1
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
2
|
Mishra S, Gupta A, Jain S, Vaidya A. Anticancer mechanisms of β-carbolines. Chem Biol Drug Des 2024; 103:e14521. [PMID: 38653576 DOI: 10.1111/cbdd.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
β-Carboline nucleus is therapeutically valuable in medicinal chemistry for the treatment of varied number of diseases, most importantly cancer. The potent and wide-ranging activity of β-carboline has established them as imperative pharmacological scaffolds especially in the cancer treatment. Numerous derivatives such as Tetrahydro β-carbolines, metal complexed β-carbolines, mono, di and tri substituted β-carbolines have been reported to possess dynamic anticancer activity. These different substituted β-carboline derivatives had shown different mechanism of action and plays important role in anticancer drug discovery and development. The review is an update of the chemistry of β-carbolines, both synthetic and natural origin acting through various targets against cancerous cells. In addition to this, studies of multitarget molecules designed by coupling β-carbolines along with other mechanisms for treatment of neoplasm are also summarized.
Collapse
Affiliation(s)
- Shivam Mishra
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India
| | - Aditi Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shweta Jain
- Sir Madan Lal Institute of Pharmacy, Etawah, Uttar Pradesh, India
| | - Ankur Vaidya
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India
| |
Collapse
|
3
|
Mathpal S, Joshi T, Sharma P, Maiti P, Nand M, Pande V, Chandra S. In silico screening of chalcone derivatives as promising EGFR-TK inhibitors for the clinical treatment of cancer. 3 Biotech 2024; 14:18. [PMID: 38130684 PMCID: PMC10730483 DOI: 10.1007/s13205-023-03858-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) promotes tumorigenic characteristics and activates cancer-associated signaling pathways such as Wnt/-catenin, transforming growth factor (TGF-β), and phosphoinositide-3-kinase (PI3K). Several inhibitors have been reported to suppress the activity of EGFR and are being used in cancer treatment. However, patients in the malignant stage of cancer show resistance to those inhibitors, opening a wide space for research to discover novel inhibitors. Therefore, we carried out machine learning and virtual screening to discover novel inhibitors with high affinity against EGFR-TK. Initially, a library of 2640 chalcones were screened out using a machine-learning model developed based on the random forest algorithm, exhibiting high sensitivity and a Receiver Operating Characteristic curve (ROC area) of 0.99. Furthermore, out of the initial 2640 screened compounds, 412 compounds exhibiting potential activity are subjected to evaluation for drug-likeness properties through different filters: Blood-brain barrier penetration, Lipinski's rule, CMC-50 like rule, Veber rule, and Ghose filter, alongside Cell Line Cytotoxicity Prediction. A total of 30 compounds that successfully pass through all these filters are selected for molecular docking. Of these, 6 compounds display substantial binding affinity and closer interaction with the conserved catalytic residues of the target EGFR-TK compared to the reference molecule (erlotinib). Furthermore, molecular dynamics simulation studies were conducted on four compounds (CID-375861, CID-375862, CID-23636403, and CID-259166) to confirm the stability of the docked complexes over a 100 ns simulation trajectory. Additionally, the binding free energy calculations by MMPBSA reveal that these four chalcone compounds exhibit strong affinity towards the EGFR-TK enzyme, with binding free energies of - 65.421 kJ/mol, - 94.266 kJ/mol, - 80.044 kJ/mol, and - 79.734 kJ/mol, respectively. The findings from this investigation highlight a set of promising chalcone compounds that have the potential to be developed into effective drugs for the treatment of various cancers. Further research and development on these compounds could pave the way for novel therapeutic interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03858-8.
Collapse
Affiliation(s)
- Shalini Mathpal
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand 263136 India
| | - Tushar Joshi
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand 263136 India
| | - Priyanka Sharma
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, Uttarakhand India
| | - Priyanka Maiti
- Centre for Environmental Assessment and Climate Change, G.B. Pant, National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263643 India
| | - Mahesha Nand
- ENVIS Centre on Himalayan Ecology, G.B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora, Uttarakhand 263643 India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Uttarakhand 263136 India
| | - Subhash Chandra
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand 263601 India
| |
Collapse
|
4
|
Zubaș A, Ghinet A, Farce A, Dubois J, Bîcu E. Phenothiazine- and Carbazole-Cyanochalcones as Dual Inhibitors of Tubulin Polymerization and Human Farnesyltransferase. Pharmaceuticals (Basel) 2023; 16:888. [PMID: 37375835 DOI: 10.3390/ph16060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the search for innovative approaches to cancer chemotherapy, a chemical library of 49 cyanochalcones, 1a-r, 2a-o, and 3a-p, was designed as dual inhibitors of human farnesyltransferase (FTIs) and tubulin polymerization (MTIs) (FTIs/MTIs), two important biological targets in oncology. This approach is innovative since the same molecule would be able to interfere with two different mitotic events of the cancer cells and prevent these cells from developing an emergency route and becoming resistant to anticancer agents. Compounds were synthesized by the Claisen-Schmidt condensation of aldehydes with N-3-oxo-propanenitriles under classical magnetic stirring and under sonication. Newly synthesized compounds were screened for their potential to inhibit human farnesyltransferase, tubulin polymerization, and cancer cell growth in vitro. This study allowed for the identification of 22 FTIs and 8 dual FTIs/MTIs inhibitors. The most effective molecule was carbazole-cyanochalcone 3a, bearing a 4-dimethylaminophenyl group (IC50 (h-FTase) = 0.12 µM; IC50 (tubulin) = 0.24 µM) with better antitubulin activity than the known inhibitors that were previously reported, phenstatin and (-)-desoxypodophyllotoxin. The docking of the dual inhibitors was realized in both the active site of FTase and in the colchicine binding site of tubulin. Such compounds with a dual inhibitory profile are excellent clinical candidates for the treatment of human cancers and offer new research perspectives in the search for new anti-cancer drugs.
