1
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities. Pharmaceuticals (Basel) 2022; 15:ph15121553. [PMID: 36559004 PMCID: PMC9782300 DOI: 10.3390/ph15121553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
To address the continued rise of multi-drug-resistant microorganisms, the development of novel drugs with new modes of action is urgently required. While humans biosynthesize the essential isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the established mevalonate pathway, pathogenic protozoa and certain pathogenic eubacteria use the less well-known methylerythritol phosphate pathway for this purpose. Important pathogens using the MEP pathway are, for example, Plasmodium falciparum, Mycobacterium tuberculosis, Pseudomonas aeruginosa and Escherichia coli. The enzymes of that pathway are targets for antiinfective drugs that are exempt from target-related toxicity. 2C-Methyl-D-erythritol 4-phosphate (MEP), the second enzyme of the non-mevalonate pathway, has been established as the molecular target of fosmidomycin, an antibiotic that has so far failed to be approved as an anti-infective drug. This review describes the development and anti-infective properties of a wide range of fosmidomycin derivatives synthesized over the last four decades. Here we discuss the DXR inhibitor pharmacophore, which comprises a metal-binding group, a phosphate or phosphonate moiety and a connecting linker. Furthermore, non-fosmidomycin-based DXRi, bisubstrate inhibitors and several prodrug concepts are described. A comprehensive structure-activity relationship (SAR) of nearly all inhibitor types is presented and some novel opportunities for further drug development of DXR inhibitors are discussed.
Collapse
|
3
|
Acyloxymethyl and alkoxycarbonyloxymethyl prodrugs of a fosmidomycin surrogate as antimalarial and antibacterial agents. Eur J Med Chem 2022; 245:114924. [DOI: 10.1016/j.ejmech.2022.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
4
|
Edwards RL, Heueck I, Lee SG, Shah IT, Miller JJ, Jezewski AJ, Mikati MO, Wang X, Brothers RC, Heidel KM, Osbourn DM, Burnham CAD, Alvarez S, Fritz SA, Dowd CS, Jez JM, Odom John AR. Potent, specific MEPicides for treatment of zoonotic staphylococci. PLoS Pathog 2020; 16:e1007806. [PMID: 32497104 PMCID: PMC7297381 DOI: 10.1371/journal.ppat.1007806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Coagulase-positive staphylococci, which frequently colonize the mucosal surfaces of animals, also cause a spectrum of opportunistic infections including skin and soft tissue infections, urinary tract infections, pneumonia, and bacteremia. However, recent advances in bacterial identification have revealed that these common veterinary pathogens are in fact zoonoses that cause serious infections in human patients. The global spread of multidrug-resistant zoonotic staphylococci, in particular the emergence of methicillin-resistant organisms, is now a serious threat to both animal and human welfare. Accordingly, new therapeutic targets that can be exploited to combat staphylococcal infections are urgently needed. Enzymes of the methylerythritol phosphate pathway (MEP) of isoprenoid biosynthesis represent potential targets for treating zoonotic staphylococci. Here we demonstrate that fosmidomycin (FSM) inhibits the first step of the isoprenoid biosynthetic pathway catalyzed by deoxyxylulose phosphate reductoisomerase (DXR) in staphylococci. In addition, we have both enzymatically and structurally determined the mechanism by which FSM elicits its effect. Using a forward genetic screen, the glycerol-3-phosphate transporter GlpT that facilitates FSM uptake was identified in two zoonotic staphylococci, Staphylococcus schleiferi and Staphylococcus pseudintermedius. A series of lipophilic ester prodrugs (termed MEPicides) structurally related to FSM were synthesized, and data indicate that the presence of the prodrug moiety not only substantially increased potency of the inhibitors against staphylococci but also bypassed the need for GlpT-mediated cellular transport. Collectively, our data indicate that the prodrug MEPicides selectively and robustly inhibit DXR in zoonotic staphylococci, and further, that DXR represents a promising, druggable target for future development.
Collapse
Affiliation(s)
- Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Isabel Heueck
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Soon Goo Lee
- University of North Carolina-Wilmington, Wilmington, North Carolina, United States of America
| | - Ishaan T. Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Justin J. Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew J. Jezewski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marwa O. Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xu Wang
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Robert C. Brothers
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Kenneth M. Heidel
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Damon M. Osbourn
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, United States of America
| | - Carey-Ann D. Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sophie Alvarez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Stephanie A. Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
5
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
6
|
Mancini G, Bouda M, Gamrat JM, Tomsho JW. Synthesis and Antimicrobial Evaluation of γ-Borono Phosphonate Compounds in Escherichia coli and Mycobacterium smegmatis. ACS OMEGA 2019; 4:14551-14559. [PMID: 31528809 PMCID: PMC6740193 DOI: 10.1021/acsomega.9b01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Drug resistance in bacteria is a serious threat, and drugs with novel modes of action are constantly needed. Fosmidomycin is a naturally occurring antibiotic that inhibits the nonmevalonate pathway via inhibition of the enzyme 1-deoxylulose-5-phosphate reductoisomerase (DXR). This work is the first report in which a boronic acid is evaluated as an isostere of the retrohydroxamate moiety of fosmidomycin. We report the novel synthesis of a γ-borono phosphonate analog of fosmidomycin and its corresponding prodrugs. We evaluate the inhibition of DXR and the antimicrobial activity of γ-borono phosphonate compounds against Escherichia coli wild type, E. coli Δglycerol-3-phosphate transporter, and Mycobacterium smegmatis. Despite its structural similarities, the γ-borono phosphonate compound shows antimicrobial activity against E. coli with a mechanism of action that is different from fosmidomycin. This was proven with an underutilized method for studying in vitro inhibition of the MEP pathway in E. coli via isopentenyl pyrophosphate chemical rescue. These results indicate that these compounds may serve as a promising scaffold for developing a new class of antimicrobial agents.
