1
|
Misumi I, Yue Z, Jiang Z, Karampoori A, Whitmire JK, Cullen JM, Block T, Lemon SM, Du Y, Li Y. Hepato-selective dihydroquinolizinones active against hepatitis A virus in vitro and in vivo. Antiviral Res 2025; 237:106145. [PMID: 40118118 DOI: 10.1016/j.antiviral.2025.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Despite the considerable clinical and economic burden imposed by hepatitis A virus (HAV) infection, both globally and in U.S., there are currently no available antiviral therapies for the treatment of type A hepatitis. Here we describe novel third-generation hepato-selective dihydroquinolizinones (HS-DHQs) with cellular uptake mediated by transport via hepatocyte-specific solute organic anion transporter family members 1B1 and 1B3 (OATP1B1-B3). The lead HS-DHQ compound, HS83128, demonstrates robust inhibition of the host cell TENT4A/B terminal nucleotidyltransferases required for efficient HAV RNA synthesis (IC50 6-25nM), and potent antiviral activity against HAV in cell culture (EC50 0.6 nM). Pharmacokinetic studies in CD-1 mice receiving comparable oral doses of HS83128 and a first-generation dihydroquinolizinone, RG7834, revealed a 5-fold increase in intrahepatic drug concentration and more than 10-fold improvement in liver versus nervous system tissue selectivity. Twice-daily oral administration of HS83128 rapidly arrested viral replication in HAV-infected Ifnar1-/- mice, reducing fecal virus shedding and cytokine markers of hepatic inflammation and reversing virus-induced liver injury. The hepato-selective nature of HS83128 may reduce the risk of neurologic and reproductive track toxicities observed with long-term administration of other dihydroquinolizinones, making it a candidate for the first antiviral therapy of hepatitis A.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA
| | - Zhizhou Yue
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Zhengyuan Jiang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Anilkumar Karampoori
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jason K Whitmire
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John M Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Timothy Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA; Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7292, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Harlingene Life Sciences, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - You Li
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
de Souza MM, Gini ALR, Moura JA, Scarim CB, Chin CM, dos Santos JL. Prodrug Approach as a Strategy to Enhance Drug Permeability. Pharmaceuticals (Basel) 2025; 18:297. [PMID: 40143076 PMCID: PMC11946379 DOI: 10.3390/ph18030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/28/2025] Open
Abstract
Absorption and permeability are critical physicochemical parameters that must be balanced to achieve optimal drug uptake. These key factors are closely linked to the maximum absorbable dose required to provide appropriate plasma levels of drugs. Among the various strategies employed to enhance drug solubility and permeability, prodrug design stands out as a highly effective and versatile approach for improving physicochemical properties and enabling the optimization of biopharmaceutical and pharmacokinetic parameters while mitigating adverse effects. Prodrugs are compounds with reduced or no activity that, through bio-reversible chemical or enzymatic processes, release an active parental drug. The application of this technology has led to significant advancements in drug optimization during the design phase, and it offers broad potential for further development. Notably, approximately 13% of the drugs approved by the U.S. Food and Drug Administration (FDA) between 2012 and 2022 were prodrugs. In this review article, we will explore the application of prodrug strategies to enhance permeability, describing examples of market drugs. We also describe the use of the prodrug approach to optimize PROteolysis TArgeting Chimeras (PROTACs) permeability by using conjugation technologies. We will highlight some new technologies in prodrugs to enrich permeability properties, contributing to developing new effective and safe prodrugs.