Collapse
Affiliation(s)
- Andreea Zubaș
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
| | - Alina Ghinet
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, 59000 Lille, France
| | - Amaury Farce
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, 59000 Lille, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Elena Bîcu
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
| |
Collapse
|
5
|
Kumar A, Jain S, Chauhan S, Aggarwal S, Saini D. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction. Chem Biol Interact 2023; 373:110379. [PMID: 36738914 DOI: 10.1016/j.cbi.2023.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
A novel series of pyrazolyl chalcones containing quinoline scaffold, 5 a-v has been synthesized by Claisen Schimdt condensation of aromatic acetophenone with 1-(4-methylquinolin-2-yl)-3-aryl-1H-pyrazole-4-carbaldehyde in quantitative yield. The compounds were characterized using IR, NMR, MS and elemental analysis. An E-configuration about CC ethylenic bond was determined using 1H NMR spectroscopy. These compounds exhibited significant antimalarial potential against CQ-sensitive and CQ-resistant strain of Plasmodium falciparum. Structure activity relationship has also been established based on outcomes of in vitro schizont inhibition assay. Compound 5u, (Z)-3-(1-(4-methylquinolin-2-yl)-3-p-tolyl-1H-pyrazol-4-yl)-1-p-tolylprop-2-en-1-one, was found to be the most potent among the series of synthetic analogues. In vivo, it demonstrated significant parasitemia suppression of 78.01% at a dose of 200 mg/kg against P. berghei in infected mice without any mortality in 7 days. In silico molecular docking study revealed that this compound 5u bound to the active site of cysteine protease falcipain-2 enzyme. Furthermore, in silico ADME studies, were also performed and physicochemical qualifications of the title compounds were determined. The biological outcomes of newer heterocyclic compounds may pave the new paths for researchers in development of potential antimalarial agents.
Collapse
Affiliation(s)
- Ajay Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Sandeep Jain
- Drug Discovery and Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Shilpi Chauhan
- Lloyd Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater, Noida, 201306, India
| | | | - Deepika Saini
- Drug Discovery and Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India; Lloyd Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater, Noida, 201306, India.
| |
Collapse
|
6
|
Rajendran G, Bhanu D, Aruchamy B, Ramani P, Pandurangan N, Bobba KN, Oh EJ, Chung HY, Gangadaran P, Ahn BC. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15101250. [PMID: 36297362 PMCID: PMC9607481 DOI: 10.3390/ph15101250] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chalcones are a class of privileged scaffolds with high medicinal significance due to the presence of an α,β-unsaturated ketone functionality. Numerous functional modifications of chalcones have been reported, along with their pharmacological behavior. The present review aims to summarize the structures from natural sources, synthesis methods, biological characteristics against infectious and non-infectious diseases, and uses of chalcones over the past decade, and their structure–activity relationship studies are detailed in depth. This critical review provides guidelines for the future design and synthesis of various chalcones. In addition, this could be highly supportive for medicinal chemists to develop more promising candidates for various infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Gayathri Rajendran
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Deepu Bhanu
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (P.R.); (B.-C.A.)
| | - Nanjan Pandurangan
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, Mysuru 570026, India
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California (San Francisco), San Francisco, CA 94143, USA
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (P.R.); (B.-C.A.)
| |
Collapse
|
7
|
Novel Nitrogen-Based Chalcone Analogs Provoke Substantial Apoptosis in HER2-Positive Human Breast Cancer Cells via JNK and ERK1/ERK2 Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179621. [PMID: 34502529 PMCID: PMC8431802 DOI: 10.3390/ijms22179621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Natural chalcones possess antitumor properties and play a role as inducers of apoptosis, antioxidants and cytotoxic compounds. We recently reported that novel nitrogen chalcone-based compounds, which were generated in our lab, have specific effects on triple-negative breast cancer cells. However, the outcome of these two new compounds on human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains nascent. Thus, we herein investigated the effects of these compounds (DK-13 and DK-14) on two HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data revealed that these compounds inhibit cell proliferation, deregulate cell-cycle progression and significantly induce cell apoptosis in both cell lines. Furthermore, the two chalcone compounds cause a significant reduction in the cell invasion ability of SKBR3 and ZR75 cancer cells. In parallel, we found that DK-13 and DK-14 inhibit colony formation of both cell lines in comparison to their matched controls. On the other hand, we noticed that these two compounds can inhibit angiogenesis in the chorioallantoic membrane model. The molecular pathway analysis of chalcone compounds exposed cells revealed that these compounds inhibit the expression of both JNK1/2/3 and ERK1/2, the major plausible molecular pathways behind these events. Our findings implicate that DK-13 and DK-14 possess effective chemotherapeutic outcomes against HER2-positive breast cancer via the ERK1/2 and JNK1/2/3 signaling pathways.
Collapse
|
8
|
A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur J Med Chem 2021; 224:113688. [PMID: 34332400 DOI: 10.1016/j.ejmech.2021.113688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 07/04/2021] [Indexed: 01/13/2023]
Abstract
β-Carboline alkaloids are a family of natural and synthetic products with structural diversity and outstanding antitumor activities. This review summarizes research developments of β-carboline and its derivatives as anticancer agents, which focused on both natural and synthetic monomers as well as dimers. In addition, the structure-activity relationship (SAR) analysis of β-carboline monomers and dimers are summarized and mechanism of action of β-carboline and its derivatives are also presented. A few possible research directions, suggestions and clues for future work on the development of novel β-carboline-based anticancer agents with improved expected activities and lesser toxicity are also provided.
Collapse
|
9
|
Soni JP, Yeole Y, Shankaraiah N. β-Carboline-based molecular hybrids as anticancer agents: a brief sketch. RSC Med Chem 2021; 12:730-750. [PMID: 34124672 PMCID: PMC8152596 DOI: 10.1039/d0md00422g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/28/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is a huge burden on the healthcare system and is foremost cause of mortality across the globe. Among various therapeutic strategies, chemotherapy plays an enormous role in overcoming the challenges of treating cancer, especially in late stage detection. However, limitations such as extreme side/adverse effects and drug resistance associated with available drugs have impelled the development of novel chemotherapeutic agents. In this regard, we have reviewed the development of β-carboline-based chemotherapeutic agents reported in last five years. The review mainly emphasizes on the molecular hybrids of β-carbolines with various pharmacophores, their synthetic strategies, and in vitro anticancer evaluation. In addition, the mechanisms of action, in silico studies, structural influence on the potency and selectivity among diverse cancer cell lines have been critically presented. The review updates readers on the diverse molecular hybrids prepared and the governing structural features of high potential molecules that can help in the future development of novel cytotoxic agents.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Yogesh Yeole
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
10
|
Stalinskaya AL, Weber DF, Seilkhanov TM, Kulakov IV. Synthesis of 4,5-dihydro-1H-pyrazole derivatives based on 3-acetyl-5-nitropyridines. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
β-Carbolines as potential anticancer agents. Eur J Med Chem 2021; 216:113321. [PMID: 33684825 DOI: 10.1016/j.ejmech.2021.113321] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
β-Carbolines are indole alkaloids having a tricyclic pyrido[3,4-b]indole ring in their structure. Since the isolation of first β-carboline from Peganum harmala in 1841, the isolation and synthesis of various β-carboline derivatives surged in the following centuries. β-Carboline derivatives due to their widespread availability from natural sources, structural flexibility, quick reactivity and interaction with varied anticancer targets such as DNA (intercalation, groove binding, etc.), enzymes (GPX4, topoisomerases, kinases, etc.) and proteins (tubulin, ABCG2/BRCP1, etc.) have established themselves as promising lead compounds for the synthesis of various anticancer active agents. The current review covers the synthesis and isolation, anticancer activity, mechanism of action and SAR of various β-carboline containing molecules, its derivatives and congeners.
