klasinc R, Koren A, Siller M, Dingelmaier-Hovorka R, Drach M, Sanchez J, Chromy D, Kranawetter M, Grimm C, Bergthaler A, Kubicek S, Stockinger H, Stary G. Combination of compound screening with an animal model identifies pentamidine to prevent Chlamydia trachomatis infection. Cell Rep Med 2024; 5:101643. [PMID: 38981484 PMCID: PMC11293347 DOI: 10.1016/j.xcrm.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Chlamydia trachomatis (Ct) is the most common cause for bacterial sexually transmitted infections (STIs) worldwide with a tremendous impact on public health. With the aim to unravel novel targets of the chlamydia life cycle, we screen a compound library and identify 28 agents to significantly reduce Ct growth. The known anti-infective agent pentamidine-one of the top candidates of the screen-shows anti-chlamydia activity in low concentrations by changing the metabolism of host cells impairing chlamydia growth. Furthermore, it effectively decreases the Ct burden upon local or systemic application in mice. Pentamidine also inhibits the growth of Neisseria gonorrhea (Ng), which is a common co-infection of Ct. The conducted compound screen is powerful in exploring antimicrobial compounds against Ct in a medium-throughput format. Following thorough in vitro and in vivo assessments, pentamidine emerges as a promising agent for topical prophylaxis or treatment against Ct and possibly other bacterial STIs.
Collapse
Affiliation(s)
- Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Magdalena Siller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Juan Sanchez
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - David Chromy
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Marlene Kranawetter
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria.
| |
Collapse
|
3
|
Żołek T, Dömötör O, Żabiński J. Binding mechanism of pentamidine derivatives with human serum acute phase protein α 1-acid glycoprotein. Int J Biol Macromol 2024; 266:131405. [PMID: 38582487 DOI: 10.1016/j.ijbiomac.2024.131405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Drug binding and interactions with plasma proteins play a crucial role in determining the efficacy of drug delivery, thus significantly impacting the overall pharmacological effect. AGP, the second most abundant plasma protein in blood circulation, has the unique capability to bind drugs and transport various compounds. In our present study, for the first time, we investigated whether AGP, a major component of the acute phase lipocalin in human plasma, can bind with pentamidine derivatives known for their high activity against the fungal pathogen Pneumocystis carinii. This investigation was conducted using integrated spectroscopic techniques and computer-based approaches. According to the results, it was concluded that compounds having heteroatoms (-NCH3) in the aliphatic linker and the addition of a Br atom and a methoxy substituent at the C-2 and C-6 positions on the benzene ring, exhibit strong interactions with the AGP binding site. These compounds are identified as potential candidates for recognition by this protein. MD studies indicated that the tested analogues complexed with AGPs reach an equilibrium state after 60 ns, suggesting the stability of the complexes. This observation was further corroborated by experimental results. Therefore, exploring the interaction mechanism of pentamidine derivatives with plasma proteins holds promise for the development of bis-benzamidine-designed pharmaceutically important drugs.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary
| | - Jerzy Żabiński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Saxena D, Maitra R, Bormon R, Czekanska M, Meiers J, Titz A, Verma S, Chopra S. Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:17. [PMID: 39843585 PMCID: PMC11721184 DOI: 10.1038/s44259-023-00016-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2025]
Abstract
Emerging resistance to all available antibiotics highlights the need to develop new antibiotics with novel mechanisms of action. Most of the currently used antibiotics target Gram-positive bacteria while Gram-negative bacteria easily bypass the action of most drug molecules because of their unique outer membrane. This additional layer acts as a potent barrier restricting the entry of compounds into the cell. In this scenario, several approaches have been elucidated to increase the accumulation of compounds into Gram-negative bacteria. This review includes a brief description of the physicochemical properties that can aid compounds to enter and accumulate in Gram-negative bacteria and covers different strategies to target or bypass the outer membrane-mediated barrier in Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rakhi Bormon
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India
| | - Marta Czekanska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India.
- Center for Nanoscience, IIT Kanpur, Kanpur, 208016, UP, India.
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Wesseling CMJ, Slingerland CJ, Veraar S, Lok S, Martin NI. Structure-Activity Studies with Bis-Amidines That Potentiate Gram-Positive Specific Antibiotics against Gram-Negative Pathogens. ACS Infect Dis 2021; 7:3314-3335. [PMID: 34766746 PMCID: PMC8669655 DOI: 10.1021/acsinfecdis.1c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Pentamidine, an FDA-approved
antiparasitic drug, was recently identified
as an outer membrane disrupting synergist that potentiates erythromycin,
rifampicin, and novobiocin against Gram-negative bacteria. The same
study also described a preliminary structure–activity relationship
using commercially available pentamidine analogues. We here report
the design, synthesis, and evaluation of a broader panel of bis-amidines
inspired by pentamidine. The present study both validates the previously
observed synergistic activity reported for pentamidine, while further
assessing the capacity for structurally similar bis-amidines to also
potentiate Gram-positive specific antibiotics against Gram-negative
pathogens. Among the bis-amidines prepared, a number of them were
found to exhibit synergistic activity greater than pentamidine. These
synergists were shown to effectively potentiate the activity of Gram-positive
specific antibiotics against multiple Gram-negative pathogens such
as Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Escherichia coli, including polymyxin- and carbapenem-resistant strains.