Collapse
Affiliation(s)
- Mateus Mello de Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Ana Luísa Rodriguez Gini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Jhonnathan Alves Moura
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| | - Cauê Benito Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, Advanced Research Center in Medicine (CEPAM), Sao Jose do Rio Preto 15030-070, SP, Brazil
| | - Jean Leandro dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| |
Collapse
|
3
|
Wahane A, Kasina V, Pathuri M, Marro-Wilson C, Gupta A, Slack FJ, Bahal R. Development of bioconjugate-based delivery systems for nucleic acids. RNA (NEW YORK, N.Y.) 2024; 31:1-13. [PMID: 39477529 DOI: 10.1261/rna.080273.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nucleic acids are a class of drugs that can modulate gene and protein expression by various mechanisms, namely, RNAi, mRNA degradation by RNase H cleavage, splice modulation, and steric blocking of protein binding or mRNA translation, thus exhibiting immense potential to treat various genetic and rare diseases. Unlike protein-targeted therapeutics, the clinical use of nucleic acids relies on Watson-Crick sequence recognition to regulate aberrant gene expression and impede protein translation. Though promising, targeted delivery remains a bottleneck for the clinical adoption of nucleic acid-based therapeutics. To overcome the delivery challenges associated with nucleic acids, various chemical modifications and bioconjugation-based delivery strategies have been explored. Currently, liver targeting by N-acetyl galactosamine (GalNAc) conjugation has been at the forefront for the treatment of rare and various metabolic diseases, which has led to FDA approval of four nucleic acid drugs. In addition, various other bioconjugation strategies have been explored to facilitate active organ and cell-enriched targeting. This review briefly covers the different classes of nucleic acids, their mechanisms of action, and their challenges. We also elaborate on recent advances in bioconjugation strategies in developing a diverse set of ligands for targeted delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Vishal Kasina
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mounika Pathuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ciara Marro-Wilson
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Frank J Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
4
|
Cooper ME, Nørregaard PK, Högberg T, Andersson G, Receveur JM, Linget JM, Elling CE. Efficacy in diet-induced obese mice of the hepatotropic, peripheral cannabinoid 1 receptor inverse agonist TM38837. Br J Pharmacol 2024; 181:3926-3943. [PMID: 38886096 DOI: 10.1111/bph.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND PURPOSE The cannabinoid CB1 receptor has a well-established role in appetite regulation. Drugs antagonizing central CB1 receptors, most notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals but were discontinued due to psychiatric side effects. However, metabolic benefits were only partially attributable to weight loss, implying a role for peripheral receptors, and peripherally restricted CB1 receptor antagonists have since been of interest. Herein, we describe the evaluation of the peripherally restricted potent CB1 receptor inverse agonists TM38837 and TM39875, with acidic functionality, which were administered daily to diet-induced obese (DIO) mice for 5 weeks at doses for which CNS-mediated effects were minimal. EXPERIMENTAL APPROACH Compounds were tested in dose-response in acute studies to compare efficacy (gastric transport) and extent of CNS exposure (hypothermia and satiety sequence) to demonstrate peripheral restriction and select doses for the subsequent chronic DIO study. KEY RESULTS TM38837 but not TM39875 produced considerable (26%) weight loss, linked to a sustained reduction in food intake, together with improvements in plasma markers of inflammation and glucose homeostasis. Pharmacokinetic analysis indicated high plasma and low brain levels for both compounds with high liver levels for TM38837 (but not TM39875) due to hepatic uptake. CONCLUSION AND IMPLICATIONS Weight loss and metabolic benefits of TM38837 are likely not CNS-mediated but could be linked to enhanced liver exposure, which implicates intracellular CB1 receptors in hepatocytes as a possible driver of obesity and co-morbidities.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Diet, High-Fat/adverse effects
- Dose-Response Relationship, Drug
- Drug Inverse Agonism
- Eating/drug effects
- Liver/metabolism
- Liver/drug effects
- Mice, Inbred C57BL
- Mice, Obese
- Obesity/drug therapy
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
Collapse
|
5
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
6
|
Ferreira J, Levin LR, Buck J. Strategies to safely target widely expressed soluble adenylyl cyclase for contraception. Front Pharmacol 2022; 13:953903. [PMID: 36091839 PMCID: PMC9452739 DOI: 10.3389/fphar.2022.953903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, the prototypical second messenger cyclic AMP is produced by 10 adenylyl cyclase isoforms, which are divided into two classes. Nine isoforms are G protein coupled transmembrane adenylyl cyclases (tmACs; ADCY1-9) and the 10th is the bicarbonate regulated soluble adenylyl cyclase (sAC; ADCY10). This review details why sAC is uniquely druggable and outlines ways to target sAC for novel forms of male and female contraception.
Collapse
|
7
|
Hwang N, Sun L, Noe D, Lam PYS, Zhou T, Block TM, Du Y. Hepatoselective Dihydroquinolizinone Bis-acids for HBsAg mRNA Degradation. ACS Med Chem Lett 2021; 12:1130-1136. [PMID: 34267883 DOI: 10.1021/acsmedchemlett.1c00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic hepatitis B (CHB) is characterized by high levels of hepatitis B virus (HBV) surface antigen (HBsAg) in blood circulation. A major goal of CHB interventions is reducing or eliminating this antigenemia; however, there are currently no approved methods that can do this. A novel family of compounds with a dihydroquinolizinone (DHQ) scaffold has been shown to reduce circulating levels of HBsAg in animals, representing a first for a small molecule. Reductions of HBsAg were a result of the compound's effect on HBsAg mRNA levels. However, commercial development by Roche of a DHQ lead compound, RG-7834, was stopped due to undisclosed toxicity issues. Herein we report our effort to convert the systemic RG7834 compound to a hepatoselective DHQ analog to limit its distribution to the bloodstream and thus to other body tissues.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liren Sun