Collapse
|
12
|
Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, Caruntu C, Leyva-Gómez G, Dey A, Martorell M, Calina D, López V, Les F. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol 2021; 11:592654. [PMID: 33536909 PMCID: PMC7849684 DOI: 10.3389/fphar.2020.592654] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Imane Chamkhi
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco.,Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Rabat, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition, and Metabolic Diseases, Bucharest, Romania
| | - Gerardo Leyva-Gómez
- Departamento De Farmacia, Facultad De Química, Universidad Nacional Autónoma De México, Ciudad De México, Mexico
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Unidad De Desarrollo Tecnológico, UDT, Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Singh M, Paul AK, Singh V. A transition metal-free approach towards the regioselective synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1 H-pyrroles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02315a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A transition metal-free one-pot sequential approach has been unfolded for the synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1H-pyrroles by using highly diverse 1-formyl-9H-β-carbolines as a template.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology Kurukshetra
- India
| | - Virender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
- Department of Chemistry
| |
Collapse
|
15
|
Development and validation of LC-MS/MS method for quantification of novel PP2A – β-catenin signalling inhibitor, S011-2111 in mice plasma: Application to its preclinical pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121829. [DOI: 10.1016/j.jchromb.2019.121829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
|
16
|
Szabó T, Hazai V, Volk B, Simig G, Milen M. First total synthesis of the β-carboline alkaloids trigonostemine A, trigonostemine B and a new synthesis of pityriacitrin and hyrtiosulawesine. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant hepatocellular carcinoma. Eur J Med Chem 2019; 168:515-526. [DOI: 10.1016/j.ejmech.2019.02.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
|
18
|
Chavan PV, Desai UV, Wadgaonkar PP, Tapase SR, Kodam KM, Choudhari A, Sarkar D. Click chemistry based multicomponent approach in the synthesis of spirochromenocarbazole tethered 1,2,3-triazoles as potential anticancer agents. Bioorg Chem 2019; 85:475-486. [DOI: 10.1016/j.bioorg.2019.01.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022]
|
19
|
Sangpheak K, Tabtimmai L, Seetaha S, Rungnim C, Chavasiri W, Wolschann P, Choowongkomon K, Rungrotmongkol T. Biological Evaluation and Molecular Dynamics Simulation of Chalcone Derivatives as Epidermal Growth Factor-Tyrosine Kinase Inhibitors. Molecules 2019; 24:molecules24061092. [PMID: 30897725 PMCID: PMC6471738 DOI: 10.3390/molecules24061092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/02/2022] Open
Abstract
Targeted cancer therapy has become a high potential cancer treatment. Epidermal growth factor receptor (EGFR), which plays an important role in cell signaling, enhanced cell survival and proliferation, has been suggested as molecular target for the development of novel cancer therapeutics. In this study, a series of chalcone derivatives was screened by in vitro cytotoxicity against the wild type (A431 and A549) and mutant EGFR (H1975 and H1650) cancer cell lines, and, subsequently, tested for EGFR-tyrosine kinase (TK) inhibition. From the experimental screening, all chalcones seemed to be more active against the A431 than the A549 cell line, with chalcones 1c, 2a, 3e, 4e, and 4t showing a more than 50% inhibitory activity against the EGFR-TK activity and a high cytotoxicity with IC50 values of < 10 µM against A431 cells. Moreover, these five chalcones showed more potent on H1975 (T790M/L858R mutation) than H1650 (exon 19 deletion E746-A750) cell lines. Only three chalcones (1c, 2a and 3e) had an inhibitory activity against EGFR-TK with a relative inhibition percentage that was close to the approved drug, erlotinib. Molecular dynamics studies on their complexes with EGFR-TK domain in aqueous solution affirmed that they were well-occupied within the ATP binding site and strongly interacted with seven hydrophobic residues, including the important hinge region residue M793. From the above information, as well as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, all three chalcones could serve as lead compounds for the development of EGFR-TK inhibitors.
Collapse
Affiliation(s)
- Kanyani Sangpheak
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Lueacha Tabtimmai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Chompoonut Rungnim
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Peter Wolschann
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria.
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria.
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand.
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
|
21
|
Design and synthesis of some β-carboline derivatives as multi-target anticancer agents. Future Med Chem 2018; 10:2791-2814. [DOI: 10.4155/fmc-2018-0226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Some anticancer β-carbolines exhibited dual inhibition of topo-I and KSP. Methodology/Results: Novel β-carbolines were synthesized and screened for their anticancer activity according to the NCI protocol. Five dose assays results indicated that compounds 9, 10, 12, 17 and 20 were potent and non selective anticancer agents; the sulfanyltriazole 12 was the most potent. Compounds 10, 12 and 20 showed dual topo-I and KSP inhibition with compound 12 being the most potent. Active compounds elicited Pre-G1 apoptosis and cell cycle arrest at G2/M phase of melanoma MDA-MB-435 cells. Docking results, in silico physicochemical and absorption, distribution, metabolism, excretion (ADME) properties were appropriate. Conclusion: Compounds 10, 12 and 20 are potent apoptosis-inducing multitarget anticancer agents that act via dual inhibition of topo-I and KSP-ATPase.
Collapse
|
22
|
Sangpheak K, Mueller M, Darai N, Wolschann P, Suwattanasophon C, Ruga R, Chavasiri W, Seetaha S, Choowongkomon K, Kungwan N, Rungnim C, Rungrotmongkol T. Computational screening of chalcones acting against topoisomerase IIα and their cytotoxicity towards cancer cell lines. J Enzyme Inhib Med Chem 2018; 34:134-143. [PMID: 30394113 PMCID: PMC6225485 DOI: 10.1080/14756366.2018.1507029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Targeted cancer therapy has become one of the high potential cancer treatments. Human topoisomerase II (hTopoII), which catalyzes the cleavage and rejoining of double-stranded DNA, is an important molecular target for the development of novel cancer therapeutics. In order to diversify the pharmacological activity of chalcones and to extend the scaffold of topoisomerase inhibitors, a series of chalcones was screened against hTopoIIα by computational techniques, and subsequently tested for their in vitro cytotoxicity. From the experimental IC50 values, chalcone 3d showed a high cytotoxicity with IC50 values of 10.8, 3.2 and 21.1 µM against the HT-1376, HeLa and MCF-7 cancer-derived cell lines, respectively, and also exhibited an inhibitory activity against hTopoIIα-ATPase that was better than the known inhibitor, salvicine. The observed ligand-protein interactions from a molecular dynamics study affirmed that 3d strongly interacts with the ATP-binding pocket residues. Altogether, the newly synthesised chalcone 3d has a high potential to serve as a lead compound for topoisomerase inhibitors.
