1
|
Basir HS, Mirazi N, Komaki A, Ramezani M, Hosseini A. Cacao Ameliorates Amyloid Beta-Induced Cognitive and Non-Cognitive Disturbances. Neurosci Insights 2024; 19:26331055241280638. [PMID: 39314637 PMCID: PMC11418343 DOI: 10.1177/26331055241280638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurological disorder characterized by a wide range of cognitive and non-cognitive impairments. The present study was designed to investigate the potential effects of cacao on cognitive and non-cognitive performance and to identify the role of oxidative stress in an AD animal model induced by unilateral intracerebroventricular (U-ICV) injection of amyloid beta1-42 (Aβ1-42). Methods Oral administration of cacao (0.5 g/kg/day) was performed for 60 consecutive days. Following 60 days, the open-field (OF) test, elevated plus-maze (EPM) test, novel object recognition (NOR) test, Barnes maze (BM) test, and Morris water maze (MWM) test were used to evaluate locomotor activity, anxiety-like behavior, recognition memory, and spatial memory, respectively. Total oxidant status (TOS) and total antioxidant capacity (TAC) in plasma were also examined. Furthermore, the number of healthy cells in the hippocampus's dentate gyrus (DG), CA1, and CA3 regions were identified using hematoxylin and eosin staining. Results The results indicated that the injection of Aβ1-42 in rats led to recognition memory and spatial memory impairments, as well as increased anxiety. This was accompanied by decreased total antioxidant capacity (TAC), increased total oxidative stress (TOS), and increased neuronal death. Conversely, cacao treatment in AD rats improved memory function, reduced anxiety, modulated oxidative stress balance, and decreased neuronal death. Conclusion The findings suggest that cacao's ability to improve the balance between oxidants and antioxidants and prevent neuronal loss may be the mechanism underlying its beneficial effect against AD-related cognitive and non-cognitive impairments.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Zhang J, Jiang P, Wang S, Li M, Hao Z, Guan W, Pan J, Wu J, Zhang Y, Li H, Chen L, Yang B, Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg Chem 2024; 153:107819. [PMID: 39276492 DOI: 10.1016/j.bioorg.2024.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Neurodegenerative diseases (NDs) represent a hallmark of numerous incapacitating and untreatable conditions, the incidence of which is escalating swiftly, exemplified by Alzheimer's disease and Parkinson's disease. There is an urgent necessity to create pharmaceuticals that exhibit high efficacy and minimal toxicity in order to address these debilitating diseases. The structural complexity and diversity of natural products confer upon them a broad spectrum of biological activities, thereby significantly contributing to the history of drug discovery. Nevertheless, natural products present challenges in drug discovery, including time-consuming separation processes, low content, low bioavailability, and other related issues. To address these challenges, numerous analogs of natural products have been synthesized. This methodology enables the rapid synthesis of analogs of natural products with the potential to serve as lead compounds for drug development, thereby paving the way for the discovery of novel pharmaceuticals. This paper provides a summary of 127 synthetic analogues featuring various natural product structures, including flavonoids, alkaloids, coumarins, phenylpropanoids, terpenoids, polyphenols, and amides. The compounds are categorized based on their efficacy in treating various diseases. Furthermore, this article delves into the structure-activity relationship (SAR) of certain analogues, offering a thorough point of reference for the systematic development of pharmaceuticals aimed at addressing neurodegenerative conditions.
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Bao LQ, Baecker D, Mai Dung DT, Phuong Nhung N, Thi Thuan N, Nguyen PL, Phuong Dung PT, Huong TTL, Rasulev B, Casanola-Martin GM, Nam NH, Pham-The H. Development of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer's Disease. Molecules 2023; 28:molecules28083588. [PMID: 37110831 PMCID: PMC10142303 DOI: 10.3390/molecules28083588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multi-target drug development has become an attractive strategy in the discovery of drugs to treat of Alzheimer's disease (AzD). In this study, for the first time, a rule-based machine learning (ML) approach with classification trees (CT) was applied for the rational design of novel dual-target acetylcholinesterase (AChE) and β-site amyloid-protein precursor cleaving enzyme 1 (BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements were curated from the ChEMBL database. The best global accuracies of training/external validation for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to screen dual inhibitors from the original databases. Based on the best rules obtained from each classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity using consensus QSAR models and docking validations. The rule-based and ML approach applied in this study may be useful for the in silico design and screening of new AChE and BACE1 dual inhibitors against AzD.