Collapse
Affiliation(s)
- Charlotte M. J. Wesseling
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Shanice Veraar
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Samantha Lok
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
6
|
Synthesis of the First Dithiaaza-17-Crown-5 Ethers Containing Piperidin-4-One Subunit. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Herrera-Espejo S, Cebrero-Cangueiro T, Labrador-Herrera G, Pachón J, Pachón-Ibáñez ME, Álvarez-Marín R. In Vitro Activity of Pentamidine Alone and in Combination with Antibiotics against Multidrug-Resistant Clinical Pseudomonas aeruginosa Strains. Antibiotics (Basel) 2020; 9:E885. [PMID: 33317111 PMCID: PMC7764095 DOI: 10.3390/antibiotics9120885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is a public health problem causing both community and hospital-acquired infections, and thus the development of new therapies for these infections is critical. The objective of this study was to analyze in vitro the activity of pentamidine as adjuvant in combinations to antibiotics against seven clinical P. aeruginosa strains. The Minimum Inhibitory Concentration (MIC) was determined following standard protocols, and the results were interpreted according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints; however, the gentamicin activity was interpreted according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. The bactericidal in vitro activity was studied at 1×MIC concentrations by time-kill curves, and also performed in three selected strains at 1/2×MIC of pentamidine. All studies were performed in triplicate. The pentamidine MIC range was 400-1600 μg/mL. Four of the strains were MDR, and the other three were resistant to two antibiotic families. The combinations of pentamidine at 1×MIC showed synergistic activity against all the tested strains, except for pentamidine plus colistin. Pentamidine plus imipenem and meropenem were the combinations that showed synergistic activity against the most strains. At 1/2×MIC, pentamidine plus antibiotics were synergistic with all three analyzed strains. In summary, pentamidine in combination with antibiotics showed in vitro synergy against multidrug-resistant P. aeruginosa clinical strains, which suggests its possible use as adjuvant to antibiotics for the therapy of infections from MDR P. aeruginosa.
Collapse
Grants
- PI18-01842 Instituto de Salud Carlos III
- REIPI RD16/0016/0009 Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases
- 2014-2020 co-financed by European Development Regional Fund A way to achieve Europe, Operative program Intelligent Growth
- C1-0038-2019 M.E.P.I. is a researcher belonging to the program "Nicolás Monardes" (C1-0038-2019), Servicio Andaluz de Salud, Junta de Andalucía, Spain
- RD16/0016/0009 GLH has a grant from the Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, cofinanced by the European Development Regional Fund (A Way to Achieve Europe) and by the Spanish Network for Research in Infectious Disease
- JR17/00025 RAM has a grant Juan Rodes grant from the Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, cofinanced by the European Development Regional Fund (A Way to Achieve Europe) and by the Spanish Network for Research in Infectiou
- - T.C.C. is supported by the V Plan Propio of the University of Seville with a postdoctoral contract as research personnel in training
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (T.C.-C.); (G.L.-H.); (J.P.); (R.Á.-M.)
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocio University Hospital, 41013 Seville, Spain
| | - Tania Cebrero-Cangueiro
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (T.C.-C.); (G.L.-H.); (J.P.); (R.Á.-M.)
- Department of Medicine, University of Seville, 41009 Seville, Spain
| | - Gema Labrador-Herrera
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (T.C.-C.); (G.L.-H.); (J.P.); (R.Á.-M.)
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocio University Hospital, 41013 Seville, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (T.C.-C.); (G.L.-H.); (J.P.); (R.Á.-M.)
- Department of Medicine, University of Seville, 41009 Seville, Spain
| | - María Eugenia Pachón-Ibáñez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (T.C.-C.); (G.L.-H.); (J.P.); (R.Á.-M.)
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocio University Hospital, 41013 Seville, Spain
| | - Rocío Álvarez-Marín
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (T.C.-C.); (G.L.-H.); (J.P.); (R.Á.-M.)