Collapse
Affiliation(s)
- Kanyani Sangpheak
- a Faculty of Science, Program in Biotechnology , Chulalongkorn University , Bangkok , Thailand
| | - Monika Mueller
- b Department of Pharmaceutical Technology and Biopharmaceutics , University of Vienna , Vienna , Austria
| | - Nitchakan Darai
- a Faculty of Science, Program in Biotechnology , Chulalongkorn University , Bangkok , Thailand
| | - Peter Wolschann
- b Department of Pharmaceutical Technology and Biopharmaceutics , University of Vienna , Vienna , Austria.,c Institute of Theoretical Chemistry , University of Vienna , Vienna , Austria
| | - Chonticha Suwattanasophon
- b Department of Pharmaceutical Technology and Biopharmaceutics , University of Vienna , Vienna , Austria
| | - Ritbey Ruga
- d Faculty of Science, Center of Excellence in Natural Products Chemistry, Department of Chemistry , Chulalongkorn University , Bangkok , Thailand
| | - Warinthon Chavasiri
- d Faculty of Science, Center of Excellence in Natural Products Chemistry, Department of Chemistry , Chulalongkorn University , Bangkok , Thailand
| | - Supaporn Seetaha
- e Faculty of Science, Department of Biochemistry , Kasetsart University , Bangkok , Thailand
| | - Kiattawee Choowongkomon
- e Faculty of Science, Department of Biochemistry , Kasetsart University , Bangkok , Thailand
| | - Nawee Kungwan
- f Faculty of Science, Department of Chemistry , Chiang Mai University , Chiang Mai , Thailand.,g Center of Excellence in Materials Science and Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Chompoonut Rungnim
- h Nanoscale Simulation Laboratory, National Nanotechnology Center , National Science and Technology Development Agency , Pathum Thani , Thailand
| | - Thanyada Rungrotmongkol
- i Faculty of Science, Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry , Chulalongkorn University , Bangkok , Thailand.,j Faculty of Science, Ph.D. Program in Bioinformatics and Computational Biology , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
23
|
Venkataramana Reddy PO, Hridhay M, Nikhil K, Khan S, Jha PN, Shah K, Kumar D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg Med Chem Lett 2018; 28:1278-1282. [PMID: 29573910 DOI: 10.1016/j.bmcl.2018.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
A series of sixteen β-carbolines, bearing chalcone moiety at C-1 position, were prepared from easily accessible 1-acetyl-β-carboline and various aldehydes under basic conditions followed by N2-alkylation using different alkyl bromides. The prepared compounds were evaluated for in vitro cytotoxicity against a panel of human tumor cell lines. N2-Alkylated-β-carboline chalcones 13a-i represented the interesting anticancer activities compared to N2-unsubstituted β-carboline chalcones 12a-g. Off the prepared β-carbolines, 13g exhibited broad spectrum of activity with IC50 values lower than 22.5 µM against all the tested cancer cell lines. Further, the N2-alkylated-β-carboline chalcone 13g markedly induced cell death in MDA-MB-231 cells by AO/EB staining assay. The most cytotoxic compound 13g possessed a relatively high drug score of 0.48. Additionally, the prepared β-carboline chalcones displayed moderate antibacterial activities against tested bacterial strains.
Collapse
Affiliation(s)
- P O Venkataramana Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - M Hridhay
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kumar Nikhil
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Shahid Khan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - P N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
24
|
Sahu N, Meena S, Shukla V, Chaturvedi P, Kumar B, Datta D, Arya KR. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:72-80. [PMID: 29109061 DOI: 10.1016/j.jep.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants used in traditional medicines are affordable, easily accessible, safer, less toxic and considered as a rich or efficient source of bioactive molecules for modern therapeutics. Artemisia nilagirica (AR) has a long history of use in Indian traditional medicine to combat a wide variety of diseases including cancer. AIM OF THE STUDY Considering the vast potential of traditional healing plants to deliver safer, less toxic and efficient chemotherapeutics, we have examined anticancer activity of ethanolic extract, bioactive fractions and sub-fractions of AR against different human cancer cell lines along with their phytochemical analysis to understand the insights of novel anticancer activities for further preclinical studies. MATERIALS AND METHODS Fresh plant material of AR was procured from the wild, dried and ground. The grinded materials was extracted in ethanol (AR-01) and fractionated into butanol (AR-02), ethyl acetate (AR-03), hexane (AR-04) and water (AR-05). The cytotoxicity was evaluated against three different human cancer cell lines, i.e. colon (DLD-1), lung (A-549), and breast (MCF-7) using Sulforhodamine B (SRB) assay along with non-cancerous VERO cells as control and doxorubicin (DOX) as positive control. As we observed strong cytotoxicity of AR-03 and AR-04 fractions against tested cells and marked cytotoxic effects particularly in colon cancer cell lines, we further re-fractionated, AR-03 into (AR-03A, AR-03B, AR-03C, AR-03D, AR-03E) and AR-04 into (AR-04A, AR-04B, AR-04C) sub-fractions by column chromatography and investigated against the same panel of cell lines in addition to one more colon cancer cell line (HT-29). Phytochemical analysis was performed through HPLC-ESI-QTOF-MS/MS fragmentation. RESULTS Ethyl acetate (AR-03) and hexane (AR-04) fractions were found to be the most cytotoxic against all the tested cell lines. Further, AR-03E and AR-04A sub-fractions were found more specific cytotoxic selectively against DLD-1 cancer cell lines at 100µg/ml concentration. HPLC-ESI-QTOF-MS/MS determination revealed the presence of 17 compounds in AR-01. Among them, 4 compounds were reported for the first time in this species. However, 3 identified compounds (artemorin, β-santonin and caryophyllene oxide) in AR-03E sub-fraction were commonly present in each bioactive fraction and may be considered as potential and safest cytotoxic agents for anticancer activity. CONCLUSIONS Experimental evidences reported in this paper for anticancer activity validate the traditional wisdom of Artemisia nilagirica as an anticancer herbal drug. To our knowledge, this is our first novel observation of cytotoxicity and selectivity of ethyl acetate and hexane sub-fraction of AR-01 i.e. AR-03E and AR-04A respectively against DLD-1 human cancer cell lines. HPLC-ESI-QTOF-MS/MS determination attributes the identification of cytotoxic compounds which may be used for further preclinical studies.