Collapse
Affiliation(s)
- Le-Quang Bao
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Do Thi Mai Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Phuong Nhung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Thi Thuan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Phuong Linh Nguyen
- College of Computing & Informatics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Phan Thi Phuong Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Tran Thi Lan Huong
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | | | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| |
Collapse
|
4
|
Gholipour P, Komaki A, Ramezani M, Parsa H. Effects of the combination of high-intensity interval training and Ecdysterone on learning and memory abilities, antioxidant enzyme activities, and neuronal population in an Amyloid-beta-induced rat model of Alzheimer's disease. Physiol Behav 2022; 251:113817. [PMID: 35443198 DOI: 10.1016/j.physbeh.2022.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
AIMS Oxidative stress and neuronal death are the primary reasons for the progression of amyloid-beta (Aβ) deposition and cognitive deficits in Alzheimer's disease (AD). Ecdysterone (ecdy), a common derivative of ecdysteroids, possesses free radical scavenging and cognitive-improving effects. High-intensity interval training (HIIT) can be a therapeutic strategy for improving cognitive decline and oxidative stress. The present study was aimed to evaluate the effect of HIIT exercise and ecdy consumption synergistically on the changes in learning and memory functions, activities of hippocampal antioxidant enzymes, and neuronal population after AD induced by Aβ in male rats. MATERIALS AND METHODS Following ten days of Aβ injection, HIIT exercise and ecdy treatment (10 mg/kg/day; P.O.) were initiated and continued for eight consecutive weeks in rats. At the end of the treatment period, the rat's learning and memory functions were assessed using Morris water maze and passive avoidance tests. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GRx), and changes in neuronal population were evaluated in rats' brains. RESULTS The results indicated that Aβ injection disrupted spatial/passive avoidance learning and memory in both tests, accompanied by a decrease in the SOD and CAT (as endogenous antioxidants) in rats' hippocampus. Additionally, Aβ injection resulted in neuronal loss in the cerebral cortex and hippocampus. Although the consumption of ecdy separately improved spatial/passive avoidance learning and memory impairments, recovered hippocampal activity of SOD, CAT, GRx, and prevented the hippocampal neuronal loss, its combination along with HIIT resulted in a more powerful and effective amelioration in all the above-mentioned Aβ-neuropathological changes. CONCLUSION Our results confirm that a combination of HIIT and ecdy treatment could be a promising potential therapeutic option against AD-associated cognitive decline, owing to their free radical scavenging and neuroprotective properties.
Collapse
Affiliation(s)
- Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Exercise Physiology, Faculty of Sport Sciences, Bu Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hesam Parsa
- Department of Exercise Physiology, Faculty of Sport Sciences, Bu Ali Sina University, Hamedan, Iran.
| |
Collapse
|
5
|
Gontijo VS, Viegas FPD, Ortiz CJC, de Freitas Silva M, Damasio CM, Rosa MC, Campos TG, Couto DS, Tranches Dias KS, Viegas C. Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Curr Neuropharmacol 2020; 18:348-407. [PMID: 31631821 PMCID: PMC7457438 DOI: 10.2174/1385272823666191021124443] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil
| | - Flávia P Dias Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Matheus de Freitas Silva
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Caio Miranda Damasio
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Mayara Chagas Rosa
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Thâmara Gaspar Campos
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Dyecika Souza Couto
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | | | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| |
Collapse
|
6
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
7
|
Shi S, Wang H, Wang J, Wang Y, Xue X, Hou Z, Yao GD, Huang XX, Zhao H, Liu Q, Song SJ. Semi-synthesis and biological evaluation of flavone hybrids as multifunctional agents for the potential treatment of Alzheimer's disease. Bioorg Chem 2020; 100:103917. [PMID: 32442817 DOI: 10.1016/j.bioorg.2020.103917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