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocio University Hospital, 41013 Seville, Spain
| |
Collapse
|
8
|
Żołek T, Qile M, Kaźmierczak P, Bloothooft M, van der Heyden MAG, Maciejewska D. Drug-likeness of linear pentamidine analogues and their impact on the hERG K+channel – correlation with structural features. RSC Adv 2019; 9:38355-38371. [PMID: 35540224 PMCID: PMC9082326 DOI: 10.1039/c9ra08404e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
The pentamidines with S atoms or sulfanilide groups in the linker have favorable drug-likeness parameters and low toxicity.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Muge Qile
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Paweł Kaźmierczak
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Meye Bloothooft
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Dorota Maciejewska
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
9
|
Liu Y, Hu X, Wu Y, Zhang W, Chen X, You X, Hu L. Synthesis and structure-activity relationship of novel bisindole amidines active against MDR Gram-positive and Gram-negative bacteria. Eur J Med Chem 2018; 150:771-782. [PMID: 29604581 DOI: 10.1016/j.ejmech.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
A series of novel diamidines with N-substituents on an amidine N-atom were synthesized and evaluated for their cytotoxicity and in vitro antibacterial activity against a range of Gram-positive and Gram-negative bacterial strains. Based on structure-activity relationship, N-substituents with a branched chain and a shorter carbon chain on the amidine N-atom exhibited more promising activity against Gram-negative and MDR-Gram-positive bacteria; compounds 5c and 5i were the most powerful candidate compounds. Compound 5c showed greater efficacy than levofloxacin against most drug-resistant Gram-positive bacteria and exhibited broad-spectrum antibacterial activity against Gram-negative bacteria, with MIC values in the range of 2-16 μg/mL. Slightly more potent antibacterial activity against Klebsiella pneumoniae, Acinetobacter calcoaceticus, Enterobacter cloacae, and Proteus mirabilis was observed for 5i in comparison with 5c. Compound 5i also showed remarkable antibacterial activity against NDM-1-producing Gram-negative bacteria, with MIC values in the range of 2-4 μg/mL, and was superior to the reference drugs meropenem and levofloxacin. Effective antibacterial activity of 5i was also shown in vivo in a mouse model of Staphylococcus aureus MRSA strain, with an ED50values of 2.62 mg/kg.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Weixing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| |
Collapse
|
10
|
Božinović N, Šegan S, Vojnovic S, Pavic A, Šolaja BA, Nikodinovic-Runic J, Opsenica IM. Synthesis and anti-Candidaactivity of novel benzothiepino[3,2-c]pyridine derivatives. Chem Biol Drug Des 2016; 88:795-806. [DOI: 10.1111/cbdd.12809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nina Božinović
- Faculty of Chemistry; University of Belgrade; Belgrade Serbia
| | - Sandra Šegan
- Institute of Chemistry, Technology, and Metallurgy; University of Belgrade; Belgrade Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering; University of Belgrade; Belgrade Serbia
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering; University of Belgrade; Belgrade Serbia
| | | | | | | |
Collapse
|
11
|
Berger ML, Maciejewska D, Vanden Eynde JJ, Mottamal M, Żabiński J, Kaźmierczak P, Rezler M, Jarak I, Piantanida I, Karminski-Zamola G, Mayence A, Rebernik P, Kumar A, Ismail MA, Boykin DW, Huang TL. Pentamidine analogs as inhibitors of [(3)H]MK-801 and [(3)H]ifenprodil binding to rat brain NMDA receptors. Bioorg Med Chem 2015; 23:4489-4500. [PMID: 26117647 DOI: 10.1016/j.bmc.2015.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/29/2022]
Abstract
The anti-protozoal drug pentamidine is active against opportunistic Pneumocystis pneumonia, but in addition has several other biological targets, including the NMDA receptor (NR). Here we describe the inhibitory potencies of 76 pentamidine analogs at 2 binding sites of the NR, the channel binding site labeled with [(3)H]MK-801 and the [(3)H]ifenprodil binding site. Most analogs acted weaker at the ifenprodil than at the channel site. The spermine-sensitivity of NR inhibition by the majority of the compounds was reminiscent of other long-chain dicationic NR blockers. The potency of the parent compound as NR blocker was increased by modifying the heteroatoms in the bridge connecting the 2 benzamidine moieties and also by integrating the bridge into a seven-membered ring. Docking of the 45 most spermine-sensitive bisbenzamidines to a recently described acidic interface between the N-terminal domains of GluN1 and GluN2B mediating polyamine stimulation of the NR revealed the domain contributed by GluN1 as the most relevant target.
Collapse
Affiliation(s)
- Michael L Berger
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Dorota Maciejewska
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Jerzy Żabiński
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Kaźmierczak
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Rezler
- Department of Organic Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Ivana Jarak
- Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | - Ivo Piantanida
- Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | | | - Annie Mayence
- College of Pharmacy, Xavier University of Louisiana, New Orleans, USA
| | - Patrick Rebernik
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Mohamed A Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Tien L Huang
- College of Pharmacy, Xavier University of Louisiana, New Orleans, USA
| |
Collapse
|