Collapse
Affiliation(s)
- Neha Sahu
- Ethnobotany Division CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sanjeev Meena
- Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Vijaya Shukla
- Sophisticated Analytical Instrument Facilities, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Priyank Chaturvedi
- Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facilities, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Dipak Datta
- Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - K R Arya
- Ethnobotany Division CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| |
Collapse
|
25
|
Synthesis of carbazole derivatives containing chalcone analogs as non-intercalative topoisomerase II catalytic inhibitors and apoptosis inducers. Eur J Med Chem 2018; 145:498-510. [PMID: 29335211 DOI: 10.1016/j.ejmech.2018.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
Novel topoisomerase II (Topo II) inhibitors have gained considerable interest for the development of anticancer agents. In this study, a series of carbazole derivatives containing chalcone analogs (CDCAs) were synthesized and investigated for their Topo II inhibition and cytotoxic activities. The results from Topo II mediated DNA relaxation assay showed that CDCAs could significantly inhibit the activity of Topo II, and the structure-activity relationship indicated the halogen substituent in phenyl ring play an important role in the activity. Further mechanism studies revealed that CDCAs function as non-intercalative Topo II catalytic inhibitors. Moreover, some CDCAs showed micromolar cytotoxic activities. The most potent compound 3h exhibited notable growth inhibition against four human cancer cell lines. Flow cytometric analysis revealed that compounds 3d and 3h arrested the HL-60 cells in sub G1 phase by induction of apoptosis. It was further confirmed by Annexin-V-FITC binding assay. Western blot analysis revealed that compound 3h induces apoptosis likely through the activation of caspase proteins.
Collapse
|
26
|
Singh D, Sharma P, Kumar R, Pandey SK, Malakar CC, Singh V. An Expeditious Approach for the Synthesis of β-Carboline−Pyrazole-Based Molecular Hybrids. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dharmender Singh
- Department of Chemistry; Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| | - Pooja Sharma
- School of Chemistry & Biochemistry; Thapar University; Patiala 147004 Punjab India
| | - Rakesh Kumar
- Department of Chemistry; Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| | - Satyendra K. Pandey
- School of Chemistry & Biochemistry; Thapar University; Patiala 147004 Punjab India
- Department of Chemistry; Banaras Hindu University (BHU); Varanasi 221005 Uttar Pradesh India
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology (NIT) Manipur; Imphal 795004 India
| | - Virender Singh
- Department of Chemistry; Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| |
Collapse
|
27
|
Devi N, Kumar S, Pandey SK, Singh V. 1(3)-Formyl-β-carbolines: Potential Aldo-X Precursors for the Synthesis of β-Carboline-Based Molecular Architectures. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nisha Devi
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| | - Sunit Kumar
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| | | | - Virender Singh
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| |
Collapse
|
28
|
Singh AK, Chauhan SS, Singh SK, Verma VV, Singh A, Arya RK, Maheshwari S, Akhtar MS, Sarkar J, Rangnekar VM, Chauhan PMS, Datta D. Dual targeting of MDM2 with a novel small-molecule inhibitor overcomes TRAIL resistance in cancer. Carcinogenesis 2017; 37:1027-1040. [PMID: 27543608 DOI: 10.1093/carcin/bgw088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/16/2016] [Indexed: 01/25/2023] Open
Abstract
Mouse double minute 2 (MDM2) protein functionally inactivates the tumor suppressor p53 in human cancer. Conventional MDM2 inhibitors provide limited clinical application as they interfere only with the MDM2-p53 interaction to release p53 from MDM2 sequestration but do not prevent activated p53 from transcriptionally inducing MDM2 expression. Here, we report a rationally synthesized chalcone-based pyrido[ b ]indole, CPI-7c, as a unique small-molecule inhibitor of MDM2, which not only inhibited MDM2-p53 interaction but also promoted MDM2 degradation. CPI-7c bound to both RING and N-terminal domains of MDM2 to promote its ubiquitin-mediated degradation and p53 stabilization. CPI-7c-induced p53 directly recruited to the promoters of DR4 and DR5 genes and enhanced their expression, resulting in sensitization of TNF-related apoptosis-inducing ligand (TRAIL)-resistant cancer cells toward TRAIL-induced apoptosis. Collectively, we identified CPI-7c as a novel small-molecule inhibitor of MDM2 with a unique two-prong mechanism of action that sensitized TRAIL-resistant cancer cells to apoptosis by modulating the MDM2-p53-DR4/DR5 pathway.
Collapse
Affiliation(s)
| | - Shikha S Chauhan
- Medicinal and Process Chemistry Division and.,Present address: Pennsylvania State University, University Park, PA 16801, USA
| | - Sudhir Kumar Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh 226031 , India
| | - Ved Vrat Verma
- Department of Biophysics, Delhi University , South Campus, New Delhi 110021 , India
| | | | | | - Shrankhla Maheshwari
- Biochemistry Division.,Academy of Scientific and Innovative Research, New Delhi 110025, India and
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh 226031 , India
| | | | - Vivek M Rangnekar
- Department of Radiation Medicine and Markey Cancer Center, University of Kentucky , Lexington, KY 40536 , USA and
| | | | - Dipak Datta
- Biochemistry Division.,Academy of Scientific and Innovative Research, New Delhi 110025, India and
| |
Collapse
|
29
|
Design and synthesis of bis(indolyl)ketohydrazide-hydrazones: Identification of potent and selective novel tubulin inhibitors. Eur J Med Chem 2017; 136:184-194. [DOI: 10.1016/j.ejmech.2017.04.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 12/26/2022]
|
30
|
Kumar S, Singh A, Kumar K, Kumar V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur J Med Chem 2017; 142:48-73. [PMID: 28583770 DOI: 10.1016/j.ejmech.2017.05.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Cancer, an uncontrolled and rapid proliferation of abnormal cells, has become one of the leading cause of death worldwide. The development of resistance among the numerous drugs in clinical use has provided strong impetus for the identification and development of novel cancer therapeutics. β-carbolines constitute an important class of pharmacologically active scaffolds known to exert their anticancer activities via diverse mechanisms. The purpose of present review article is to update the readers on the current developments in β-carbolines with an emphasis on synthetic strategies, structure-activity relationships, mechanism of action and in vivo studies wherever possible.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kewal Kumar
- Department of Applied Chemistry, Giani Zail Singh Campus College of Engineering & Technology, MRSPTU, Dabwali Road, Bathinda, 151001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
31
|
Maheshwari S, Avula SR, Singh A, Singh LR, Palnati GR, Arya RK, Cheruvu SH, Shahi S, Sharma T, Meena S, Singh AK, Kant R, Riyazuddin M, Bora HK, Siddiqi MI, Gayen JR, Sashidhara KV, Datta D. Discovery of a Novel Small-Molecule Inhibitor that Targets PP2A-β-Catenin Signaling and Restricts Tumor Growth and Metastasis. Mol Cancer Ther 2017; 16:1791-1805. [PMID: 28500231 DOI: 10.1158/1535-7163.mct-16-0584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 11/16/2022]
Abstract
Molecular hybridization of different pharmacophores to tackle both tumor growth and metastasis by a single molecular entity can be very effective and unique if the hybrid product shows drug-like properties. Here, we report synthesis and discovery of a novel small-molecule inhibitor of PP2A-β-catenin signaling that limits both in vivo tumor growth and metastasis. Our molecular hybridization approach resulted in cancer cell selectivity and improved drug-like properties of the molecule. Inhibiting PP2A and β-catenin interaction by selectively engaging PR55α-binding site, our most potent small-molecule inhibitor diminished the expression of active β-catenin and its target proteins c-Myc and Cyclin D1. Furthermore, it promotes robust E-cadherin upregulation on the cell surface and increases β-catenin-E-Cadherin association, which may prevent dissemination of metastatic cells. Altogether, we report synthesis and mechanistic insight of a novel drug-like molecule to differentially target β-catenin functionality via interacting with a particular subunit of PP2A. Mol Cancer Ther; 16(9); 1791-805. ©2017 AACR.