7-O-galloyltricetiflavan (GTF), a natural flavonoid, is known to exert anti-oxidation and neuroprotective activity, which are related to the prevention of Alzheimer's disease (AD). In this study, three series of GTF hybrids have been designed, synthesized and evaluated as multifunctional agents for treatment AD. The biological assays indicated that most of them showed strong inhibitory effect on self-induced β-amyloid (Aβ) aggregation, and a significant ability to inhibit ChEs. Among them, compound A15 exhibited best inhibition of Aβ aggregation (78.81% at 20 μM), potent AChE inhibitory potencies (IC50, 0.56 μM), and compound C4 presented the highest ability to inhibit BuChE (IC50, 5.77 μM). Furthermore, kinetic, molecular modeling and molecular dynamics studies revealed that A15 and C4 could interact with the catalytic active site of AChE and BuChE, respectively. In addition, compounds A15 and C4 could cross the blood-brain barrier in vitro. More importantly, A15 and C4 also showed excellent neuroprotective activities against H2O2-induced human neuroblastoma SH-SY5Y cells damage and nearly no toxicity on SH-SY5Y cells. All of these outstanding in vitro results indicated A15 and C4 as the leading structure worthy of further investigation.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Huibin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yvxi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaobian Xue
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zilin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
8
|
Giacomeli R, de Gomes MG, Reolon JB, Haas SE, Colomé LM, Jesse CR. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid 1-42 in aged female mice. Behav Brain Res 2020; 390:112696. [PMID: 32417280 DOI: 10.1016/j.bbr.2020.112696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a clinically and progressive loss of cognitive function, neuropsychiatric and behavioral disorders. Some studies showed that chrysin has antioxidant and anti-inflammatory properties. However, your bioavailability is relatively low. Therefore, the present study was designed to investigate the effects of chrysin loaded lipid-core nanocapsules (LNCs) on neurochemical and behavioral changes in a model of AD induced by β-amyloid1-42 (Aβ1-42) peptide in aged female mice. For this purpose, aged female mice received free chrysin (FC) (5 mg/kg, per oral, p.o.) or chrysin loaded LNCs (C1-LNC and C5-LNC) (1 or 5 mg/kg, p.o.) for 14 days after Aβ1-42 administration (400 pmol, i.c.v.). Aβ1-42 induced significant impairments on memory and learning (morris water maze task, object recognition and step-down-type passive avoidance), also caused oxidative stress, reduced the levels of brain-derived neurotrophic factor (BDNF), increased neuroinflammation in prefrontal cortex and hippocampus of aged animals. Thus, C1-LNC and C5-LNC displayed significant effect against Aβ₁-₄2, via attenuation of oxidative stress and neuroinflammation, modulation of neurochemical and behavioral changes in a model of AD. These results point to chrysin loaded LNCs (mainly C5-LNC) can be a promising biomedical tool and a new therapeutic approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Renata Giacomeli
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil.
| | - Marcelo Gomes de Gomes
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Jéssica Brandão Reolon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Letícia Marques Colomé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Cristiano Ricardo Jesse
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| |
Collapse
|
9
|
Przybyłowska M, Kowalski S, Dzierzbicka K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Tacrine Analogues. Curr Neuropharmacol 2019; 17:472-490. [PMID: 29651948 PMCID: PMC6520589 DOI: 10.2174/1570159x16666180412091908] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract: Tacrine is a potent inhibitor of cholinesterases (acetylcholinesterase and butyrylcholinesterase) that shows limiting clinical application by liver toxicity. In spite of this, analogues of tacrine are considered as a model inhibitor of cholinesterases in the therapy of Alzheimer’s disease. The interest in these compounds is mainly related to a high variety of their structure and biological properties. In the present review, we have described the role of cholinergic transmission and treatment strategies in Alzheimer’s disease as well as the synthesis and biological activity of several recently developed classes of multifunctional tacrine analogues and hybrids, which consist of a new paradigm to treat Alzheimer’s disease. We have also reported potential of these analogues in the treatment of Alzheimer’s diseases in various experimental systems.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Szymon Kowalski
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | | |
Collapse
|
10
|
Girek M, Szymański P. Phyto‐Tacrine Hybrids as Promising Drugs to Treat Alzheimer's Disease. ChemistrySelect 2019. [DOI: 10.1002/slct.201803672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Małgorzata Girek
- Department of Pharmaceutical ChemistryDrug Analyses and RadiopharmacyMedical University of Lodz 90-151 Lodz, ul. Muszynskiego 1 Poland
| | - Paweł Szymański
- Department of Pharmaceutical ChemistryDrug Analyses and RadiopharmacyMedical University of Lodz 90-151 Lodz, ul. Muszynskiego 1 Poland
| |
Collapse
|
11
|
Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 2019; 27:895-930. [DOI: 10.1016/j.bmc.2019.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
12
|