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Daisy Noe
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Patrick Y. S. Lam
- Lam Drug Discovery Consulting, LLC, 6 Ridgway Drive, Chadds Ford, Pennsylvania 19317, United States
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Timothy M. Block
- Pennsylvania Biotechnology Center of Bucks County, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Hepatitis B Foundation, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yanming Du
- Medicinal Chemisty, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
8
|
Orozco CC, Atkinson K, Ryu S, Chang G, Keefer C, Lin J, Riccardi K, Mongillo RK, Tess D, Filipski KJ, Kalgutkar AS, Litchfield J, Scott D, Di L. Structural attributes influencing unbound tissue distribution. Eur J Med Chem 2020; 185:111813. [DOI: 10.1016/j.ejmech.2019.111813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
|
9
|
Chang JH, Zhang X, Messick K, Chen YC, Chen E, Cheong J, Ly J. Unremarkable impact of Oatp inhibition on the liver concentration of fluvastatin, lovastatin and pitavastatin in wild-type and Oatp1a/1b knockout mouse. Xenobiotica 2018; 49:602-610. [DOI: 10.1080/00498254.2018.1478167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jae H. Chang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Xiaolin Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Kirsten Messick
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Yi-Chen Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Eugene Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Jonathan Cheong
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Justin Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
10
|
Natali A, Nesti L, Fabiani I, Calogero E, Di Bello V. Impact of empagliflozin on subclinical left ventricular dysfunctions and on the mechanisms involved in myocardial disease progression in type 2 diabetes: rationale and design of the EMPA-HEART trial. Cardiovasc Diabetol 2017; 16:130. [PMID: 29025406 PMCID: PMC5639750 DOI: 10.1186/s12933-017-0615-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Asymptomatic left ventricular (LV) dysfunction is highly prevalent in type 2 diabetes patients. Unlike the other hypoglycemic drugs, SGLT2 inhibitors have shown potential benefits for reducing cardiovascular death and risk factors, aside from lowering plasma glucose levels. With this study we aim at determining whether the treatment with empagliflozin is associated with an improvement in LV functions in diabetic patients with asymptomatic LV dysfunction against Sitagliptin, which is presumably neutral on myocardial function. To determine changes in LV systolic and diastolic functions we will use speckle-tracking echocardiography, a novel sensitive, non-invasive, bedside method allowing the calculation of LV global longitudinal strain (GLS), an index of myocardial deformability, as well as 3D echocardiography, which allows a better evaluation of LV volumes and mass. Methods The EMPA-HEART trial will be a phase III, open label, active-controlled, parallel groups, single centre, exploratory study conducted in Pisa, Italy. A cohort of 75 diabetic patients with normal LV systolic (2D-Echo EF > 50%) and renal (eGFR sec MDRD > 60 ml/min/1.73 mq) functions and no evidence of valvular and/or ischemic heart disease will be randomized to either Empagliflozin 10 mg/die or Sitagliptin 100 mg/die. The primary outcome is to detect a change in GLS from baseline to 1 and 6 months after treatment initiation. The secondary outcomes include changes from baseline to 6 months in 3-D Echocardiography EF, left atrial volume and E/E′, VO2max as measured at cardiopulmonary test, cardiac autonomic function tests (R–R interval during Valsalva manoeuvre, deep-breathing, lying-to-standing), and the determination of a set of plasma biomarkers aimed at studying volume, inflammation, oxidative stress, matrix remodelling, myocyte strain and injury. Discussion SGLT2 inhibitors might affect myocardial functions through mechanisms acting both directly and indirectly on the myocardium. The set of instrumental and biohumoral tests of our study might actually detect the presence and entity of empagliflozin beneficial effects on the myocardium and shed light on the mechanisms involved. Further, this study might eventually provide information to design a clinical strategy, based on echocardiography and/or biomarkers, to select the patients who might benefit more from this intervention. Trial registration EUDRACT Code 2016-0022250-10
Collapse
Affiliation(s)
- Andrea Natali
- Department of Clinical and Experimental Medicine, Pisa University, Via Savi 27, 56100, Pisa, Italy
| | - Lorenzo Nesti
- Department of Clinical and Experimental Medicine, Pisa University, Via Savi 27, 56100, Pisa, Italy.
| | - Iacopo Fabiani
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, Pisa University, Pisa, Italy
| | - Enrico Calogero
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, Pisa University, Pisa, Italy
| | - Vitantonio Di Bello
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, Pisa University, Pisa, Italy
| |
Collapse
|
11
|
Xu J, Lin S, Myers RW, Trujillo ME, Pachanski MJ, Malkani S, Chen HS, Chen Z, Campbell B, Eiermann GJ, Elowe N, Farrer BT, Feng W, Fu Q, Kats-Kagan R, Kavana M, McMasters DR, Mitra K, Tong X, Xu L, Zhang F, Zhang R, Addona GH, Berger JP, Zhang B, Parmee ER. Discovery of orally active hepatoselective glucokinase activators for treatment of Type II Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27:2063-2068. [DOI: 10.1016/j.bmcl.2016.10.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023]
|
12
|
Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system. Eur J Pharm Sci 2017; 100:102-108. [DOI: 10.1016/j.ejps.2017.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
13
|
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F. Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
14
|
Affiliation(s)
- Matthew C T Fyfe
- Topivert Limited, Imperial College Incubator, London, United Kingdom
| |
Collapse
|