Collapse
Affiliation(s)
- Shrankhla Maheshwari
- Biochemistry Division, Council of Scientific & Industrial Research (CSIR), Central Drug Research Institute (CDRI), Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | | | - Akhilesh Singh
- Biochemistry Division, Council of Scientific & Industrial Research (CSIR), Central Drug Research Institute (CDRI), Lucknow, India
| | - L Ravithej Singh
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow, India
| | - Gopala R Palnati
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow, India
| | - Rakesh K Arya
- Biochemistry Division, Council of Scientific & Industrial Research (CSIR), Central Drug Research Institute (CDRI), Lucknow, India
| | | | - Sudhir Shahi
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow, India
| | - Tanuj Sharma
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, India
| | - Sanjeev Meena
- Biochemistry Division, Council of Scientific & Industrial Research (CSIR), Central Drug Research Institute (CDRI), Lucknow, India
| | - Anup K Singh
- Biochemistry Division, Council of Scientific & Industrial Research (CSIR), Central Drug Research Institute (CDRI), Lucknow, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, India
| | | | | | - Mohammad I Siddiqi
- Academy of Scientific and Innovative Research, New Delhi, India.,Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research, New Delhi, India.,Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow, India
| | - Koneni V Sashidhara
- Academy of Scientific and Innovative Research, New Delhi, India. .,Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow, India
| | - Dipak Datta
- Biochemistry Division, Council of Scientific & Industrial Research (CSIR), Central Drug Research Institute (CDRI), Lucknow, India. .,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
32
|
Bhale PS, Chavan HV, Dongare SB, Shringare SN, Mule YB, Nagane SS, Bandgar BP. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem Lett 2017; 27:1502-1507. [DOI: 10.1016/j.bmcl.2017.02.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 01/29/2023]
|
33
|
Venkataramana Reddy PO, Mishra S, Tantak MP, Nikhil K, Sadana R, Shah K, Kumar D. Design, synthesis and in vitro cytotoxicity studies of novel β-carbolinium bromides. Bioorg Med Chem Lett 2017; 27:1379-1384. [PMID: 28254167 PMCID: PMC6368682 DOI: 10.1016/j.bmcl.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 11/30/2022]
Abstract
A series of novel β-carbolinium bromides has been synthesized from easily accessible β-carbolines and 1-aryl-2-bromoethanones. The newly synthesized compounds were evaluated for their in vitro anticancer activity. Among the synthesized derivatives, compounds 16l, 16o and 16s exhibited potent anticancer activity with IC50 values of <10μM against tested cancer cell lines. The most potent analogue 16l was broadly active against all the tested cancer cell lines (IC50=3.16-7.93μM). In order to test the mechanism of cell death, we exposed castration resistant prostate cancer cell line (C4-2) to compounds 16l and 16s, which resulted in increased levels of cleaved PARP1 and AO/EB staining, indicating that β-carbolinium salts induce apoptosis in these cells. Additionally, the most potent β-carbolines 16l and 16s were found to inhibit tubulin polymerization.
Collapse
Affiliation(s)
- P O Venkataramana Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Shriprada Mishra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Mukund P Tantak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kumar Nikhil
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rachna Sadana
- Department of Natural Sciences, University of Houston - Downtown, Houston, TX 77002, United States
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
34
|
Singh D, Kumar V, Devi N, Malakar CC, Shankar R, Singh V. Metal-free Decarboxylative Amination: An Alternative Approach Towards Regioselective Synthesis of β-CarbolineN-fused Imidazoles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600970] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dharmender Singh
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| | - Vipin Kumar
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| | - Nisha Devi
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology (NIT) Manipur; Imphal 795004 Manipur India
| | - Ravi Shankar
- Bio-Organic Chemistry Division; CSIR - Indian Institute of Integrative Medicine (IIIM); Jammu 180001 India
| | - Virender Singh
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| |
Collapse
|
35
|
Kummari B, Polkam N, Ramesh P, Anantaraju H, Yogeeswari P, Anireddy JS, Guggilapu SD, Babu BN. Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules. RSC Adv 2017. [DOI: 10.1039/c6ra28525b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 1,2,3-triazole–etodolac hybrids (6a–l) were synthesized as potent anti-cancer molecules and the synthesis strongly relies on Huisgen's 1,3-dipolar cycloaddition between etodolac azide 3 and substituted terminal alkynes 5a–l.