Basha SJ, Mohan P, Yeggoni DP, Babu ZR, Kumar PB, Rao AD, Subramanyam R, Damu AG. New Flavone-Cyanoacetamide Hybrids with a Combination of Cholinergic, Antioxidant, Modulation of β-Amyloid Aggregation, and Neuroprotection Properties as Innovative Multifunctional Therapeutic Candidates for Alzheimer’s Disease and Unraveling Their Mechanism of Action with Acetylcholinesterase. Mol Pharm 2018; 15:2206-2223. [DOI: 10.1021/acs.molpharmaceut.8b00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaik Jeelan Basha
- Department of Chemistry, Yogi Vemana University, Andhrapradesh, Kadapa 516003, India
| | - Penumala Mohan
- Department of Chemistry, Yogi Vemana University, Andhrapradesh, Kadapa 516003, India
| | - Daniel Pushparaju Yeggoni
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Zinka Raveendra Babu
- Department of Chemistry, Yogi Vemana University, Andhrapradesh, Kadapa 516003, India
| | - Palaka Bhagath Kumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry Central University, Puducherry 605014, India
| | - Ampasala Dinakara Rao
- Centre for Bioinformatics, School of Life Sciences, Pondicherry Central University, Puducherry 605014, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Amooru Gangaiah Damu
- Department of Chemistry, Yogi Vemana University, Andhrapradesh, Kadapa 516003, India
| |
Collapse
|
13
|
A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer's disease. Eur J Med Chem 2018; 152:570-589. [PMID: 29763806 DOI: 10.1016/j.ejmech.2018.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurodegenerative disease. The target enzymes inhibition including cholinesterase, beta-secretase, monoamine oxidase and inhibition of amyloid-β aggregation as well as oxidative stress and metal chelation play an important role in the pathogenesis of AD. Chroman-4-one scaffold with benzo-γ-pyrone network is a privileged structure in organic synthesis and drug design. A large number of research has been carried out on modified naturally occurring chromanone scaffolds and/or synthesized new analogues, to obtain effective drugs for AD management. The present review summarizes aspects related to the multi-target-directed ligands (MTDLs) strategy in enzyme targets modulation performed with natural and synthesized chroman-4-one-based structures to look at their potential in the management of multifactorial Alzheimer's disease.
Collapse
|
14
|
Feng B, Li X, Xia J, Wu S. Discovery of novel isoflavone derivatives as AChE/BuChE dual-targeted inhibitors: synthesis, biological evaluation and molecular modelling. J Enzyme Inhib Med Chem 2017; 32:968-977. [PMID: 28718678 PMCID: PMC6446070 DOI: 10.1080/14756366.2017.1347163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60 μM for AChE; 5.92 μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Bo Feng
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Xinpeng Li
- b Food and Drug Administration of Beijing Yanqing District , Beijing 102100 , China
| | - Jie Xia
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Song Wu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
15
|
Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med Chem 2017; 9:1835-1854. [PMID: 28925729 DOI: 10.4155/fmc-2017-0094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.
Collapse
|
16
|
Spilovska K, Korabecny J, Sepsova V, Jun D, Hrabinova M, Jost P, Muckova L, Soukup O, Janockova J, Kucera T, Dolezal R, Mezeiova E, Kaping D, Kuca K. Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer's Agents: Design, Synthesis and Biological Evaluation. Molecules 2017; 22:E1006. [PMID: 28621747 PMCID: PMC6152717 DOI: 10.3390/molecules22061006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
A novel series of 6-chlorotacrine-scutellarin hybrids was designed, synthesized and the biological activity as potential anti-Alzheimer's agents was assessed. Their inhibitory activity towards human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), antioxidant activity, ability to cross the blood-brain barrier (BBB) and hepatotoxic profile were evaluated in vitro. Among these compounds, hybrid K1383, bearing two methylene tether between two basic scaffolds, was found to be very potent hAChE inhibitor (IC50 = 1.63 nM). Unfortunately, none of the hybrids displayed any antioxidant activity (EC50 ≥ 500 μM). Preliminary data also suggests a comparable hepatotoxic profile with 6-Cl-THA (established on a HepG2 cell line). Kinetic studies performed on hAChE with the most active compound in the study, K1383, pointed out to a mixed, non-competitive enzyme inhibition. These findings were further corroborated by docking studies.
Collapse
Affiliation(s)
- Katarina Spilovska
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Vendula Sepsova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Eva Mezeiova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
17
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
18
|
Chen Y, Lin H, Zhu J, Gu K, Li Q, He S, Lu X, Tan R, Pei Y, Wu L, Bian Y, Sun H. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer's disease. RSC Adv 2017. [DOI: 10.1039/c7ra04385f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of tacrine–cinnamic acid hybrids are synthesized as multi-target cholinesterase inhibitors against Alzheimer's disease.
Collapse
|