Collapse
|
7
|
Heidel KM, Dowd CS. Phosphonate prodrugs: an overview and recent advances. Future Med Chem 2019; 11:1625-1643. [PMID: 31469328 PMCID: PMC6722485 DOI: 10.4155/fmc-2018-0591] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
Phosphonates, often used as isosteric replacements for phosphates, can provide important interactions with an enzyme. Due to their high charge at physiological pH, however, permeation into cells can be a challenge. Protecting phosphonates as prodrugs has shown promise in drug delivery. Thus, a variety of structures and cleavage/activation mechanisms exist, enabling release of the active compound. This review describes the structural diversity of these pro-moieties, relevant cleavage mechanisms and recent advances in the design of phosphonate prodrugs.
Collapse
Affiliation(s)
- Kenneth M Heidel
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
8
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
9
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
10
|
Saggu GS, Pala ZR, Garg S, Saxena V. New Insight into Isoprenoids Biosynthesis Process and Future Prospects for Drug Designing in Plasmodium. Front Microbiol 2016; 7:1421. [PMID: 27679614 PMCID: PMC5020098 DOI: 10.3389/fmicb.2016.01421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022] Open
Abstract
The MEP (Methyl Erythritol Phosphate) isoprenoids biosynthesis pathway is an attractive drug target to combat malaria, due to its uniqueness and indispensability for the parasite. It is functional in the apicoplast of Plasmodium and its products get transported to the cytoplasm, where they participate in glycoprotein synthesis, electron transport chain, tRNA modification and several other biological processes. Several compounds have been tested against the enzymes involved in this pathway and amongst them Fosmidomycin, targeted against IspC (DXP reductoisomerase) enzyme and MMV008138 targeted against IspD enzyme have shown good anti-malarial activity in parasite cultures. Fosmidomycin is now-a-days prescribed clinically, however, less absorption, shorter half-life, and toxicity at higher doses, limits its use as an anti-malarial. The potential of other enzymes of the pathway as candidate drug targets has also been determined. This review details the various drug molecules tested against these targets with special emphasis to Plasmodium. We corroborate that MEP pathway functional within the apicoplast of Plasmodium is a major drug target, especially during erythrocytic stages. However, the major bottlenecks, bioavailability and toxicity of the new molecules needs to be addressed, before considering any new molecule as a potent antimalarial.
Collapse
Affiliation(s)
- Gagandeep S Saggu
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Zarna R Pala
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Shilpi Garg
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Vishal Saxena
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| |
Collapse
|
11
|
Lipko A, Swiezewska E. Isoprenoid generating systems in plants - A handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process. Prog Lipid Res 2016; 63:70-92. [PMID: 27133788 DOI: 10.1016/j.plipres.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/07/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Isoprenoids comprise an astonishingly diverse group of metabolites with numerous potential and actual applications in medicine, agriculture and the chemical industry. Generation of efficient platforms producing isoprenoids is a target of numerous laboratories. Such efforts are generally enhanced if the native biosynthetic routes can be identified, and if the regulatory mechanisms responsible for the biosynthesis of the compound(s) of interest can be determined. In this review a critical summary of the techniques applied to establish the contribution of the two alternative routes of isoprenoid production operating in plant cells, the mevalonate and methylerythritol pathways, with a focus on their co-operation (cross-talk) is presented. Special attention has been paid to methodological aspects of the referred studies, in order to give the reader a deeper understanding for the nuances of these powerful techniques. This review has been designed as an organized toolbox, which might offer the researchers comments useful both for project design and for interpretation of results obtained.
Collapse
Affiliation(s)
- Agata Lipko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
12
|
Royo S, Chapman RSL, Sim AM, Peacock LR, Bull SD. Aza-Conjugate Addition Methodology for the Synthesis of N-Hydroxy-isoindolin-1-ones. Org Lett 2016; 18:1146-9. [DOI: 10.1021/acs.orglett.6b00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santiago Royo
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, Castelló, Spain
| | | | - Alisia M. Sim
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Lucy R. Peacock
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Steven D. Bull
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| |
Collapse
|