Collapse
Affiliation(s)
- Bhaskar Kummari
- Centre for Chemical Sciences and Technology
- Institute of Science and Technology
- Jawaharlal Nehru Technological University Hyderabad
- Hyderabad-500085
- India
| | - Naveen Polkam
- Centre for Chemical Sciences and Technology
- Institute of Science and Technology
- Jawaharlal Nehru Technological University Hyderabad
- Hyderabad-500085
- India
| | - Perla Ramesh
- Natural Products Chemistry Division
- Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | | | - Perumal Yogeeswari
- Department of Pharmacy
- Birla Institute of Technology and Science
- Pilani
- Hyderabad Campus
- India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences and Technology
- Institute of Science and Technology
- Jawaharlal Nehru Technological University Hyderabad
- Hyderabad-500085
- India
| | - Sravanthi Devi Guggilapu
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education Research (NIPER)
- Hyderabad
- India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education Research (NIPER)
- Hyderabad
- India
| |
Collapse
|
36
|
Evangelista FCG, Bandeira MO, Silva GD, Silva MG, Andrade SN, Marques DR, Silva LM, Castro WV, Santos FV, Viana GHR, Villar JAFP, Sabino AP, Varotti FP. Synthesis and in vitro evaluation of novel triazole/azide chalcones. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1705-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Singh D, Devi N, Kumar V, Malakar CC, Mehra S, Rattan S, Rawal RK, Singh V. Natural product inspired design and synthesis of β-carboline and γ-lactone based molecular hybrids. Org Biomol Chem 2016; 14:8154-66. [PMID: 27511703 DOI: 10.1039/c6ob01216g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
β-Carboline and γ-lactone moieties have been selected by nature as privileged scaffolds and display a wide range of pharmacological properties. Following nature, we envisaged the preparation of new β-carboline and γ-lactone based molecular hybrids incorporating both the pharmacophores. In this regard, a water-assisted In-mediated environmentally benign and easy to execute single-step tandem Barbier type allylation-lactonisation process has been devised in order to afford the targeted molecular architectures. It is anticipated that aqueous medium plays the key role in allylation as well as in the subsequent lactonisation process for the diastereo-selective synthesis of these conjugates. It is believed that water drives the reaction pathway through dual activation, it increases the electrophilic character of formyl and ester functionalities and simultaneously enhances the nucleophilic potential of the hydroxyl group to facilitate the in situ intramolecular condensation. Importantly, during this synthetic strategy no column chromatographic purification was required at any stage.
Collapse
Affiliation(s)
- Dharmender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT), Jalandhar, 144011, Punjab, India.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Salehi P, Babanezhad-Harikandei K, Bararjanian M, Al-Harrasi A, Esmaeili MA, Aliahmadi A. Synthesis of novel 1,2,3-triazole tethered 1,3-disubstituted β-carboline derivatives and their cytotoxic and antibacterial activities. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1622-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Huang HC, Liu WT, Hua KS, Hung HC, Tsai JY, Kuo SC, Huang LJ, Gean PW. α-Carboline derivative TJY-16 inhibits tumor growth by inducing G2/M cell cycle arrest in glioma cells. J Biomed Sci 2016; 23:10. [PMID: 26786523 PMCID: PMC4717554 DOI: 10.1186/s12929-016-0222-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 01/21/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most lethal primary brain tumors which remains difficult to cure despite advances in surgery, radiotherapy and chemotherapy. Therefore, the development of new drug is urgently needed. α-carboline derivatives were usually isolated from marine animals such as Britannia marine tunicate Dendrodoa grossularia and Indonesian ascidian Polycarpa aurata. In this study, we have synthesized several α-carboline compounds and examined their anti-glioma activities. Results We report that among α-carboline derivatives TJY-16 (6-acetyl-9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b] indole) is the most potent α-carboline analog to induce glioma cell death with IC50 value of around 50 nM. TJY-16 decreased cell viability of glioma cells in a concentration- and time-dependent manner. Trypan blue exclusion assay showed that the reduction of cell viability was due to both cell growth inhibition and cell death. Flow cytometric analysis showed that TJY-16 induced G2/M cell cycle arrest followed by induction of sub-G1 phase. Hoechst staining detected the apoptotic features such as nuclear shrinkage and DNA condensation. Western blot analysis showed the increased level of cleaved caspase-3. The activation of caspase-8 and depolarization of mitochondrial membrane potential (ΔΨm) indicated that both extrinsic and intrinsic apoptotic pathways were involved in TJY-16-induced apoptosis. TJY-16 effectively inhibited tumor growth and induced caspase-3 activation in the xenograft tumor model of U87 glioma cells. Conclusions Our results suggest that TJY-16 may kill glioma cells by inducing G2/M cell cycle arrest followed by apoptosis. Thus, TJY-16 is a promising agent for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Hsiao-Chieh Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Ting Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Su Hua
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Chi Hung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ying Tsai
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan.
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
40
|
Chalcone Scaffold in Anticancer Armamentarium: A Molecular Insight. J Toxicol 2016; 2016:7651047. [PMID: 26880913 PMCID: PMC4735904 DOI: 10.1155/2016/7651047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022] Open
Abstract
Cancer is an inevitable matter of concern in the medicinal chemistry era. Chalcone is the well exploited scaffold in the anticancer domain. The molecular mechanism of chalcone at cellular level was explored in past decades. This mini review provides the most recent updates on anticancer potential of chalcones.
Collapse
|
41
|
Singh D, Devi N, Kumar V, Malakar CC, Mehra S, Rawal RK, Kaith BS, Singh V. Metal-free 1,3-dipolar cycloaddition approach towards the regioselective synthesis of β-carboline and isoxazole based molecular hybrids. RSC Adv 2016. [DOI: 10.1039/c6ra15875g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nature has nourished β-carboline and isoxazole derivatives as privileged scaffolds and consequently they are ubiquitously found in alkaloids isolated from various sources.
Collapse
Affiliation(s)
- Dharmender Singh
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| | - Nisha Devi
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| | - Vipin Kumar
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| | - Chandi C. Malakar
- Department of Chemistry
- National Institute of Technology (NIT) Manipur
- Imphal 795004
- India
| | - Saloni Mehra
- Amity Institute of Applied Sciences
- Amity University
- Noida
- India
| | - Ravindra K. Rawal
- Department of Pharmaceutical Chemistry
- Indo-Soviet Friendship College of Pharmacy
- Moga 142001
- India
| | - B. S. Kaith
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| | - Virender Singh
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| |
Collapse
|
42
|
Jha AK, Umar S, Arya RK, Datta D, Goel A. Pyrano[3,2-c]julolidin-2-ones: a novel class of fluorescent probes for ratiometric detection and imaging of Hg2+ in live cancer cells. J Mater Chem B 2016; 4:4934-4940. [DOI: 10.1039/c6tb01413e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel pyrano[3,2-c]julolidin-2-one based fluorescent molecular rotor PYJO4 has been designed and developed for selective ratiometric detection, quantification and imaging of intracellular Hg2+ in live cells.
Collapse
Affiliation(s)
- Ajay Kumar Jha
- Fluorescent Chemistry Lab
- Department of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Shahida Umar
- Fluorescent Chemistry Lab
- Department of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Rakesh Kumar Arya
- Biochemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Dipak Datta
- Biochemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Atul Goel
- Fluorescent Chemistry Lab
- Department of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
43
|
Arya RK, Singh A, Yadav NK, Cheruvu SH, Hossain Z, Meena S, Maheshwari S, Singh AK, Shahab U, Sharma C, Singh K, Narender T, Mitra K, Arya KR, Singh RK, Gayen JR, Datta D. Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis. Sci Rep 2015; 5:18457. [PMID: 26672742 PMCID: PMC4682077 DOI: 10.1038/srep18457] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022] Open
Abstract
Major challenges for current therapeutic strategies against breast cancer are associated with drug-induced toxicities. Considering the immense potential of bioactive phytochemicals to deliver non-toxic, efficient anti-cancer therapeutics, we performed bio-guided fractionation of Eclipta alba extract and discovered that particularly the chloroform fraction of Eclipta alba (CFEA) is selectively inducing cytotoxicity to breast cancer cells over non-tumorigenic breast epithelial cells. Our unbiased mechanistic hunt revealed that CFEA specifically activates the intrinsic apoptotic pathway by disrupting the mitochondrial membrane potential, upregulating Hsp60 and downregulating the expression of anti-apoptotic protein XIAP. By utilizing Hsp60 specific siRNA, we identified a novel pro-apoptotic role of Hsp60 and uncovered that following CFEA treatment, upregulated Hsp60 is localized in the endoplasmic reticulum (ER). To our knowledge, this is the first evidence of ER specific localization of Hsp60 during cancer cell apoptosis. Further, our LC-MS approach identified that luteolin is mainly attributed for its anti-cancer activities. Moreover, oral administration of CFEA not only offers potential anti-breast cancer effects in-vivo but also mitigates tumor induced hepato-renal toxicity. Together, our studies offer novel mechanistic insight into the CFEA mediated inhibition of breast cancer and may potentially open up new avenues for further translational research.
Collapse
Affiliation(s)
- Rakesh K Arya
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | | | - Srikanth H Cheruvu
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow-226031, India
| | - Zakir Hossain
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow-226031, India
| | - Sanjeev Meena
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Shrankhla Maheshwari
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anup K Singh
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Uzma Shahab
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | | | - Kavita Singh
- Electron Microscopy Unit, CSIR-CDRI, Lucknow-226031, India
| | | | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-CDRI, Lucknow-226031, India
| | - Kamal R Arya
- Botany Division, CSIR-CDRI, Lucknow-226031, India
| | - Rama K Singh
- Toxicology Division, CSIR-CDRI, Lucknow-226031, India
| | - Jiaur R Gayen
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow-226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
44
|
Synthesis and biological evaluation of novel 3,9-substituted β-carboline derivatives as anticancer agents. Bioorg Med Chem Lett 2015; 25:3873-7. [PMID: 26235951 DOI: 10.1016/j.bmcl.2015.07.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/03/2015] [Accepted: 07/18/2015] [Indexed: 11/20/2022]
Abstract
In our previous studies on 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) analogs, we synthesised numerous substituted carbazole and α-carboline derivatives, which exhibited anticancer activity. In this study, we designed and synthesised a series of 3,9-substituted β-carbolines, by replacing the tricyclic rings of carbazole and α-carboline derivatives with isosteric β-carboline, and evaluated anticancer activity. We observed that 9-(2-methoxybenzyl)-β-carboline-3-carboxylic acid (11a) inhibited the growth of HL-60 cells by inducing apoptosis, with a half maximal inhibitory concentration of 4.0 μM. Our findings indicate that β-carboline derivatives can be used as lead compounds for developing novel antitumor agents.
Collapse
|
45
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
46
|
Dighe SU, Khan S, Soni I, Jain P, Shukla S, Yadav R, Sen P, Meeran SM, Batra S. Synthesis of β-Carboline-Based N-Heterocyclic Carbenes and Their Antiproliferative and Antimetastatic Activities against Human Breast Cancer Cells. J Med Chem 2015; 58:3485-99. [PMID: 25835200 DOI: 10.1021/acs.jmedchem.5b00016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of novel β-carboline-based N-heterocyclic carbenes was prepared via Mannich reaction between methyl 1-(dimethoxymethyl)-9H-pyrido[3,4-b]indole-3-carboxylate, formaldehyde, and primary amines. All compounds were evaluated for their antiproliferative activity using human breast cancer and lung cancer cell lines. Three compounds, 3c, 3j, and 3h, were discovered to display IC50 less than 10 μM against human breast cancer MDA-MB-231 cells at 24 h of treatment. Pharmacologically these compounds lead to G2/M phase cell cycle arrest and induction of cellular apoptosis by triggering intrinsic apoptotic pathway through depolarization of mitochondrial membrane potential and activation of caspases. At lower concentrations, these compounds also showed antimigratory and antiinvasive effects against highly metastatic human breast cancer MDA-MB-231 cells via aberration of MAP-kinase signaling and by the inhibition of matrix metalloproteinases. However, these analogues lack in vivo effect in mouse model which may be attributed to their strong affinity to HSA that was investigated spectroscopically with compound 3h.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajeev Yadav
- §Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pratik Sen
- §Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed M Meeran
- ∥Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Sanjay Batra
- ∥Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
47
|
Kundooru S, Das P, Meena S, Kumar V, Siddiqi MI, Datta D, Shaw AK. Substrate and stereocontrolled iodocycloetherification of highly functionalized enantiomerically pure allylic alcohols: application to synthesis of cytotoxic 2-epi jaspine B and its biological evaluation. Org Biomol Chem 2015; 13:8241-50. [DOI: 10.1039/c5ob01123j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A mechanistic study on iodocycloetherification of enantiopure allylic alcohols is established. Its application to synthesis of marine cytotoxic 2-epi jaspine B has been demonstrated.
Collapse
Affiliation(s)
- Somireddy Kundooru
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Pintu Das
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sanjeev Meena
- Biochemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Vikash Kumar
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Dipak Datta
- Biochemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Arun K. Shaw
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow
- India
| |
Collapse
|
48
|
Kumar D, Maruthi Kumar N, Tantak MP, Ogura M, Kusaka E, Ito T. Synthesis and identification of α-cyano bis(indolyl)chalcones as novel anticancer agents. Bioorg Med Chem Lett 2014; 24:5170-4. [DOI: 10.1016/j.bmcl.2014.09.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/21/2014] [Accepted: 09/27/2014] [Indexed: 01/08/2023]
|